Properties

Label 1425.2.a.t.1.3
Level $1425$
Weight $2$
Character 1425.1
Self dual yes
Analytic conductor $11.379$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,2,Mod(1,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.52892\) of defining polynomial
Character \(\chi\) \(=\) 1425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52892 q^{2} -1.00000 q^{3} +4.39543 q^{4} -2.52892 q^{6} +4.92434 q^{7} +6.05784 q^{8} +1.00000 q^{9} -1.13349 q^{11} -4.39543 q^{12} -4.00000 q^{13} +12.4533 q^{14} +6.52892 q^{16} +6.79085 q^{17} +2.52892 q^{18} -1.00000 q^{19} -4.92434 q^{21} -2.86651 q^{22} -1.92434 q^{23} -6.05784 q^{24} -10.1157 q^{26} -1.00000 q^{27} +21.6446 q^{28} -5.00000 q^{29} +5.13349 q^{31} +4.39543 q^{32} +1.13349 q^{33} +17.1735 q^{34} +4.39543 q^{36} -9.05784 q^{37} -2.52892 q^{38} +4.00000 q^{39} +3.86651 q^{41} -12.4533 q^{42} -4.00000 q^{43} -4.98218 q^{44} -4.86651 q^{46} -4.26698 q^{47} -6.52892 q^{48} +17.2492 q^{49} -6.79085 q^{51} -17.5817 q^{52} +13.1157 q^{53} -2.52892 q^{54} +29.8309 q^{56} +1.00000 q^{57} -12.6446 q^{58} +9.19133 q^{59} +0.733016 q^{61} +12.9822 q^{62} +4.92434 q^{63} -1.94216 q^{64} +2.86651 q^{66} -4.86651 q^{67} +29.8487 q^{68} +1.92434 q^{69} +11.1913 q^{71} +6.05784 q^{72} -11.1157 q^{73} -22.9065 q^{74} -4.39543 q^{76} -5.58170 q^{77} +10.1157 q^{78} -13.7730 q^{79} +1.00000 q^{81} +9.77808 q^{82} -0.866508 q^{83} -21.6446 q^{84} -10.1157 q^{86} +5.00000 q^{87} -6.86651 q^{88} -10.8487 q^{89} -19.6974 q^{91} -8.45831 q^{92} -5.13349 q^{93} -10.7909 q^{94} -4.39543 q^{96} +9.32482 q^{97} +43.6217 q^{98} -1.13349 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 6 q^{4} + 3 q^{8} + 3 q^{9} - 3 q^{11} - 6 q^{12} - 12 q^{13} + 15 q^{14} + 12 q^{16} + 6 q^{17} - 3 q^{19} - 9 q^{22} + 9 q^{23} - 3 q^{24} - 3 q^{27} + 27 q^{28} - 15 q^{29} + 15 q^{31}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.52892 1.78822 0.894108 0.447852i \(-0.147811\pi\)
0.894108 + 0.447852i \(0.147811\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.39543 2.19771
\(5\) 0 0
\(6\) −2.52892 −1.03243
\(7\) 4.92434 1.86123 0.930614 0.366003i \(-0.119274\pi\)
0.930614 + 0.366003i \(0.119274\pi\)
\(8\) 6.05784 2.14177
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.13349 −0.341761 −0.170880 0.985292i \(-0.554661\pi\)
−0.170880 + 0.985292i \(0.554661\pi\)
\(12\) −4.39543 −1.26885
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 12.4533 3.32827
\(15\) 0 0
\(16\) 6.52892 1.63223
\(17\) 6.79085 1.64702 0.823512 0.567299i \(-0.192012\pi\)
0.823512 + 0.567299i \(0.192012\pi\)
\(18\) 2.52892 0.596072
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −4.92434 −1.07458
\(22\) −2.86651 −0.611142
\(23\) −1.92434 −0.401253 −0.200627 0.979668i \(-0.564298\pi\)
−0.200627 + 0.979668i \(0.564298\pi\)
\(24\) −6.05784 −1.23655
\(25\) 0 0
\(26\) −10.1157 −1.98385
\(27\) −1.00000 −0.192450
\(28\) 21.6446 4.09044
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) 5.13349 0.922002 0.461001 0.887400i \(-0.347490\pi\)
0.461001 + 0.887400i \(0.347490\pi\)
\(32\) 4.39543 0.777009
\(33\) 1.13349 0.197316
\(34\) 17.1735 2.94523
\(35\) 0 0
\(36\) 4.39543 0.732571
\(37\) −9.05784 −1.48910 −0.744550 0.667567i \(-0.767336\pi\)
−0.744550 + 0.667567i \(0.767336\pi\)
\(38\) −2.52892 −0.410245
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 3.86651 0.603847 0.301924 0.953332i \(-0.402371\pi\)
0.301924 + 0.953332i \(0.402371\pi\)
\(42\) −12.4533 −1.92158
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −4.98218 −0.751092
\(45\) 0 0
\(46\) −4.86651 −0.717527
\(47\) −4.26698 −0.622404 −0.311202 0.950344i \(-0.600732\pi\)
−0.311202 + 0.950344i \(0.600732\pi\)
\(48\) −6.52892 −0.942368
\(49\) 17.2492 2.46417
\(50\) 0 0
\(51\) −6.79085 −0.950909
\(52\) −17.5817 −2.43814
\(53\) 13.1157 1.80158 0.900788 0.434259i \(-0.142990\pi\)
0.900788 + 0.434259i \(0.142990\pi\)
\(54\) −2.52892 −0.344142
\(55\) 0 0
\(56\) 29.8309 3.98632
\(57\) 1.00000 0.132453
\(58\) −12.6446 −1.66032
\(59\) 9.19133 1.19661 0.598304 0.801269i \(-0.295841\pi\)
0.598304 + 0.801269i \(0.295841\pi\)
\(60\) 0 0
\(61\) 0.733016 0.0938531 0.0469266 0.998898i \(-0.485057\pi\)
0.0469266 + 0.998898i \(0.485057\pi\)
\(62\) 12.9822 1.64874
\(63\) 4.92434 0.620409
\(64\) −1.94216 −0.242771
\(65\) 0 0
\(66\) 2.86651 0.352843
\(67\) −4.86651 −0.594539 −0.297269 0.954794i \(-0.596076\pi\)
−0.297269 + 0.954794i \(0.596076\pi\)
\(68\) 29.8487 3.61969
\(69\) 1.92434 0.231664
\(70\) 0 0
\(71\) 11.1913 1.32817 0.664083 0.747659i \(-0.268822\pi\)
0.664083 + 0.747659i \(0.268822\pi\)
\(72\) 6.05784 0.713923
\(73\) −11.1157 −1.30099 −0.650495 0.759510i \(-0.725439\pi\)
−0.650495 + 0.759510i \(0.725439\pi\)
\(74\) −22.9065 −2.66283
\(75\) 0 0
\(76\) −4.39543 −0.504190
\(77\) −5.58170 −0.636094
\(78\) 10.1157 1.14537
\(79\) −13.7730 −1.54959 −0.774794 0.632214i \(-0.782146\pi\)
−0.774794 + 0.632214i \(0.782146\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 9.77808 1.07981
\(83\) −0.866508 −0.0951116 −0.0475558 0.998869i \(-0.515143\pi\)
−0.0475558 + 0.998869i \(0.515143\pi\)
\(84\) −21.6446 −2.36162
\(85\) 0 0
\(86\) −10.1157 −1.09080
\(87\) 5.00000 0.536056
\(88\) −6.86651 −0.731972
\(89\) −10.8487 −1.14996 −0.574979 0.818168i \(-0.694990\pi\)
−0.574979 + 0.818168i \(0.694990\pi\)
\(90\) 0 0
\(91\) −19.6974 −2.06485
\(92\) −8.45831 −0.881840
\(93\) −5.13349 −0.532318
\(94\) −10.7909 −1.11299
\(95\) 0 0
\(96\) −4.39543 −0.448606
\(97\) 9.32482 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(98\) 43.6217 4.40646
\(99\) −1.13349 −0.113920
\(100\) 0 0
\(101\) −2.79085 −0.277700 −0.138850 0.990313i \(-0.544341\pi\)
−0.138850 + 0.990313i \(0.544341\pi\)
\(102\) −17.1735 −1.70043
\(103\) −15.0979 −1.48764 −0.743818 0.668382i \(-0.766987\pi\)
−0.743818 + 0.668382i \(0.766987\pi\)
\(104\) −24.2313 −2.37608
\(105\) 0 0
\(106\) 33.1685 3.22161
\(107\) −13.0400 −1.26063 −0.630313 0.776341i \(-0.717073\pi\)
−0.630313 + 0.776341i \(0.717073\pi\)
\(108\) −4.39543 −0.422950
\(109\) 10.6395 1.01908 0.509542 0.860446i \(-0.329815\pi\)
0.509542 + 0.860446i \(0.329815\pi\)
\(110\) 0 0
\(111\) 9.05784 0.859732
\(112\) 32.1506 3.03795
\(113\) 0.332540 0.0312828 0.0156414 0.999878i \(-0.495021\pi\)
0.0156414 + 0.999878i \(0.495021\pi\)
\(114\) 2.52892 0.236855
\(115\) 0 0
\(116\) −21.9771 −2.04053
\(117\) −4.00000 −0.369800
\(118\) 23.2441 2.13979
\(119\) 33.4405 3.06548
\(120\) 0 0
\(121\) −9.71520 −0.883200
\(122\) 1.85374 0.167830
\(123\) −3.86651 −0.348631
\(124\) 22.5639 2.02630
\(125\) 0 0
\(126\) 12.4533 1.10942
\(127\) −8.45831 −0.750554 −0.375277 0.926913i \(-0.622452\pi\)
−0.375277 + 0.926913i \(0.622452\pi\)
\(128\) −13.7024 −1.21113
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 10.9822 0.959518 0.479759 0.877400i \(-0.340724\pi\)
0.479759 + 0.877400i \(0.340724\pi\)
\(132\) 4.98218 0.433643
\(133\) −4.92434 −0.426995
\(134\) −12.3070 −1.06316
\(135\) 0 0
\(136\) 41.1379 3.52754
\(137\) −4.90652 −0.419193 −0.209596 0.977788i \(-0.567215\pi\)
−0.209596 + 0.977788i \(0.567215\pi\)
\(138\) 4.86651 0.414265
\(139\) 2.92434 0.248040 0.124020 0.992280i \(-0.460421\pi\)
0.124020 + 0.992280i \(0.460421\pi\)
\(140\) 0 0
\(141\) 4.26698 0.359345
\(142\) 28.3019 2.37505
\(143\) 4.53397 0.379149
\(144\) 6.52892 0.544076
\(145\) 0 0
\(146\) −28.1106 −2.32645
\(147\) −17.2492 −1.42269
\(148\) −39.8130 −3.27261
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 4.67518 0.380461 0.190230 0.981739i \(-0.439077\pi\)
0.190230 + 0.981739i \(0.439077\pi\)
\(152\) −6.05784 −0.491355
\(153\) 6.79085 0.549008
\(154\) −14.1157 −1.13747
\(155\) 0 0
\(156\) 17.5817 1.40766
\(157\) 13.4482 1.07328 0.536642 0.843810i \(-0.319693\pi\)
0.536642 + 0.843810i \(0.319693\pi\)
\(158\) −34.8309 −2.77100
\(159\) −13.1157 −1.04014
\(160\) 0 0
\(161\) −9.47613 −0.746824
\(162\) 2.52892 0.198691
\(163\) −21.5740 −1.68980 −0.844902 0.534920i \(-0.820342\pi\)
−0.844902 + 0.534920i \(0.820342\pi\)
\(164\) 16.9950 1.32708
\(165\) 0 0
\(166\) −2.19133 −0.170080
\(167\) 9.07566 0.702295 0.351148 0.936320i \(-0.385792\pi\)
0.351148 + 0.936320i \(0.385792\pi\)
\(168\) −29.8309 −2.30150
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) −17.5817 −1.34059
\(173\) −6.46603 −0.491603 −0.245802 0.969320i \(-0.579051\pi\)
−0.245802 + 0.969320i \(0.579051\pi\)
\(174\) 12.6446 0.958584
\(175\) 0 0
\(176\) −7.40048 −0.557832
\(177\) −9.19133 −0.690863
\(178\) −27.4354 −2.05637
\(179\) −11.3070 −0.845125 −0.422562 0.906334i \(-0.638869\pi\)
−0.422562 + 0.906334i \(0.638869\pi\)
\(180\) 0 0
\(181\) −22.6496 −1.68353 −0.841767 0.539841i \(-0.818484\pi\)
−0.841767 + 0.539841i \(0.818484\pi\)
\(182\) −49.8130 −3.69239
\(183\) −0.733016 −0.0541861
\(184\) −11.6574 −0.859392
\(185\) 0 0
\(186\) −12.9822 −0.951900
\(187\) −7.69738 −0.562888
\(188\) −18.7552 −1.36786
\(189\) −4.92434 −0.358193
\(190\) 0 0
\(191\) 24.2969 1.75806 0.879031 0.476765i \(-0.158191\pi\)
0.879031 + 0.476765i \(0.158191\pi\)
\(192\) 1.94216 0.140164
\(193\) −6.67518 −0.480490 −0.240245 0.970712i \(-0.577228\pi\)
−0.240245 + 0.970712i \(0.577228\pi\)
\(194\) 23.5817 1.69307
\(195\) 0 0
\(196\) 75.8174 5.41553
\(197\) −23.2892 −1.65929 −0.829643 0.558295i \(-0.811456\pi\)
−0.829643 + 0.558295i \(0.811456\pi\)
\(198\) −2.86651 −0.203714
\(199\) 25.0400 1.77504 0.887520 0.460770i \(-0.152427\pi\)
0.887520 + 0.460770i \(0.152427\pi\)
\(200\) 0 0
\(201\) 4.86651 0.343257
\(202\) −7.05784 −0.496588
\(203\) −24.6217 −1.72811
\(204\) −29.8487 −2.08983
\(205\) 0 0
\(206\) −38.1812 −2.66021
\(207\) −1.92434 −0.133751
\(208\) −26.1157 −1.81080
\(209\) 1.13349 0.0784053
\(210\) 0 0
\(211\) −11.7730 −0.810489 −0.405244 0.914208i \(-0.632814\pi\)
−0.405244 + 0.914208i \(0.632814\pi\)
\(212\) 57.6490 3.95935
\(213\) −11.1913 −0.766817
\(214\) −32.9771 −2.25427
\(215\) 0 0
\(216\) −6.05784 −0.412184
\(217\) 25.2791 1.71606
\(218\) 26.9065 1.82234
\(219\) 11.1157 0.751127
\(220\) 0 0
\(221\) −27.1634 −1.82721
\(222\) 22.9065 1.53739
\(223\) 3.92434 0.262794 0.131397 0.991330i \(-0.458054\pi\)
0.131397 + 0.991330i \(0.458054\pi\)
\(224\) 21.6446 1.44619
\(225\) 0 0
\(226\) 0.840967 0.0559403
\(227\) 1.60962 0.106834 0.0534172 0.998572i \(-0.482989\pi\)
0.0534172 + 0.998572i \(0.482989\pi\)
\(228\) 4.39543 0.291094
\(229\) −1.93444 −0.127832 −0.0639158 0.997955i \(-0.520359\pi\)
−0.0639158 + 0.997955i \(0.520359\pi\)
\(230\) 0 0
\(231\) 5.58170 0.367249
\(232\) −30.2892 −1.98858
\(233\) 1.84869 0.121112 0.0605558 0.998165i \(-0.480713\pi\)
0.0605558 + 0.998165i \(0.480713\pi\)
\(234\) −10.1157 −0.661282
\(235\) 0 0
\(236\) 40.3998 2.62980
\(237\) 13.7730 0.894655
\(238\) 84.5683 5.48175
\(239\) 2.25688 0.145986 0.0729929 0.997332i \(-0.476745\pi\)
0.0729929 + 0.997332i \(0.476745\pi\)
\(240\) 0 0
\(241\) −19.0578 −1.22762 −0.613812 0.789453i \(-0.710365\pi\)
−0.613812 + 0.789453i \(0.710365\pi\)
\(242\) −24.5689 −1.57935
\(243\) −1.00000 −0.0641500
\(244\) 3.22192 0.206262
\(245\) 0 0
\(246\) −9.77808 −0.623428
\(247\) 4.00000 0.254514
\(248\) 31.0979 1.97472
\(249\) 0.866508 0.0549127
\(250\) 0 0
\(251\) 26.7909 1.69102 0.845512 0.533957i \(-0.179295\pi\)
0.845512 + 0.533957i \(0.179295\pi\)
\(252\) 21.6446 1.36348
\(253\) 2.18123 0.137133
\(254\) −21.3904 −1.34215
\(255\) 0 0
\(256\) −30.7680 −1.92300
\(257\) −16.3147 −1.01768 −0.508842 0.860860i \(-0.669926\pi\)
−0.508842 + 0.860860i \(0.669926\pi\)
\(258\) 10.1157 0.629774
\(259\) −44.6039 −2.77155
\(260\) 0 0
\(261\) −5.00000 −0.309492
\(262\) 27.7730 1.71582
\(263\) −1.92434 −0.118660 −0.0593301 0.998238i \(-0.518896\pi\)
−0.0593301 + 0.998238i \(0.518896\pi\)
\(264\) 6.86651 0.422604
\(265\) 0 0
\(266\) −12.4533 −0.763558
\(267\) 10.8487 0.663929
\(268\) −21.3904 −1.30663
\(269\) 19.5817 1.19392 0.596959 0.802272i \(-0.296376\pi\)
0.596959 + 0.802272i \(0.296376\pi\)
\(270\) 0 0
\(271\) 11.1913 0.679825 0.339912 0.940457i \(-0.389603\pi\)
0.339912 + 0.940457i \(0.389603\pi\)
\(272\) 44.3369 2.68832
\(273\) 19.6974 1.19214
\(274\) −12.4082 −0.749607
\(275\) 0 0
\(276\) 8.45831 0.509131
\(277\) −16.3147 −0.980257 −0.490128 0.871650i \(-0.663050\pi\)
−0.490128 + 0.871650i \(0.663050\pi\)
\(278\) 7.39543 0.443548
\(279\) 5.13349 0.307334
\(280\) 0 0
\(281\) −2.75084 −0.164101 −0.0820506 0.996628i \(-0.526147\pi\)
−0.0820506 + 0.996628i \(0.526147\pi\)
\(282\) 10.7909 0.642586
\(283\) 20.2313 1.20263 0.601314 0.799013i \(-0.294644\pi\)
0.601314 + 0.799013i \(0.294644\pi\)
\(284\) 49.1907 2.91893
\(285\) 0 0
\(286\) 11.4660 0.678001
\(287\) 19.0400 1.12390
\(288\) 4.39543 0.259003
\(289\) 29.1157 1.71269
\(290\) 0 0
\(291\) −9.32482 −0.546631
\(292\) −48.8581 −2.85920
\(293\) −22.9822 −1.34263 −0.671317 0.741171i \(-0.734271\pi\)
−0.671317 + 0.741171i \(0.734271\pi\)
\(294\) −43.6217 −2.54407
\(295\) 0 0
\(296\) −54.8709 −3.18931
\(297\) 1.13349 0.0657719
\(298\) 0 0
\(299\) 7.69738 0.445151
\(300\) 0 0
\(301\) −19.6974 −1.13534
\(302\) 11.8231 0.680346
\(303\) 2.79085 0.160330
\(304\) −6.52892 −0.374459
\(305\) 0 0
\(306\) 17.1735 0.981744
\(307\) −8.59952 −0.490801 −0.245400 0.969422i \(-0.578919\pi\)
−0.245400 + 0.969422i \(0.578919\pi\)
\(308\) −24.5340 −1.39795
\(309\) 15.0979 0.858887
\(310\) 0 0
\(311\) −12.2313 −0.693576 −0.346788 0.937944i \(-0.612728\pi\)
−0.346788 + 0.937944i \(0.612728\pi\)
\(312\) 24.2313 1.37183
\(313\) 7.51615 0.424838 0.212419 0.977179i \(-0.431866\pi\)
0.212419 + 0.977179i \(0.431866\pi\)
\(314\) 34.0094 1.91926
\(315\) 0 0
\(316\) −60.5383 −3.40555
\(317\) 26.5817 1.49298 0.746489 0.665398i \(-0.231738\pi\)
0.746489 + 0.665398i \(0.231738\pi\)
\(318\) −33.1685 −1.85999
\(319\) 5.66746 0.317317
\(320\) 0 0
\(321\) 13.0400 0.727823
\(322\) −23.9644 −1.33548
\(323\) −6.79085 −0.377853
\(324\) 4.39543 0.244190
\(325\) 0 0
\(326\) −54.5588 −3.02173
\(327\) −10.6395 −0.588368
\(328\) 23.4227 1.29330
\(329\) −21.0121 −1.15843
\(330\) 0 0
\(331\) 19.3648 1.06439 0.532194 0.846623i \(-0.321368\pi\)
0.532194 + 0.846623i \(0.321368\pi\)
\(332\) −3.80867 −0.209028
\(333\) −9.05784 −0.496366
\(334\) 22.9516 1.25586
\(335\) 0 0
\(336\) −32.1506 −1.75396
\(337\) 17.8487 0.972280 0.486140 0.873881i \(-0.338405\pi\)
0.486140 + 0.873881i \(0.338405\pi\)
\(338\) 7.58675 0.412665
\(339\) −0.332540 −0.0180611
\(340\) 0 0
\(341\) −5.81877 −0.315104
\(342\) −2.52892 −0.136748
\(343\) 50.4704 2.72515
\(344\) −24.2313 −1.30647
\(345\) 0 0
\(346\) −16.3521 −0.879092
\(347\) −19.0578 −1.02308 −0.511539 0.859260i \(-0.670924\pi\)
−0.511539 + 0.859260i \(0.670924\pi\)
\(348\) 21.9771 1.17810
\(349\) 22.9644 1.22925 0.614627 0.788818i \(-0.289307\pi\)
0.614627 + 0.788818i \(0.289307\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) −4.98218 −0.265551
\(353\) 25.5817 1.36158 0.680788 0.732480i \(-0.261637\pi\)
0.680788 + 0.732480i \(0.261637\pi\)
\(354\) −23.2441 −1.23541
\(355\) 0 0
\(356\) −47.6846 −2.52728
\(357\) −33.4405 −1.76986
\(358\) −28.5945 −1.51126
\(359\) −27.3248 −1.44215 −0.721074 0.692858i \(-0.756351\pi\)
−0.721074 + 0.692858i \(0.756351\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −57.2791 −3.01052
\(363\) 9.71520 0.509916
\(364\) −86.5784 −4.53794
\(365\) 0 0
\(366\) −1.85374 −0.0968964
\(367\) 20.3827 1.06397 0.531983 0.846755i \(-0.321447\pi\)
0.531983 + 0.846755i \(0.321447\pi\)
\(368\) −12.5639 −0.654938
\(369\) 3.86651 0.201282
\(370\) 0 0
\(371\) 64.5861 3.35314
\(372\) −22.5639 −1.16988
\(373\) −2.52387 −0.130681 −0.0653405 0.997863i \(-0.520813\pi\)
−0.0653405 + 0.997863i \(0.520813\pi\)
\(374\) −19.4660 −1.00656
\(375\) 0 0
\(376\) −25.8487 −1.33304
\(377\) 20.0000 1.03005
\(378\) −12.4533 −0.640527
\(379\) −9.44049 −0.484925 −0.242463 0.970161i \(-0.577955\pi\)
−0.242463 + 0.970161i \(0.577955\pi\)
\(380\) 0 0
\(381\) 8.45831 0.433332
\(382\) 61.4449 3.14379
\(383\) −11.1557 −0.570029 −0.285015 0.958523i \(-0.591998\pi\)
−0.285015 + 0.958523i \(0.591998\pi\)
\(384\) 13.7024 0.699249
\(385\) 0 0
\(386\) −16.8810 −0.859219
\(387\) −4.00000 −0.203331
\(388\) 40.9866 2.08078
\(389\) 28.3827 1.43906 0.719529 0.694463i \(-0.244358\pi\)
0.719529 + 0.694463i \(0.244358\pi\)
\(390\) 0 0
\(391\) −13.0679 −0.660874
\(392\) 104.493 5.27767
\(393\) −10.9822 −0.553978
\(394\) −58.8964 −2.96716
\(395\) 0 0
\(396\) −4.98218 −0.250364
\(397\) 1.40048 0.0702879 0.0351439 0.999382i \(-0.488811\pi\)
0.0351439 + 0.999382i \(0.488811\pi\)
\(398\) 63.3241 3.17415
\(399\) 4.92434 0.246526
\(400\) 0 0
\(401\) 3.51615 0.175588 0.0877940 0.996139i \(-0.472018\pi\)
0.0877940 + 0.996139i \(0.472018\pi\)
\(402\) 12.3070 0.613817
\(403\) −20.5340 −1.02287
\(404\) −12.2670 −0.610305
\(405\) 0 0
\(406\) −62.2663 −3.09023
\(407\) 10.2670 0.508915
\(408\) −41.1379 −2.03663
\(409\) −31.1379 −1.53967 −0.769834 0.638244i \(-0.779661\pi\)
−0.769834 + 0.638244i \(0.779661\pi\)
\(410\) 0 0
\(411\) 4.90652 0.242021
\(412\) −66.3615 −3.26940
\(413\) 45.2613 2.22716
\(414\) −4.86651 −0.239176
\(415\) 0 0
\(416\) −17.5817 −0.862014
\(417\) −2.92434 −0.143206
\(418\) 2.86651 0.140205
\(419\) 20.4983 1.00141 0.500704 0.865618i \(-0.333074\pi\)
0.500704 + 0.865618i \(0.333074\pi\)
\(420\) 0 0
\(421\) −3.06794 −0.149522 −0.0747610 0.997201i \(-0.523819\pi\)
−0.0747610 + 0.997201i \(0.523819\pi\)
\(422\) −29.7730 −1.44933
\(423\) −4.26698 −0.207468
\(424\) 79.4526 3.85856
\(425\) 0 0
\(426\) −28.3019 −1.37123
\(427\) 3.60962 0.174682
\(428\) −57.3164 −2.77049
\(429\) −4.53397 −0.218902
\(430\) 0 0
\(431\) 5.34264 0.257346 0.128673 0.991687i \(-0.458928\pi\)
0.128673 + 0.991687i \(0.458928\pi\)
\(432\) −6.52892 −0.314123
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) 63.9287 3.06868
\(435\) 0 0
\(436\) 46.7653 2.23965
\(437\) 1.92434 0.0920539
\(438\) 28.1106 1.34318
\(439\) 3.27470 0.156293 0.0781466 0.996942i \(-0.475100\pi\)
0.0781466 + 0.996942i \(0.475100\pi\)
\(440\) 0 0
\(441\) 17.2492 0.821389
\(442\) −68.6940 −3.26744
\(443\) 35.8988 1.70560 0.852802 0.522235i \(-0.174902\pi\)
0.852802 + 0.522235i \(0.174902\pi\)
\(444\) 39.8130 1.88944
\(445\) 0 0
\(446\) 9.92434 0.469931
\(447\) 0 0
\(448\) −9.56388 −0.451851
\(449\) 1.26698 0.0597927 0.0298963 0.999553i \(-0.490482\pi\)
0.0298963 + 0.999553i \(0.490482\pi\)
\(450\) 0 0
\(451\) −4.38266 −0.206371
\(452\) 1.46166 0.0687505
\(453\) −4.67518 −0.219659
\(454\) 4.07061 0.191043
\(455\) 0 0
\(456\) 6.05784 0.283684
\(457\) −1.48385 −0.0694117 −0.0347058 0.999398i \(-0.511049\pi\)
−0.0347058 + 0.999398i \(0.511049\pi\)
\(458\) −4.89205 −0.228590
\(459\) −6.79085 −0.316970
\(460\) 0 0
\(461\) −4.90652 −0.228520 −0.114260 0.993451i \(-0.536450\pi\)
−0.114260 + 0.993451i \(0.536450\pi\)
\(462\) 14.1157 0.656720
\(463\) 13.8843 0.645259 0.322630 0.946525i \(-0.395433\pi\)
0.322630 + 0.946525i \(0.395433\pi\)
\(464\) −32.6446 −1.51549
\(465\) 0 0
\(466\) 4.67518 0.216574
\(467\) 29.5060 1.36538 0.682689 0.730709i \(-0.260811\pi\)
0.682689 + 0.730709i \(0.260811\pi\)
\(468\) −17.5817 −0.812715
\(469\) −23.9644 −1.10657
\(470\) 0 0
\(471\) −13.4482 −0.619661
\(472\) 55.6796 2.56286
\(473\) 4.53397 0.208472
\(474\) 34.8309 1.59983
\(475\) 0 0
\(476\) 146.985 6.73706
\(477\) 13.1157 0.600525
\(478\) 5.70748 0.261054
\(479\) 10.8766 0.496965 0.248482 0.968636i \(-0.420068\pi\)
0.248482 + 0.968636i \(0.420068\pi\)
\(480\) 0 0
\(481\) 36.2313 1.65201
\(482\) −48.1957 −2.19525
\(483\) 9.47613 0.431179
\(484\) −42.7024 −1.94102
\(485\) 0 0
\(486\) −2.52892 −0.114714
\(487\) 33.2791 1.50802 0.754010 0.656863i \(-0.228117\pi\)
0.754010 + 0.656863i \(0.228117\pi\)
\(488\) 4.44049 0.201012
\(489\) 21.5740 0.975609
\(490\) 0 0
\(491\) −4.90652 −0.221428 −0.110714 0.993852i \(-0.535314\pi\)
−0.110714 + 0.993852i \(0.535314\pi\)
\(492\) −16.9950 −0.766192
\(493\) −33.9543 −1.52922
\(494\) 10.1157 0.455126
\(495\) 0 0
\(496\) 33.5161 1.50492
\(497\) 55.1099 2.47202
\(498\) 2.19133 0.0981957
\(499\) 2.00772 0.0898779 0.0449390 0.998990i \(-0.485691\pi\)
0.0449390 + 0.998990i \(0.485691\pi\)
\(500\) 0 0
\(501\) −9.07566 −0.405470
\(502\) 67.7519 3.02391
\(503\) 7.69738 0.343209 0.171605 0.985166i \(-0.445105\pi\)
0.171605 + 0.985166i \(0.445105\pi\)
\(504\) 29.8309 1.32877
\(505\) 0 0
\(506\) 5.51615 0.245223
\(507\) −3.00000 −0.133235
\(508\) −37.1779 −1.64950
\(509\) 27.1157 1.20188 0.600941 0.799294i \(-0.294793\pi\)
0.600941 + 0.799294i \(0.294793\pi\)
\(510\) 0 0
\(511\) −54.7374 −2.42144
\(512\) −50.4049 −2.22760
\(513\) 1.00000 0.0441511
\(514\) −41.2586 −1.81984
\(515\) 0 0
\(516\) 17.5817 0.773991
\(517\) 4.83659 0.212713
\(518\) −112.800 −4.95613
\(519\) 6.46603 0.283827
\(520\) 0 0
\(521\) 17.0800 0.748290 0.374145 0.927370i \(-0.377936\pi\)
0.374145 + 0.927370i \(0.377936\pi\)
\(522\) −12.6446 −0.553439
\(523\) −9.70748 −0.424478 −0.212239 0.977218i \(-0.568076\pi\)
−0.212239 + 0.977218i \(0.568076\pi\)
\(524\) 48.2714 2.10874
\(525\) 0 0
\(526\) −4.86651 −0.212190
\(527\) 34.8608 1.51856
\(528\) 7.40048 0.322064
\(529\) −19.2969 −0.838996
\(530\) 0 0
\(531\) 9.19133 0.398870
\(532\) −21.6446 −0.938412
\(533\) −15.4660 −0.669908
\(534\) 27.4354 1.18725
\(535\) 0 0
\(536\) −29.4805 −1.27336
\(537\) 11.3070 0.487933
\(538\) 49.5205 2.13498
\(539\) −19.5518 −0.842155
\(540\) 0 0
\(541\) 27.7475 1.19296 0.596479 0.802629i \(-0.296566\pi\)
0.596479 + 0.802629i \(0.296566\pi\)
\(542\) 28.3019 1.21567
\(543\) 22.6496 0.971989
\(544\) 29.8487 1.27975
\(545\) 0 0
\(546\) 49.8130 2.13180
\(547\) 2.04002 0.0872248 0.0436124 0.999049i \(-0.486113\pi\)
0.0436124 + 0.999049i \(0.486113\pi\)
\(548\) −21.5663 −0.921265
\(549\) 0.733016 0.0312844
\(550\) 0 0
\(551\) 5.00000 0.213007
\(552\) 11.6574 0.496170
\(553\) −67.8231 −2.88413
\(554\) −41.2586 −1.75291
\(555\) 0 0
\(556\) 12.8537 0.545120
\(557\) 24.5340 1.03954 0.519769 0.854307i \(-0.326018\pi\)
0.519769 + 0.854307i \(0.326018\pi\)
\(558\) 12.9822 0.549579
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 7.69738 0.324983
\(562\) −6.95664 −0.293448
\(563\) 38.0878 1.60521 0.802604 0.596513i \(-0.203447\pi\)
0.802604 + 0.596513i \(0.203447\pi\)
\(564\) 18.7552 0.789737
\(565\) 0 0
\(566\) 51.1634 2.15056
\(567\) 4.92434 0.206803
\(568\) 67.7952 2.84462
\(569\) −24.4005 −1.02292 −0.511461 0.859307i \(-0.670895\pi\)
−0.511461 + 0.859307i \(0.670895\pi\)
\(570\) 0 0
\(571\) −13.0400 −0.545708 −0.272854 0.962055i \(-0.587968\pi\)
−0.272854 + 0.962055i \(0.587968\pi\)
\(572\) 19.9287 0.833262
\(573\) −24.2969 −1.01502
\(574\) 48.1506 2.00977
\(575\) 0 0
\(576\) −1.94216 −0.0809235
\(577\) 13.0979 0.545271 0.272635 0.962117i \(-0.412105\pi\)
0.272635 + 0.962117i \(0.412105\pi\)
\(578\) 73.6311 3.06265
\(579\) 6.67518 0.277411
\(580\) 0 0
\(581\) −4.26698 −0.177024
\(582\) −23.5817 −0.977493
\(583\) −14.8665 −0.615708
\(584\) −67.3369 −2.78642
\(585\) 0 0
\(586\) −58.1200 −2.40092
\(587\) 30.4227 1.25568 0.627839 0.778343i \(-0.283940\pi\)
0.627839 + 0.778343i \(0.283940\pi\)
\(588\) −75.8174 −3.12666
\(589\) −5.13349 −0.211522
\(590\) 0 0
\(591\) 23.2892 0.957989
\(592\) −59.1379 −2.43055
\(593\) −30.3470 −1.24620 −0.623101 0.782141i \(-0.714128\pi\)
−0.623101 + 0.782141i \(0.714128\pi\)
\(594\) 2.86651 0.117614
\(595\) 0 0
\(596\) 0 0
\(597\) −25.0400 −1.02482
\(598\) 19.4660 0.796025
\(599\) −43.3948 −1.77306 −0.886531 0.462670i \(-0.846892\pi\)
−0.886531 + 0.462670i \(0.846892\pi\)
\(600\) 0 0
\(601\) 7.84869 0.320155 0.160077 0.987104i \(-0.448826\pi\)
0.160077 + 0.987104i \(0.448826\pi\)
\(602\) −49.8130 −2.03023
\(603\) −4.86651 −0.198180
\(604\) 20.5494 0.836144
\(605\) 0 0
\(606\) 7.05784 0.286705
\(607\) −13.8087 −0.560477 −0.280238 0.959930i \(-0.590414\pi\)
−0.280238 + 0.959930i \(0.590414\pi\)
\(608\) −4.39543 −0.178258
\(609\) 24.6217 0.997722
\(610\) 0 0
\(611\) 17.0679 0.690495
\(612\) 29.8487 1.20656
\(613\) 9.98218 0.403176 0.201588 0.979470i \(-0.435390\pi\)
0.201588 + 0.979470i \(0.435390\pi\)
\(614\) −21.7475 −0.877657
\(615\) 0 0
\(616\) −33.8130 −1.36237
\(617\) −0.115672 −0.00465677 −0.00232839 0.999997i \(-0.500741\pi\)
−0.00232839 + 0.999997i \(0.500741\pi\)
\(618\) 38.1812 1.53587
\(619\) −5.45831 −0.219388 −0.109694 0.993965i \(-0.534987\pi\)
−0.109694 + 0.993965i \(0.534987\pi\)
\(620\) 0 0
\(621\) 1.92434 0.0772213
\(622\) −30.9321 −1.24026
\(623\) −53.4227 −2.14033
\(624\) 26.1157 1.04546
\(625\) 0 0
\(626\) 19.0077 0.759701
\(627\) −1.13349 −0.0452673
\(628\) 59.1106 2.35877
\(629\) −61.5104 −2.45258
\(630\) 0 0
\(631\) 45.8130 1.82379 0.911894 0.410425i \(-0.134620\pi\)
0.911894 + 0.410425i \(0.134620\pi\)
\(632\) −83.4348 −3.31886
\(633\) 11.7730 0.467936
\(634\) 67.2229 2.66976
\(635\) 0 0
\(636\) −57.6490 −2.28593
\(637\) −68.9967 −2.73375
\(638\) 14.3325 0.567431
\(639\) 11.1913 0.442722
\(640\) 0 0
\(641\) −37.1634 −1.46787 −0.733933 0.679222i \(-0.762317\pi\)
−0.733933 + 0.679222i \(0.762317\pi\)
\(642\) 32.9771 1.30150
\(643\) 11.4583 0.451872 0.225936 0.974142i \(-0.427456\pi\)
0.225936 + 0.974142i \(0.427456\pi\)
\(644\) −41.6516 −1.64130
\(645\) 0 0
\(646\) −17.1735 −0.675683
\(647\) 34.7952 1.36794 0.683971 0.729509i \(-0.260252\pi\)
0.683971 + 0.729509i \(0.260252\pi\)
\(648\) 6.05784 0.237974
\(649\) −10.4183 −0.408954
\(650\) 0 0
\(651\) −25.2791 −0.990765
\(652\) −94.8268 −3.71371
\(653\) −25.2791 −0.989247 −0.494623 0.869107i \(-0.664694\pi\)
−0.494623 + 0.869107i \(0.664694\pi\)
\(654\) −26.9065 −1.05213
\(655\) 0 0
\(656\) 25.2441 0.985617
\(657\) −11.1157 −0.433664
\(658\) −53.1379 −2.07153
\(659\) 47.6261 1.85525 0.927625 0.373514i \(-0.121847\pi\)
0.927625 + 0.373514i \(0.121847\pi\)
\(660\) 0 0
\(661\) −14.4882 −0.563527 −0.281763 0.959484i \(-0.590919\pi\)
−0.281763 + 0.959484i \(0.590919\pi\)
\(662\) 48.9721 1.90335
\(663\) 27.1634 1.05494
\(664\) −5.24916 −0.203707
\(665\) 0 0
\(666\) −22.9065 −0.887610
\(667\) 9.62172 0.372554
\(668\) 39.8914 1.54344
\(669\) −3.92434 −0.151724
\(670\) 0 0
\(671\) −0.830868 −0.0320753
\(672\) −21.6446 −0.834958
\(673\) −15.6974 −0.605089 −0.302545 0.953135i \(-0.597836\pi\)
−0.302545 + 0.953135i \(0.597836\pi\)
\(674\) 45.1379 1.73865
\(675\) 0 0
\(676\) 13.1863 0.507165
\(677\) −26.8130 −1.03051 −0.515255 0.857037i \(-0.672303\pi\)
−0.515255 + 0.857037i \(0.672303\pi\)
\(678\) −0.840967 −0.0322972
\(679\) 45.9186 1.76219
\(680\) 0 0
\(681\) −1.60962 −0.0616809
\(682\) −14.7152 −0.563474
\(683\) 36.4704 1.39550 0.697751 0.716341i \(-0.254184\pi\)
0.697751 + 0.716341i \(0.254184\pi\)
\(684\) −4.39543 −0.168063
\(685\) 0 0
\(686\) 127.636 4.87315
\(687\) 1.93444 0.0738036
\(688\) −26.1157 −0.995651
\(689\) −52.4627 −1.99867
\(690\) 0 0
\(691\) 13.1990 0.502115 0.251058 0.967972i \(-0.419222\pi\)
0.251058 + 0.967972i \(0.419222\pi\)
\(692\) −28.4210 −1.08040
\(693\) −5.58170 −0.212031
\(694\) −48.1957 −1.82948
\(695\) 0 0
\(696\) 30.2892 1.14811
\(697\) 26.2569 0.994550
\(698\) 58.0750 2.19817
\(699\) −1.84869 −0.0699238
\(700\) 0 0
\(701\) 37.7075 1.42419 0.712096 0.702082i \(-0.247746\pi\)
0.712096 + 0.702082i \(0.247746\pi\)
\(702\) 10.1157 0.381791
\(703\) 9.05784 0.341623
\(704\) 2.20143 0.0829694
\(705\) 0 0
\(706\) 64.6940 2.43479
\(707\) −13.7431 −0.516863
\(708\) −40.3998 −1.51832
\(709\) 15.9166 0.597761 0.298881 0.954290i \(-0.403387\pi\)
0.298881 + 0.954290i \(0.403387\pi\)
\(710\) 0 0
\(711\) −13.7730 −0.516529
\(712\) −65.7196 −2.46295
\(713\) −9.87860 −0.369957
\(714\) −84.5683 −3.16489
\(715\) 0 0
\(716\) −49.6991 −1.85734
\(717\) −2.25688 −0.0842849
\(718\) −69.1022 −2.57887
\(719\) 1.43612 0.0535581 0.0267790 0.999641i \(-0.491475\pi\)
0.0267790 + 0.999641i \(0.491475\pi\)
\(720\) 0 0
\(721\) −74.3470 −2.76883
\(722\) 2.52892 0.0941166
\(723\) 19.0578 0.708769
\(724\) −99.5548 −3.69993
\(725\) 0 0
\(726\) 24.5689 0.911839
\(727\) −34.3191 −1.27282 −0.636412 0.771349i \(-0.719582\pi\)
−0.636412 + 0.771349i \(0.719582\pi\)
\(728\) −119.323 −4.42242
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −27.1634 −1.00467
\(732\) −3.22192 −0.119086
\(733\) −43.3114 −1.59974 −0.799871 0.600172i \(-0.795099\pi\)
−0.799871 + 0.600172i \(0.795099\pi\)
\(734\) 51.5461 1.90260
\(735\) 0 0
\(736\) −8.45831 −0.311778
\(737\) 5.51615 0.203190
\(738\) 9.77808 0.359936
\(739\) 25.4583 0.936499 0.468250 0.883596i \(-0.344885\pi\)
0.468250 + 0.883596i \(0.344885\pi\)
\(740\) 0 0
\(741\) −4.00000 −0.146944
\(742\) 163.333 5.99614
\(743\) 22.2391 0.815872 0.407936 0.913010i \(-0.366249\pi\)
0.407936 + 0.913010i \(0.366249\pi\)
\(744\) −31.0979 −1.14010
\(745\) 0 0
\(746\) −6.38266 −0.233686
\(747\) −0.866508 −0.0317039
\(748\) −33.8332 −1.23707
\(749\) −64.2135 −2.34631
\(750\) 0 0
\(751\) 25.0323 0.913441 0.456721 0.889610i \(-0.349024\pi\)
0.456721 + 0.889610i \(0.349024\pi\)
\(752\) −27.8588 −1.01591
\(753\) −26.7909 −0.976313
\(754\) 50.5784 1.84196
\(755\) 0 0
\(756\) −21.6446 −0.787206
\(757\) −36.7330 −1.33508 −0.667542 0.744572i \(-0.732654\pi\)
−0.667542 + 0.744572i \(0.732654\pi\)
\(758\) −23.8742 −0.867151
\(759\) −2.18123 −0.0791736
\(760\) 0 0
\(761\) −22.0901 −0.800767 −0.400383 0.916348i \(-0.631123\pi\)
−0.400383 + 0.916348i \(0.631123\pi\)
\(762\) 21.3904 0.774892
\(763\) 52.3928 1.89675
\(764\) 106.795 3.86372
\(765\) 0 0
\(766\) −28.2118 −1.01933
\(767\) −36.7653 −1.32752
\(768\) 30.7680 1.11024
\(769\) −34.5817 −1.24705 −0.623524 0.781804i \(-0.714300\pi\)
−0.623524 + 0.781804i \(0.714300\pi\)
\(770\) 0 0
\(771\) 16.3147 0.587560
\(772\) −29.3403 −1.05598
\(773\) −28.0622 −1.00933 −0.504664 0.863316i \(-0.668384\pi\)
−0.504664 + 0.863316i \(0.668384\pi\)
\(774\) −10.1157 −0.363600
\(775\) 0 0
\(776\) 56.4882 2.02781
\(777\) 44.6039 1.60016
\(778\) 71.7774 2.57334
\(779\) −3.86651 −0.138532
\(780\) 0 0
\(781\) −12.6853 −0.453915
\(782\) −33.0477 −1.18178
\(783\) 5.00000 0.178685
\(784\) 112.618 4.02208
\(785\) 0 0
\(786\) −27.7730 −0.990631
\(787\) −7.54169 −0.268832 −0.134416 0.990925i \(-0.542916\pi\)
−0.134416 + 0.990925i \(0.542916\pi\)
\(788\) −102.366 −3.64663
\(789\) 1.92434 0.0685085
\(790\) 0 0
\(791\) 1.63754 0.0582243
\(792\) −6.86651 −0.243991
\(793\) −2.93206 −0.104121
\(794\) 3.54169 0.125690
\(795\) 0 0
\(796\) 110.062 3.90103
\(797\) −17.4126 −0.616785 −0.308392 0.951259i \(-0.599791\pi\)
−0.308392 + 0.951259i \(0.599791\pi\)
\(798\) 12.4533 0.440841
\(799\) −28.9765 −1.02511
\(800\) 0 0
\(801\) −10.8487 −0.383320
\(802\) 8.89205 0.313989
\(803\) 12.5995 0.444628
\(804\) 21.3904 0.754380
\(805\) 0 0
\(806\) −51.9287 −1.82911
\(807\) −19.5817 −0.689309
\(808\) −16.9065 −0.594769
\(809\) −5.84869 −0.205629 −0.102814 0.994701i \(-0.532785\pi\)
−0.102814 + 0.994701i \(0.532785\pi\)
\(810\) 0 0
\(811\) −4.02992 −0.141510 −0.0707548 0.997494i \(-0.522541\pi\)
−0.0707548 + 0.997494i \(0.522541\pi\)
\(812\) −108.223 −3.79788
\(813\) −11.1913 −0.392497
\(814\) 25.9644 0.910050
\(815\) 0 0
\(816\) −44.3369 −1.55210
\(817\) 4.00000 0.139942
\(818\) −78.7451 −2.75326
\(819\) −19.6974 −0.688282
\(820\) 0 0
\(821\) 3.97446 0.138710 0.0693548 0.997592i \(-0.477906\pi\)
0.0693548 + 0.997592i \(0.477906\pi\)
\(822\) 12.4082 0.432786
\(823\) −1.07566 −0.0374950 −0.0187475 0.999824i \(-0.505968\pi\)
−0.0187475 + 0.999824i \(0.505968\pi\)
\(824\) −91.4603 −3.18617
\(825\) 0 0
\(826\) 114.462 3.98264
\(827\) −12.2313 −0.425325 −0.212663 0.977126i \(-0.568214\pi\)
−0.212663 + 0.977126i \(0.568214\pi\)
\(828\) −8.45831 −0.293947
\(829\) −48.0444 −1.66865 −0.834325 0.551272i \(-0.814143\pi\)
−0.834325 + 0.551272i \(0.814143\pi\)
\(830\) 0 0
\(831\) 16.3147 0.565951
\(832\) 7.76866 0.269330
\(833\) 117.137 4.05854
\(834\) −7.39543 −0.256083
\(835\) 0 0
\(836\) 4.98218 0.172312
\(837\) −5.13349 −0.177439
\(838\) 51.8386 1.79073
\(839\) 41.6695 1.43859 0.719295 0.694705i \(-0.244465\pi\)
0.719295 + 0.694705i \(0.244465\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) −7.75856 −0.267378
\(843\) 2.75084 0.0947438
\(844\) −51.7475 −1.78122
\(845\) 0 0
\(846\) −10.7909 −0.370997
\(847\) −47.8410 −1.64384
\(848\) 85.6311 2.94059
\(849\) −20.2313 −0.694338
\(850\) 0 0
\(851\) 17.4304 0.597506
\(852\) −49.1907 −1.68524
\(853\) 25.4126 0.870110 0.435055 0.900404i \(-0.356729\pi\)
0.435055 + 0.900404i \(0.356729\pi\)
\(854\) 9.12844 0.312369
\(855\) 0 0
\(856\) −78.9943 −2.69997
\(857\) 8.09785 0.276617 0.138309 0.990389i \(-0.455833\pi\)
0.138309 + 0.990389i \(0.455833\pi\)
\(858\) −11.4660 −0.391444
\(859\) −45.8208 −1.56338 −0.781692 0.623664i \(-0.785643\pi\)
−0.781692 + 0.623664i \(0.785643\pi\)
\(860\) 0 0
\(861\) −19.0400 −0.648882
\(862\) 13.5111 0.460190
\(863\) −17.7051 −0.602688 −0.301344 0.953515i \(-0.597435\pi\)
−0.301344 + 0.953515i \(0.597435\pi\)
\(864\) −4.39543 −0.149535
\(865\) 0 0
\(866\) 15.1735 0.515617
\(867\) −29.1157 −0.988820
\(868\) 111.112 3.77140
\(869\) 15.6116 0.529588
\(870\) 0 0
\(871\) 19.4660 0.659581
\(872\) 64.4526 2.18264
\(873\) 9.32482 0.315597
\(874\) 4.86651 0.164612
\(875\) 0 0
\(876\) 48.8581 1.65076
\(877\) 12.9166 0.436163 0.218082 0.975931i \(-0.430020\pi\)
0.218082 + 0.975931i \(0.430020\pi\)
\(878\) 8.28146 0.279486
\(879\) 22.9822 0.775170
\(880\) 0 0
\(881\) 14.1157 0.475569 0.237785 0.971318i \(-0.423579\pi\)
0.237785 + 0.971318i \(0.423579\pi\)
\(882\) 43.6217 1.46882
\(883\) −7.70510 −0.259297 −0.129649 0.991560i \(-0.541385\pi\)
−0.129649 + 0.991560i \(0.541385\pi\)
\(884\) −119.395 −4.01568
\(885\) 0 0
\(886\) 90.7851 3.04999
\(887\) −34.6294 −1.16274 −0.581371 0.813638i \(-0.697484\pi\)
−0.581371 + 0.813638i \(0.697484\pi\)
\(888\) 54.8709 1.84135
\(889\) −41.6516 −1.39695
\(890\) 0 0
\(891\) −1.13349 −0.0379734
\(892\) 17.2492 0.577545
\(893\) 4.26698 0.142789
\(894\) 0 0
\(895\) 0 0
\(896\) −67.4755 −2.25420
\(897\) −7.69738 −0.257008
\(898\) 3.20410 0.106922
\(899\) −25.6675 −0.856058
\(900\) 0 0
\(901\) 89.0666 2.96724
\(902\) −11.0834 −0.369036
\(903\) 19.6974 0.655488
\(904\) 2.01448 0.0670004
\(905\) 0 0
\(906\) −11.8231 −0.392798
\(907\) 28.0699 0.932047 0.466023 0.884772i \(-0.345686\pi\)
0.466023 + 0.884772i \(0.345686\pi\)
\(908\) 7.07498 0.234792
\(909\) −2.79085 −0.0925667
\(910\) 0 0
\(911\) −6.35474 −0.210542 −0.105271 0.994444i \(-0.533571\pi\)
−0.105271 + 0.994444i \(0.533571\pi\)
\(912\) 6.52892 0.216194
\(913\) 0.982180 0.0325054
\(914\) −3.75254 −0.124123
\(915\) 0 0
\(916\) −8.50270 −0.280937
\(917\) 54.0800 1.78588
\(918\) −17.1735 −0.566810
\(919\) 10.8887 0.359185 0.179593 0.983741i \(-0.442522\pi\)
0.179593 + 0.983741i \(0.442522\pi\)
\(920\) 0 0
\(921\) 8.59952 0.283364
\(922\) −12.4082 −0.408642
\(923\) −44.7653 −1.47347
\(924\) 24.5340 0.807108
\(925\) 0 0
\(926\) 35.1123 1.15386
\(927\) −15.0979 −0.495879
\(928\) −21.9771 −0.721435
\(929\) 22.7552 0.746574 0.373287 0.927716i \(-0.378231\pi\)
0.373287 + 0.927716i \(0.378231\pi\)
\(930\) 0 0
\(931\) −17.2492 −0.565319
\(932\) 8.12577 0.266168
\(933\) 12.2313 0.400436
\(934\) 74.6184 2.44159
\(935\) 0 0
\(936\) −24.2313 −0.792026
\(937\) 45.9822 1.50217 0.751086 0.660204i \(-0.229530\pi\)
0.751086 + 0.660204i \(0.229530\pi\)
\(938\) −60.6039 −1.97879
\(939\) −7.51615 −0.245280
\(940\) 0 0
\(941\) −16.5639 −0.539967 −0.269984 0.962865i \(-0.587018\pi\)
−0.269984 + 0.962865i \(0.587018\pi\)
\(942\) −34.0094 −1.10809
\(943\) −7.44049 −0.242296
\(944\) 60.0094 1.95314
\(945\) 0 0
\(946\) 11.4660 0.372793
\(947\) 4.53397 0.147334 0.0736671 0.997283i \(-0.476530\pi\)
0.0736671 + 0.997283i \(0.476530\pi\)
\(948\) 60.5383 1.96619
\(949\) 44.4627 1.44332
\(950\) 0 0
\(951\) −26.5817 −0.861971
\(952\) 202.577 6.56556
\(953\) 36.4304 1.18010 0.590048 0.807368i \(-0.299109\pi\)
0.590048 + 0.807368i \(0.299109\pi\)
\(954\) 33.1685 1.07387
\(955\) 0 0
\(956\) 9.91997 0.320835
\(957\) −5.66746 −0.183203
\(958\) 27.5060 0.888680
\(959\) −24.1614 −0.780213
\(960\) 0 0
\(961\) −4.64726 −0.149912
\(962\) 91.6261 2.95414
\(963\) −13.0400 −0.420209
\(964\) −83.7673 −2.69796
\(965\) 0 0
\(966\) 23.9644 0.771041
\(967\) −41.0044 −1.31861 −0.659306 0.751875i \(-0.729150\pi\)
−0.659306 + 0.751875i \(0.729150\pi\)
\(968\) −58.8531 −1.89161
\(969\) 6.79085 0.218154
\(970\) 0 0
\(971\) 3.58942 0.115190 0.0575951 0.998340i \(-0.481657\pi\)
0.0575951 + 0.998340i \(0.481657\pi\)
\(972\) −4.39543 −0.140983
\(973\) 14.4005 0.461658
\(974\) 84.1601 2.69666
\(975\) 0 0
\(976\) 4.78580 0.153190
\(977\) −42.2313 −1.35110 −0.675550 0.737314i \(-0.736094\pi\)
−0.675550 + 0.737314i \(0.736094\pi\)
\(978\) 54.5588 1.74460
\(979\) 12.2969 0.393011
\(980\) 0 0
\(981\) 10.6395 0.339694
\(982\) −12.4082 −0.395961
\(983\) 36.0800 1.15077 0.575387 0.817881i \(-0.304851\pi\)
0.575387 + 0.817881i \(0.304851\pi\)
\(984\) −23.4227 −0.746687
\(985\) 0 0
\(986\) −85.8675 −2.73458
\(987\) 21.0121 0.668822
\(988\) 17.5817 0.559349
\(989\) 7.69738 0.244762
\(990\) 0 0
\(991\) 19.3648 0.615144 0.307572 0.951525i \(-0.400483\pi\)
0.307572 + 0.951525i \(0.400483\pi\)
\(992\) 22.5639 0.716404
\(993\) −19.3648 −0.614524
\(994\) 139.369 4.42050
\(995\) 0 0
\(996\) 3.80867 0.120682
\(997\) 20.5639 0.651265 0.325632 0.945496i \(-0.394423\pi\)
0.325632 + 0.945496i \(0.394423\pi\)
\(998\) 5.07736 0.160721
\(999\) 9.05784 0.286577
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.a.t.1.3 3
3.2 odd 2 4275.2.a.bf.1.1 3
5.2 odd 4 1425.2.c.o.799.6 6
5.3 odd 4 1425.2.c.o.799.1 6
5.4 even 2 1425.2.a.w.1.1 yes 3
15.14 odd 2 4275.2.a.bg.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.t.1.3 3 1.1 even 1 trivial
1425.2.a.w.1.1 yes 3 5.4 even 2
1425.2.c.o.799.1 6 5.3 odd 4
1425.2.c.o.799.6 6 5.2 odd 4
4275.2.a.bf.1.1 3 3.2 odd 2
4275.2.a.bg.1.3 3 15.14 odd 2