Properties

Label 1425.2.a.r
Level $1425$
Weight $2$
Character orbit 1425.a
Self dual yes
Analytic conductor $11.379$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(1,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,2,-1,0,1,-4,0,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.3786822880\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + q^{3} + (\beta - 1) q^{4} + \beta q^{6} + ( - 2 \beta - 1) q^{7} + ( - 2 \beta + 1) q^{8} + q^{9} + ( - 2 \beta - 2) q^{11} + (\beta - 1) q^{12} + (2 \beta - 2) q^{13} + ( - 3 \beta - 2) q^{14}+ \cdots + ( - 2 \beta - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 2 q^{3} - q^{4} + q^{6} - 4 q^{7} + 2 q^{9} - 6 q^{11} - q^{12} - 2 q^{13} - 7 q^{14} - 3 q^{16} - 4 q^{17} + q^{18} + 2 q^{19} - 4 q^{21} - 8 q^{22} + 8 q^{23} + 4 q^{26} + 2 q^{27}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 1.00000 −1.61803 0 −0.618034 0.236068 2.23607 1.00000 0
1.2 1.61803 1.00000 0.618034 0 1.61803 −4.23607 −2.23607 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.2.a.r yes 2
3.b odd 2 1 4275.2.a.r 2
5.b even 2 1 1425.2.a.m 2
5.c odd 4 2 1425.2.c.n 4
15.d odd 2 1 4275.2.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1425.2.a.m 2 5.b even 2 1
1425.2.a.r yes 2 1.a even 1 1 trivial
1425.2.c.n 4 5.c odd 4 2
4275.2.a.r 2 3.b odd 2 1
4275.2.a.w 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1425))\):

\( T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 4T_{7} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 6T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$29$ \( T^{2} + 10T + 5 \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
$41$ \( T^{2} + 6T - 11 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T - 64 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$53$ \( (T + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 45 \) Copy content Toggle raw display
$61$ \( T^{2} + 6T - 11 \) Copy content Toggle raw display
$67$ \( T^{2} - 6T - 36 \) Copy content Toggle raw display
$71$ \( T^{2} + 16T + 19 \) Copy content Toggle raw display
$73$ \( T^{2} + 2T - 179 \) Copy content Toggle raw display
$79$ \( T^{2} - 20 \) Copy content Toggle raw display
$83$ \( T^{2} + 2T - 44 \) Copy content Toggle raw display
$89$ \( (T + 5)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 6T - 36 \) Copy content Toggle raw display
show more
show less