Properties

Label 1425.2.a.d
Level $1425$
Weight $2$
Character orbit 1425.a
Self dual yes
Analytic conductor $11.379$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} - q^{4} - q^{6} + 2 q^{7} + 3 q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} - q^{4} - q^{6} + 2 q^{7} + 3 q^{8} + q^{9} - 2 q^{11} - q^{12} + 4 q^{13} - 2 q^{14} - q^{16} - 2 q^{17} - q^{18} - q^{19} + 2 q^{21} + 2 q^{22} + 4 q^{23} + 3 q^{24} - 4 q^{26} + q^{27} - 2 q^{28} + 4 q^{29} - 5 q^{32} - 2 q^{33} + 2 q^{34} - q^{36} + q^{38} + 4 q^{39} - 2 q^{42} + 10 q^{43} + 2 q^{44} - 4 q^{46} - 12 q^{47} - q^{48} - 3 q^{49} - 2 q^{51} - 4 q^{52} + 2 q^{53} - q^{54} + 6 q^{56} - q^{57} - 4 q^{58} + 4 q^{59} + 2 q^{61} + 2 q^{63} + 7 q^{64} + 2 q^{66} + 16 q^{67} + 2 q^{68} + 4 q^{69} + 3 q^{72} + 2 q^{73} + q^{76} - 4 q^{77} - 4 q^{78} - 8 q^{79} + q^{81} + 12 q^{83} - 2 q^{84} - 10 q^{86} + 4 q^{87} - 6 q^{88} + 8 q^{91} - 4 q^{92} + 12 q^{94} - 5 q^{96} + 16 q^{97} + 3 q^{98} - 2 q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 −1.00000 0 −1.00000 2.00000 3.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.2.a.d 1
3.b odd 2 1 4275.2.a.o 1
5.b even 2 1 285.2.a.b 1
5.c odd 4 2 1425.2.c.d 2
15.d odd 2 1 855.2.a.b 1
20.d odd 2 1 4560.2.a.v 1
95.d odd 2 1 5415.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.2.a.b 1 5.b even 2 1
855.2.a.b 1 15.d odd 2 1
1425.2.a.d 1 1.a even 1 1 trivial
1425.2.c.d 2 5.c odd 4 2
4275.2.a.o 1 3.b odd 2 1
4560.2.a.v 1 20.d odd 2 1
5415.2.a.c 1 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1425))\):

\( T_{2} + 1 \)
\( T_{7} - 2 \)
\( T_{11} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -1 + T \)
$5$ \( T \)
$7$ \( -2 + T \)
$11$ \( 2 + T \)
$13$ \( -4 + T \)
$17$ \( 2 + T \)
$19$ \( 1 + T \)
$23$ \( -4 + T \)
$29$ \( -4 + T \)
$31$ \( T \)
$37$ \( T \)
$41$ \( T \)
$43$ \( -10 + T \)
$47$ \( 12 + T \)
$53$ \( -2 + T \)
$59$ \( -4 + T \)
$61$ \( -2 + T \)
$67$ \( -16 + T \)
$71$ \( T \)
$73$ \( -2 + T \)
$79$ \( 8 + T \)
$83$ \( -12 + T \)
$89$ \( T \)
$97$ \( -16 + T \)
show more
show less