Properties

 Label 1425.2.a.a.1.1 Level $1425$ Weight $2$ Character 1425.1 Self dual yes Analytic conductor $11.379$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1425,2,Mod(1,1425)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1425, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1425.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1425 = 3 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1425.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$11.3786822880$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 57) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1425.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} +1.00000 q^{6} +3.00000 q^{8} +1.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} +1.00000 q^{6} +3.00000 q^{8} +1.00000 q^{9} +1.00000 q^{12} -6.00000 q^{13} -1.00000 q^{16} +6.00000 q^{17} -1.00000 q^{18} -1.00000 q^{19} -4.00000 q^{23} -3.00000 q^{24} +6.00000 q^{26} -1.00000 q^{27} +2.00000 q^{29} +8.00000 q^{31} -5.00000 q^{32} -6.00000 q^{34} -1.00000 q^{36} +10.0000 q^{37} +1.00000 q^{38} +6.00000 q^{39} -2.00000 q^{41} +4.00000 q^{43} +4.00000 q^{46} -12.0000 q^{47} +1.00000 q^{48} -7.00000 q^{49} -6.00000 q^{51} +6.00000 q^{52} +6.00000 q^{53} +1.00000 q^{54} +1.00000 q^{57} -2.00000 q^{58} -12.0000 q^{59} -2.00000 q^{61} -8.00000 q^{62} +7.00000 q^{64} +4.00000 q^{67} -6.00000 q^{68} +4.00000 q^{69} +3.00000 q^{72} -10.0000 q^{73} -10.0000 q^{74} +1.00000 q^{76} -6.00000 q^{78} +1.00000 q^{81} +2.00000 q^{82} -16.0000 q^{83} -4.00000 q^{86} -2.00000 q^{87} -2.00000 q^{89} +4.00000 q^{92} -8.00000 q^{93} +12.0000 q^{94} +5.00000 q^{96} -10.0000 q^{97} +7.00000 q^{98} +O(q^{100})$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 −0.707107 −0.353553 0.935414i $$-0.615027\pi$$
−0.353553 + 0.935414i $$0.615027\pi$$
$$3$$ −1.00000 −0.577350
$$4$$ −1.00000 −0.500000
$$5$$ 0 0
$$6$$ 1.00000 0.408248
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 3.00000 1.06066
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ 1.00000 0.288675
$$13$$ −6.00000 −1.66410 −0.832050 0.554700i $$-0.812833\pi$$
−0.832050 + 0.554700i $$0.812833\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ −1.00000 −0.250000
$$17$$ 6.00000 1.45521 0.727607 0.685994i $$-0.240633\pi$$
0.727607 + 0.685994i $$0.240633\pi$$
$$18$$ −1.00000 −0.235702
$$19$$ −1.00000 −0.229416
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −4.00000 −0.834058 −0.417029 0.908893i $$-0.636929\pi$$
−0.417029 + 0.908893i $$0.636929\pi$$
$$24$$ −3.00000 −0.612372
$$25$$ 0 0
$$26$$ 6.00000 1.17670
$$27$$ −1.00000 −0.192450
$$28$$ 0 0
$$29$$ 2.00000 0.371391 0.185695 0.982607i $$-0.440546\pi$$
0.185695 + 0.982607i $$0.440546\pi$$
$$30$$ 0 0
$$31$$ 8.00000 1.43684 0.718421 0.695608i $$-0.244865\pi$$
0.718421 + 0.695608i $$0.244865\pi$$
$$32$$ −5.00000 −0.883883
$$33$$ 0 0
$$34$$ −6.00000 −1.02899
$$35$$ 0 0
$$36$$ −1.00000 −0.166667
$$37$$ 10.0000 1.64399 0.821995 0.569495i $$-0.192861\pi$$
0.821995 + 0.569495i $$0.192861\pi$$
$$38$$ 1.00000 0.162221
$$39$$ 6.00000 0.960769
$$40$$ 0 0
$$41$$ −2.00000 −0.312348 −0.156174 0.987730i $$-0.549916\pi$$
−0.156174 + 0.987730i $$0.549916\pi$$
$$42$$ 0 0
$$43$$ 4.00000 0.609994 0.304997 0.952353i $$-0.401344\pi$$
0.304997 + 0.952353i $$0.401344\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 4.00000 0.589768
$$47$$ −12.0000 −1.75038 −0.875190 0.483779i $$-0.839264\pi$$
−0.875190 + 0.483779i $$0.839264\pi$$
$$48$$ 1.00000 0.144338
$$49$$ −7.00000 −1.00000
$$50$$ 0 0
$$51$$ −6.00000 −0.840168
$$52$$ 6.00000 0.832050
$$53$$ 6.00000 0.824163 0.412082 0.911147i $$-0.364802\pi$$
0.412082 + 0.911147i $$0.364802\pi$$
$$54$$ 1.00000 0.136083
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 1.00000 0.132453
$$58$$ −2.00000 −0.262613
$$59$$ −12.0000 −1.56227 −0.781133 0.624364i $$-0.785358\pi$$
−0.781133 + 0.624364i $$0.785358\pi$$
$$60$$ 0 0
$$61$$ −2.00000 −0.256074 −0.128037 0.991769i $$-0.540868\pi$$
−0.128037 + 0.991769i $$0.540868\pi$$
$$62$$ −8.00000 −1.01600
$$63$$ 0 0
$$64$$ 7.00000 0.875000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 4.00000 0.488678 0.244339 0.969690i $$-0.421429\pi$$
0.244339 + 0.969690i $$0.421429\pi$$
$$68$$ −6.00000 −0.727607
$$69$$ 4.00000 0.481543
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 3.00000 0.353553
$$73$$ −10.0000 −1.17041 −0.585206 0.810885i $$-0.698986\pi$$
−0.585206 + 0.810885i $$0.698986\pi$$
$$74$$ −10.0000 −1.16248
$$75$$ 0 0
$$76$$ 1.00000 0.114708
$$77$$ 0 0
$$78$$ −6.00000 −0.679366
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 2.00000 0.220863
$$83$$ −16.0000 −1.75623 −0.878114 0.478451i $$-0.841198\pi$$
−0.878114 + 0.478451i $$0.841198\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ −4.00000 −0.431331
$$87$$ −2.00000 −0.214423
$$88$$ 0 0
$$89$$ −2.00000 −0.212000 −0.106000 0.994366i $$-0.533804\pi$$
−0.106000 + 0.994366i $$0.533804\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 4.00000 0.417029
$$93$$ −8.00000 −0.829561
$$94$$ 12.0000 1.23771
$$95$$ 0 0
$$96$$ 5.00000 0.510310
$$97$$ −10.0000 −1.01535 −0.507673 0.861550i $$-0.669494\pi$$
−0.507673 + 0.861550i $$0.669494\pi$$
$$98$$ 7.00000 0.707107
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −10.0000 −0.995037 −0.497519 0.867453i $$-0.665755\pi$$
−0.497519 + 0.867453i $$0.665755\pi$$
$$102$$ 6.00000 0.594089
$$103$$ −8.00000 −0.788263 −0.394132 0.919054i $$-0.628955\pi$$
−0.394132 + 0.919054i $$0.628955\pi$$
$$104$$ −18.0000 −1.76505
$$105$$ 0 0
$$106$$ −6.00000 −0.582772
$$107$$ −4.00000 −0.386695 −0.193347 0.981130i $$-0.561934\pi$$
−0.193347 + 0.981130i $$0.561934\pi$$
$$108$$ 1.00000 0.0962250
$$109$$ −10.0000 −0.957826 −0.478913 0.877862i $$-0.658969\pi$$
−0.478913 + 0.877862i $$0.658969\pi$$
$$110$$ 0 0
$$111$$ −10.0000 −0.949158
$$112$$ 0 0
$$113$$ −6.00000 −0.564433 −0.282216 0.959351i $$-0.591070\pi$$
−0.282216 + 0.959351i $$0.591070\pi$$
$$114$$ −1.00000 −0.0936586
$$115$$ 0 0
$$116$$ −2.00000 −0.185695
$$117$$ −6.00000 −0.554700
$$118$$ 12.0000 1.10469
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −11.0000 −1.00000
$$122$$ 2.00000 0.181071
$$123$$ 2.00000 0.180334
$$124$$ −8.00000 −0.718421
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 8.00000 0.709885 0.354943 0.934888i $$-0.384500\pi$$
0.354943 + 0.934888i $$0.384500\pi$$
$$128$$ 3.00000 0.265165
$$129$$ −4.00000 −0.352180
$$130$$ 0 0
$$131$$ 8.00000 0.698963 0.349482 0.936943i $$-0.386358\pi$$
0.349482 + 0.936943i $$0.386358\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ −4.00000 −0.345547
$$135$$ 0 0
$$136$$ 18.0000 1.54349
$$137$$ −18.0000 −1.53784 −0.768922 0.639343i $$-0.779207\pi$$
−0.768922 + 0.639343i $$0.779207\pi$$
$$138$$ −4.00000 −0.340503
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 0 0
$$141$$ 12.0000 1.01058
$$142$$ 0 0
$$143$$ 0 0
$$144$$ −1.00000 −0.0833333
$$145$$ 0 0
$$146$$ 10.0000 0.827606
$$147$$ 7.00000 0.577350
$$148$$ −10.0000 −0.821995
$$149$$ 6.00000 0.491539 0.245770 0.969328i $$-0.420959\pi$$
0.245770 + 0.969328i $$0.420959\pi$$
$$150$$ 0 0
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ −3.00000 −0.243332
$$153$$ 6.00000 0.485071
$$154$$ 0 0
$$155$$ 0 0
$$156$$ −6.00000 −0.480384
$$157$$ 2.00000 0.159617 0.0798087 0.996810i $$-0.474569\pi$$
0.0798087 + 0.996810i $$0.474569\pi$$
$$158$$ 0 0
$$159$$ −6.00000 −0.475831
$$160$$ 0 0
$$161$$ 0 0
$$162$$ −1.00000 −0.0785674
$$163$$ 4.00000 0.313304 0.156652 0.987654i $$-0.449930\pi$$
0.156652 + 0.987654i $$0.449930\pi$$
$$164$$ 2.00000 0.156174
$$165$$ 0 0
$$166$$ 16.0000 1.24184
$$167$$ −24.0000 −1.85718 −0.928588 0.371113i $$-0.878976\pi$$
−0.928588 + 0.371113i $$0.878976\pi$$
$$168$$ 0 0
$$169$$ 23.0000 1.76923
$$170$$ 0 0
$$171$$ −1.00000 −0.0764719
$$172$$ −4.00000 −0.304997
$$173$$ 22.0000 1.67263 0.836315 0.548250i $$-0.184706\pi$$
0.836315 + 0.548250i $$0.184706\pi$$
$$174$$ 2.00000 0.151620
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 12.0000 0.901975
$$178$$ 2.00000 0.149906
$$179$$ −4.00000 −0.298974 −0.149487 0.988764i $$-0.547762\pi$$
−0.149487 + 0.988764i $$0.547762\pi$$
$$180$$ 0 0
$$181$$ 14.0000 1.04061 0.520306 0.853980i $$-0.325818\pi$$
0.520306 + 0.853980i $$0.325818\pi$$
$$182$$ 0 0
$$183$$ 2.00000 0.147844
$$184$$ −12.0000 −0.884652
$$185$$ 0 0
$$186$$ 8.00000 0.586588
$$187$$ 0 0
$$188$$ 12.0000 0.875190
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −12.0000 −0.868290 −0.434145 0.900843i $$-0.642949\pi$$
−0.434145 + 0.900843i $$0.642949\pi$$
$$192$$ −7.00000 −0.505181
$$193$$ 14.0000 1.00774 0.503871 0.863779i $$-0.331909\pi$$
0.503871 + 0.863779i $$0.331909\pi$$
$$194$$ 10.0000 0.717958
$$195$$ 0 0
$$196$$ 7.00000 0.500000
$$197$$ 2.00000 0.142494 0.0712470 0.997459i $$-0.477302\pi$$
0.0712470 + 0.997459i $$0.477302\pi$$
$$198$$ 0 0
$$199$$ −8.00000 −0.567105 −0.283552 0.958957i $$-0.591513\pi$$
−0.283552 + 0.958957i $$0.591513\pi$$
$$200$$ 0 0
$$201$$ −4.00000 −0.282138
$$202$$ 10.0000 0.703598
$$203$$ 0 0
$$204$$ 6.00000 0.420084
$$205$$ 0 0
$$206$$ 8.00000 0.557386
$$207$$ −4.00000 −0.278019
$$208$$ 6.00000 0.416025
$$209$$ 0 0
$$210$$ 0 0
$$211$$ −4.00000 −0.275371 −0.137686 0.990476i $$-0.543966\pi$$
−0.137686 + 0.990476i $$0.543966\pi$$
$$212$$ −6.00000 −0.412082
$$213$$ 0 0
$$214$$ 4.00000 0.273434
$$215$$ 0 0
$$216$$ −3.00000 −0.204124
$$217$$ 0 0
$$218$$ 10.0000 0.677285
$$219$$ 10.0000 0.675737
$$220$$ 0 0
$$221$$ −36.0000 −2.42162
$$222$$ 10.0000 0.671156
$$223$$ −16.0000 −1.07144 −0.535720 0.844396i $$-0.679960\pi$$
−0.535720 + 0.844396i $$0.679960\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 6.00000 0.399114
$$227$$ 12.0000 0.796468 0.398234 0.917284i $$-0.369623\pi$$
0.398234 + 0.917284i $$0.369623\pi$$
$$228$$ −1.00000 −0.0662266
$$229$$ 6.00000 0.396491 0.198246 0.980152i $$-0.436476\pi$$
0.198246 + 0.980152i $$0.436476\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 6.00000 0.393919
$$233$$ −10.0000 −0.655122 −0.327561 0.944830i $$-0.606227\pi$$
−0.327561 + 0.944830i $$0.606227\pi$$
$$234$$ 6.00000 0.392232
$$235$$ 0 0
$$236$$ 12.0000 0.781133
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −12.0000 −0.776215 −0.388108 0.921614i $$-0.626871\pi$$
−0.388108 + 0.921614i $$0.626871\pi$$
$$240$$ 0 0
$$241$$ −6.00000 −0.386494 −0.193247 0.981150i $$-0.561902\pi$$
−0.193247 + 0.981150i $$0.561902\pi$$
$$242$$ 11.0000 0.707107
$$243$$ −1.00000 −0.0641500
$$244$$ 2.00000 0.128037
$$245$$ 0 0
$$246$$ −2.00000 −0.127515
$$247$$ 6.00000 0.381771
$$248$$ 24.0000 1.52400
$$249$$ 16.0000 1.01396
$$250$$ 0 0
$$251$$ −24.0000 −1.51487 −0.757433 0.652913i $$-0.773547\pi$$
−0.757433 + 0.652913i $$0.773547\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ −8.00000 −0.501965
$$255$$ 0 0
$$256$$ −17.0000 −1.06250
$$257$$ −14.0000 −0.873296 −0.436648 0.899632i $$-0.643834\pi$$
−0.436648 + 0.899632i $$0.643834\pi$$
$$258$$ 4.00000 0.249029
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 2.00000 0.123797
$$262$$ −8.00000 −0.494242
$$263$$ −12.0000 −0.739952 −0.369976 0.929041i $$-0.620634\pi$$
−0.369976 + 0.929041i $$0.620634\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 2.00000 0.122398
$$268$$ −4.00000 −0.244339
$$269$$ −6.00000 −0.365826 −0.182913 0.983129i $$-0.558553\pi$$
−0.182913 + 0.983129i $$0.558553\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ −6.00000 −0.363803
$$273$$ 0 0
$$274$$ 18.0000 1.08742
$$275$$ 0 0
$$276$$ −4.00000 −0.240772
$$277$$ −22.0000 −1.32185 −0.660926 0.750451i $$-0.729836\pi$$
−0.660926 + 0.750451i $$0.729836\pi$$
$$278$$ −4.00000 −0.239904
$$279$$ 8.00000 0.478947
$$280$$ 0 0
$$281$$ −10.0000 −0.596550 −0.298275 0.954480i $$-0.596411\pi$$
−0.298275 + 0.954480i $$0.596411\pi$$
$$282$$ −12.0000 −0.714590
$$283$$ 20.0000 1.18888 0.594438 0.804141i $$-0.297374\pi$$
0.594438 + 0.804141i $$0.297374\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ −5.00000 −0.294628
$$289$$ 19.0000 1.11765
$$290$$ 0 0
$$291$$ 10.0000 0.586210
$$292$$ 10.0000 0.585206
$$293$$ 14.0000 0.817889 0.408944 0.912559i $$-0.365897\pi$$
0.408944 + 0.912559i $$0.365897\pi$$
$$294$$ −7.00000 −0.408248
$$295$$ 0 0
$$296$$ 30.0000 1.74371
$$297$$ 0 0
$$298$$ −6.00000 −0.347571
$$299$$ 24.0000 1.38796
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 8.00000 0.460348
$$303$$ 10.0000 0.574485
$$304$$ 1.00000 0.0573539
$$305$$ 0 0
$$306$$ −6.00000 −0.342997
$$307$$ 12.0000 0.684876 0.342438 0.939540i $$-0.388747\pi$$
0.342438 + 0.939540i $$0.388747\pi$$
$$308$$ 0 0
$$309$$ 8.00000 0.455104
$$310$$ 0 0
$$311$$ 4.00000 0.226819 0.113410 0.993548i $$-0.463823\pi$$
0.113410 + 0.993548i $$0.463823\pi$$
$$312$$ 18.0000 1.01905
$$313$$ 22.0000 1.24351 0.621757 0.783210i $$-0.286419\pi$$
0.621757 + 0.783210i $$0.286419\pi$$
$$314$$ −2.00000 −0.112867
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 6.00000 0.336994 0.168497 0.985702i $$-0.446109\pi$$
0.168497 + 0.985702i $$0.446109\pi$$
$$318$$ 6.00000 0.336463
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 4.00000 0.223258
$$322$$ 0 0
$$323$$ −6.00000 −0.333849
$$324$$ −1.00000 −0.0555556
$$325$$ 0 0
$$326$$ −4.00000 −0.221540
$$327$$ 10.0000 0.553001
$$328$$ −6.00000 −0.331295
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 12.0000 0.659580 0.329790 0.944054i $$-0.393022\pi$$
0.329790 + 0.944054i $$0.393022\pi$$
$$332$$ 16.0000 0.878114
$$333$$ 10.0000 0.547997
$$334$$ 24.0000 1.31322
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 22.0000 1.19842 0.599208 0.800593i $$-0.295482\pi$$
0.599208 + 0.800593i $$0.295482\pi$$
$$338$$ −23.0000 −1.25104
$$339$$ 6.00000 0.325875
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 1.00000 0.0540738
$$343$$ 0 0
$$344$$ 12.0000 0.646997
$$345$$ 0 0
$$346$$ −22.0000 −1.18273
$$347$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$348$$ 2.00000 0.107211
$$349$$ −2.00000 −0.107058 −0.0535288 0.998566i $$-0.517047\pi$$
−0.0535288 + 0.998566i $$0.517047\pi$$
$$350$$ 0 0
$$351$$ 6.00000 0.320256
$$352$$ 0 0
$$353$$ 22.0000 1.17094 0.585471 0.810693i $$-0.300910\pi$$
0.585471 + 0.810693i $$0.300910\pi$$
$$354$$ −12.0000 −0.637793
$$355$$ 0 0
$$356$$ 2.00000 0.106000
$$357$$ 0 0
$$358$$ 4.00000 0.211407
$$359$$ −20.0000 −1.05556 −0.527780 0.849381i $$-0.676975\pi$$
−0.527780 + 0.849381i $$0.676975\pi$$
$$360$$ 0 0
$$361$$ 1.00000 0.0526316
$$362$$ −14.0000 −0.735824
$$363$$ 11.0000 0.577350
$$364$$ 0 0
$$365$$ 0 0
$$366$$ −2.00000 −0.104542
$$367$$ −32.0000 −1.67039 −0.835193 0.549957i $$-0.814644\pi$$
−0.835193 + 0.549957i $$0.814644\pi$$
$$368$$ 4.00000 0.208514
$$369$$ −2.00000 −0.104116
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 8.00000 0.414781
$$373$$ 10.0000 0.517780 0.258890 0.965907i $$-0.416643\pi$$
0.258890 + 0.965907i $$0.416643\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ −36.0000 −1.85656
$$377$$ −12.0000 −0.618031
$$378$$ 0 0
$$379$$ 12.0000 0.616399 0.308199 0.951322i $$-0.400274\pi$$
0.308199 + 0.951322i $$0.400274\pi$$
$$380$$ 0 0
$$381$$ −8.00000 −0.409852
$$382$$ 12.0000 0.613973
$$383$$ −8.00000 −0.408781 −0.204390 0.978889i $$-0.565521\pi$$
−0.204390 + 0.978889i $$0.565521\pi$$
$$384$$ −3.00000 −0.153093
$$385$$ 0 0
$$386$$ −14.0000 −0.712581
$$387$$ 4.00000 0.203331
$$388$$ 10.0000 0.507673
$$389$$ 30.0000 1.52106 0.760530 0.649303i $$-0.224939\pi$$
0.760530 + 0.649303i $$0.224939\pi$$
$$390$$ 0 0
$$391$$ −24.0000 −1.21373
$$392$$ −21.0000 −1.06066
$$393$$ −8.00000 −0.403547
$$394$$ −2.00000 −0.100759
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −14.0000 −0.702640 −0.351320 0.936255i $$-0.614267\pi$$
−0.351320 + 0.936255i $$0.614267\pi$$
$$398$$ 8.00000 0.401004
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 38.0000 1.89763 0.948815 0.315833i $$-0.102284\pi$$
0.948815 + 0.315833i $$0.102284\pi$$
$$402$$ 4.00000 0.199502
$$403$$ −48.0000 −2.39105
$$404$$ 10.0000 0.497519
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ −18.0000 −0.891133
$$409$$ −14.0000 −0.692255 −0.346128 0.938187i $$-0.612504\pi$$
−0.346128 + 0.938187i $$0.612504\pi$$
$$410$$ 0 0
$$411$$ 18.0000 0.887875
$$412$$ 8.00000 0.394132
$$413$$ 0 0
$$414$$ 4.00000 0.196589
$$415$$ 0 0
$$416$$ 30.0000 1.47087
$$417$$ −4.00000 −0.195881
$$418$$ 0 0
$$419$$ 8.00000 0.390826 0.195413 0.980721i $$-0.437395\pi$$
0.195413 + 0.980721i $$0.437395\pi$$
$$420$$ 0 0
$$421$$ 14.0000 0.682318 0.341159 0.940006i $$-0.389181\pi$$
0.341159 + 0.940006i $$0.389181\pi$$
$$422$$ 4.00000 0.194717
$$423$$ −12.0000 −0.583460
$$424$$ 18.0000 0.874157
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 4.00000 0.193347
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −24.0000 −1.15604 −0.578020 0.816023i $$-0.696174\pi$$
−0.578020 + 0.816023i $$0.696174\pi$$
$$432$$ 1.00000 0.0481125
$$433$$ 14.0000 0.672797 0.336399 0.941720i $$-0.390791\pi$$
0.336399 + 0.941720i $$0.390791\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 10.0000 0.478913
$$437$$ 4.00000 0.191346
$$438$$ −10.0000 −0.477818
$$439$$ −8.00000 −0.381819 −0.190910 0.981608i $$-0.561144\pi$$
−0.190910 + 0.981608i $$0.561144\pi$$
$$440$$ 0 0
$$441$$ −7.00000 −0.333333
$$442$$ 36.0000 1.71235
$$443$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$444$$ 10.0000 0.474579
$$445$$ 0 0
$$446$$ 16.0000 0.757622
$$447$$ −6.00000 −0.283790
$$448$$ 0 0
$$449$$ −2.00000 −0.0943858 −0.0471929 0.998886i $$-0.515028\pi$$
−0.0471929 + 0.998886i $$0.515028\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 6.00000 0.282216
$$453$$ 8.00000 0.375873
$$454$$ −12.0000 −0.563188
$$455$$ 0 0
$$456$$ 3.00000 0.140488
$$457$$ 6.00000 0.280668 0.140334 0.990104i $$-0.455182\pi$$
0.140334 + 0.990104i $$0.455182\pi$$
$$458$$ −6.00000 −0.280362
$$459$$ −6.00000 −0.280056
$$460$$ 0 0
$$461$$ −18.0000 −0.838344 −0.419172 0.907907i $$-0.637680\pi$$
−0.419172 + 0.907907i $$0.637680\pi$$
$$462$$ 0 0
$$463$$ −32.0000 −1.48717 −0.743583 0.668644i $$-0.766875\pi$$
−0.743583 + 0.668644i $$0.766875\pi$$
$$464$$ −2.00000 −0.0928477
$$465$$ 0 0
$$466$$ 10.0000 0.463241
$$467$$ 32.0000 1.48078 0.740392 0.672176i $$-0.234640\pi$$
0.740392 + 0.672176i $$0.234640\pi$$
$$468$$ 6.00000 0.277350
$$469$$ 0 0
$$470$$ 0 0
$$471$$ −2.00000 −0.0921551
$$472$$ −36.0000 −1.65703
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 6.00000 0.274721
$$478$$ 12.0000 0.548867
$$479$$ 20.0000 0.913823 0.456912 0.889512i $$-0.348956\pi$$
0.456912 + 0.889512i $$0.348956\pi$$
$$480$$ 0 0
$$481$$ −60.0000 −2.73576
$$482$$ 6.00000 0.273293
$$483$$ 0 0
$$484$$ 11.0000 0.500000
$$485$$ 0 0
$$486$$ 1.00000 0.0453609
$$487$$ −32.0000 −1.45006 −0.725029 0.688718i $$-0.758174\pi$$
−0.725029 + 0.688718i $$0.758174\pi$$
$$488$$ −6.00000 −0.271607
$$489$$ −4.00000 −0.180886
$$490$$ 0 0
$$491$$ −32.0000 −1.44414 −0.722070 0.691820i $$-0.756809\pi$$
−0.722070 + 0.691820i $$0.756809\pi$$
$$492$$ −2.00000 −0.0901670
$$493$$ 12.0000 0.540453
$$494$$ −6.00000 −0.269953
$$495$$ 0 0
$$496$$ −8.00000 −0.359211
$$497$$ 0 0
$$498$$ −16.0000 −0.716977
$$499$$ 28.0000 1.25345 0.626726 0.779240i $$-0.284395\pi$$
0.626726 + 0.779240i $$0.284395\pi$$
$$500$$ 0 0
$$501$$ 24.0000 1.07224
$$502$$ 24.0000 1.07117
$$503$$ −12.0000 −0.535054 −0.267527 0.963550i $$-0.586206\pi$$
−0.267527 + 0.963550i $$0.586206\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ −23.0000 −1.02147
$$508$$ −8.00000 −0.354943
$$509$$ −22.0000 −0.975133 −0.487566 0.873086i $$-0.662115\pi$$
−0.487566 + 0.873086i $$0.662115\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 11.0000 0.486136
$$513$$ 1.00000 0.0441511
$$514$$ 14.0000 0.617514
$$515$$ 0 0
$$516$$ 4.00000 0.176090
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −22.0000 −0.965693
$$520$$ 0 0
$$521$$ 14.0000 0.613351 0.306676 0.951814i $$-0.400783\pi$$
0.306676 + 0.951814i $$0.400783\pi$$
$$522$$ −2.00000 −0.0875376
$$523$$ 28.0000 1.22435 0.612177 0.790721i $$-0.290294\pi$$
0.612177 + 0.790721i $$0.290294\pi$$
$$524$$ −8.00000 −0.349482
$$525$$ 0 0
$$526$$ 12.0000 0.523225
$$527$$ 48.0000 2.09091
$$528$$ 0 0
$$529$$ −7.00000 −0.304348
$$530$$ 0 0
$$531$$ −12.0000 −0.520756
$$532$$ 0 0
$$533$$ 12.0000 0.519778
$$534$$ −2.00000 −0.0865485
$$535$$ 0 0
$$536$$ 12.0000 0.518321
$$537$$ 4.00000 0.172613
$$538$$ 6.00000 0.258678
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 14.0000 0.601907 0.300954 0.953639i $$-0.402695\pi$$
0.300954 + 0.953639i $$0.402695\pi$$
$$542$$ 0 0
$$543$$ −14.0000 −0.600798
$$544$$ −30.0000 −1.28624
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −4.00000 −0.171028 −0.0855138 0.996337i $$-0.527253\pi$$
−0.0855138 + 0.996337i $$0.527253\pi$$
$$548$$ 18.0000 0.768922
$$549$$ −2.00000 −0.0853579
$$550$$ 0 0
$$551$$ −2.00000 −0.0852029
$$552$$ 12.0000 0.510754
$$553$$ 0 0
$$554$$ 22.0000 0.934690
$$555$$ 0 0
$$556$$ −4.00000 −0.169638
$$557$$ −30.0000 −1.27114 −0.635570 0.772043i $$-0.719235\pi$$
−0.635570 + 0.772043i $$0.719235\pi$$
$$558$$ −8.00000 −0.338667
$$559$$ −24.0000 −1.01509
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 10.0000 0.421825
$$563$$ −20.0000 −0.842900 −0.421450 0.906852i $$-0.638479\pi$$
−0.421450 + 0.906852i $$0.638479\pi$$
$$564$$ −12.0000 −0.505291
$$565$$ 0 0
$$566$$ −20.0000 −0.840663
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 6.00000 0.251533 0.125767 0.992060i $$-0.459861\pi$$
0.125767 + 0.992060i $$0.459861\pi$$
$$570$$ 0 0
$$571$$ 44.0000 1.84134 0.920671 0.390339i $$-0.127642\pi$$
0.920671 + 0.390339i $$0.127642\pi$$
$$572$$ 0 0
$$573$$ 12.0000 0.501307
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 7.00000 0.291667
$$577$$ −18.0000 −0.749350 −0.374675 0.927156i $$-0.622246\pi$$
−0.374675 + 0.927156i $$0.622246\pi$$
$$578$$ −19.0000 −0.790296
$$579$$ −14.0000 −0.581820
$$580$$ 0 0
$$581$$ 0 0
$$582$$ −10.0000 −0.414513
$$583$$ 0 0
$$584$$ −30.0000 −1.24141
$$585$$ 0 0
$$586$$ −14.0000 −0.578335
$$587$$ −8.00000 −0.330195 −0.165098 0.986277i $$-0.552794\pi$$
−0.165098 + 0.986277i $$0.552794\pi$$
$$588$$ −7.00000 −0.288675
$$589$$ −8.00000 −0.329634
$$590$$ 0 0
$$591$$ −2.00000 −0.0822690
$$592$$ −10.0000 −0.410997
$$593$$ 30.0000 1.23195 0.615976 0.787765i $$-0.288762\pi$$
0.615976 + 0.787765i $$0.288762\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ −6.00000 −0.245770
$$597$$ 8.00000 0.327418
$$598$$ −24.0000 −0.981433
$$599$$ −24.0000 −0.980613 −0.490307 0.871550i $$-0.663115\pi$$
−0.490307 + 0.871550i $$0.663115\pi$$
$$600$$ 0 0
$$601$$ 10.0000 0.407909 0.203954 0.978980i $$-0.434621\pi$$
0.203954 + 0.978980i $$0.434621\pi$$
$$602$$ 0 0
$$603$$ 4.00000 0.162893
$$604$$ 8.00000 0.325515
$$605$$ 0 0
$$606$$ −10.0000 −0.406222
$$607$$ −24.0000 −0.974130 −0.487065 0.873366i $$-0.661933\pi$$
−0.487065 + 0.873366i $$0.661933\pi$$
$$608$$ 5.00000 0.202777
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 72.0000 2.91281
$$612$$ −6.00000 −0.242536
$$613$$ −6.00000 −0.242338 −0.121169 0.992632i $$-0.538664\pi$$
−0.121169 + 0.992632i $$0.538664\pi$$
$$614$$ −12.0000 −0.484281
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −2.00000 −0.0805170 −0.0402585 0.999189i $$-0.512818\pi$$
−0.0402585 + 0.999189i $$0.512818\pi$$
$$618$$ −8.00000 −0.321807
$$619$$ −28.0000 −1.12542 −0.562708 0.826656i $$-0.690240\pi$$
−0.562708 + 0.826656i $$0.690240\pi$$
$$620$$ 0 0
$$621$$ 4.00000 0.160514
$$622$$ −4.00000 −0.160385
$$623$$ 0 0
$$624$$ −6.00000 −0.240192
$$625$$ 0 0
$$626$$ −22.0000 −0.879297
$$627$$ 0 0
$$628$$ −2.00000 −0.0798087
$$629$$ 60.0000 2.39236
$$630$$ 0 0
$$631$$ −32.0000 −1.27390 −0.636950 0.770905i $$-0.719804\pi$$
−0.636950 + 0.770905i $$0.719804\pi$$
$$632$$ 0 0
$$633$$ 4.00000 0.158986
$$634$$ −6.00000 −0.238290
$$635$$ 0 0
$$636$$ 6.00000 0.237915
$$637$$ 42.0000 1.66410
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 38.0000 1.50091 0.750455 0.660922i $$-0.229834\pi$$
0.750455 + 0.660922i $$0.229834\pi$$
$$642$$ −4.00000 −0.157867
$$643$$ −20.0000 −0.788723 −0.394362 0.918955i $$-0.629034\pi$$
−0.394362 + 0.918955i $$0.629034\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 6.00000 0.236067
$$647$$ −36.0000 −1.41531 −0.707653 0.706560i $$-0.750246\pi$$
−0.707653 + 0.706560i $$0.750246\pi$$
$$648$$ 3.00000 0.117851
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ −4.00000 −0.156652
$$653$$ −14.0000 −0.547862 −0.273931 0.961749i $$-0.588324\pi$$
−0.273931 + 0.961749i $$0.588324\pi$$
$$654$$ −10.0000 −0.391031
$$655$$ 0 0
$$656$$ 2.00000 0.0780869
$$657$$ −10.0000 −0.390137
$$658$$ 0 0
$$659$$ −44.0000 −1.71400 −0.856998 0.515319i $$-0.827673\pi$$
−0.856998 + 0.515319i $$0.827673\pi$$
$$660$$ 0 0
$$661$$ 6.00000 0.233373 0.116686 0.993169i $$-0.462773\pi$$
0.116686 + 0.993169i $$0.462773\pi$$
$$662$$ −12.0000 −0.466393
$$663$$ 36.0000 1.39812
$$664$$ −48.0000 −1.86276
$$665$$ 0 0
$$666$$ −10.0000 −0.387492
$$667$$ −8.00000 −0.309761
$$668$$ 24.0000 0.928588
$$669$$ 16.0000 0.618596
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 46.0000 1.77317 0.886585 0.462566i $$-0.153071\pi$$
0.886585 + 0.462566i $$0.153071\pi$$
$$674$$ −22.0000 −0.847408
$$675$$ 0 0
$$676$$ −23.0000 −0.884615
$$677$$ 22.0000 0.845529 0.422764 0.906240i $$-0.361060\pi$$
0.422764 + 0.906240i $$0.361060\pi$$
$$678$$ −6.00000 −0.230429
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −12.0000 −0.459841
$$682$$ 0 0
$$683$$ −36.0000 −1.37750 −0.688751 0.724998i $$-0.741841\pi$$
−0.688751 + 0.724998i $$0.741841\pi$$
$$684$$ 1.00000 0.0382360
$$685$$ 0 0
$$686$$ 0 0
$$687$$ −6.00000 −0.228914
$$688$$ −4.00000 −0.152499
$$689$$ −36.0000 −1.37149
$$690$$ 0 0
$$691$$ 20.0000 0.760836 0.380418 0.924815i $$-0.375780\pi$$
0.380418 + 0.924815i $$0.375780\pi$$
$$692$$ −22.0000 −0.836315
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ −6.00000 −0.227429
$$697$$ −12.0000 −0.454532
$$698$$ 2.00000 0.0757011
$$699$$ 10.0000 0.378235
$$700$$ 0 0
$$701$$ −18.0000 −0.679851 −0.339925 0.940452i $$-0.610402\pi$$
−0.339925 + 0.940452i $$0.610402\pi$$
$$702$$ −6.00000 −0.226455
$$703$$ −10.0000 −0.377157
$$704$$ 0 0
$$705$$ 0 0
$$706$$ −22.0000 −0.827981
$$707$$ 0 0
$$708$$ −12.0000 −0.450988
$$709$$ 38.0000 1.42712 0.713560 0.700594i $$-0.247082\pi$$
0.713560 + 0.700594i $$0.247082\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ −6.00000 −0.224860
$$713$$ −32.0000 −1.19841
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 4.00000 0.149487
$$717$$ 12.0000 0.448148
$$718$$ 20.0000 0.746393
$$719$$ −20.0000 −0.745874 −0.372937 0.927857i $$-0.621649\pi$$
−0.372937 + 0.927857i $$0.621649\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ −1.00000 −0.0372161
$$723$$ 6.00000 0.223142
$$724$$ −14.0000 −0.520306
$$725$$ 0 0
$$726$$ −11.0000 −0.408248
$$727$$ −8.00000 −0.296704 −0.148352 0.988935i $$-0.547397\pi$$
−0.148352 + 0.988935i $$0.547397\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 0 0
$$731$$ 24.0000 0.887672
$$732$$ −2.00000 −0.0739221
$$733$$ −46.0000 −1.69905 −0.849524 0.527549i $$-0.823111\pi$$
−0.849524 + 0.527549i $$0.823111\pi$$
$$734$$ 32.0000 1.18114
$$735$$ 0 0
$$736$$ 20.0000 0.737210
$$737$$ 0 0
$$738$$ 2.00000 0.0736210
$$739$$ −36.0000 −1.32428 −0.662141 0.749380i $$-0.730352\pi$$
−0.662141 + 0.749380i $$0.730352\pi$$
$$740$$ 0 0
$$741$$ −6.00000 −0.220416
$$742$$ 0 0
$$743$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$744$$ −24.0000 −0.879883
$$745$$ 0 0
$$746$$ −10.0000 −0.366126
$$747$$ −16.0000 −0.585409
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 16.0000 0.583848 0.291924 0.956441i $$-0.405705\pi$$
0.291924 + 0.956441i $$0.405705\pi$$
$$752$$ 12.0000 0.437595
$$753$$ 24.0000 0.874609
$$754$$ 12.0000 0.437014
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −38.0000 −1.38113 −0.690567 0.723269i $$-0.742639\pi$$
−0.690567 + 0.723269i $$0.742639\pi$$
$$758$$ −12.0000 −0.435860
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 50.0000 1.81250 0.906249 0.422744i $$-0.138933\pi$$
0.906249 + 0.422744i $$0.138933\pi$$
$$762$$ 8.00000 0.289809
$$763$$ 0 0
$$764$$ 12.0000 0.434145
$$765$$ 0 0
$$766$$ 8.00000 0.289052
$$767$$ 72.0000 2.59977
$$768$$ 17.0000 0.613435
$$769$$ 18.0000 0.649097 0.324548 0.945869i $$-0.394788\pi$$
0.324548 + 0.945869i $$0.394788\pi$$
$$770$$ 0 0
$$771$$ 14.0000 0.504198
$$772$$ −14.0000 −0.503871
$$773$$ −18.0000 −0.647415 −0.323708 0.946157i $$-0.604929\pi$$
−0.323708 + 0.946157i $$0.604929\pi$$
$$774$$ −4.00000 −0.143777
$$775$$ 0 0
$$776$$ −30.0000 −1.07694
$$777$$ 0 0
$$778$$ −30.0000 −1.07555
$$779$$ 2.00000 0.0716574
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 24.0000 0.858238
$$783$$ −2.00000 −0.0714742
$$784$$ 7.00000 0.250000
$$785$$ 0 0
$$786$$ 8.00000 0.285351
$$787$$ −44.0000 −1.56843 −0.784215 0.620489i $$-0.786934\pi$$
−0.784215 + 0.620489i $$0.786934\pi$$
$$788$$ −2.00000 −0.0712470
$$789$$ 12.0000 0.427211
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 12.0000 0.426132
$$794$$ 14.0000 0.496841
$$795$$ 0 0
$$796$$ 8.00000 0.283552
$$797$$ 6.00000 0.212531 0.106265 0.994338i $$-0.466111\pi$$
0.106265 + 0.994338i $$0.466111\pi$$
$$798$$ 0 0
$$799$$ −72.0000 −2.54718
$$800$$ 0 0
$$801$$ −2.00000 −0.0706665
$$802$$ −38.0000 −1.34183
$$803$$ 0 0
$$804$$ 4.00000 0.141069
$$805$$ 0 0
$$806$$ 48.0000 1.69073
$$807$$ 6.00000 0.211210
$$808$$ −30.0000 −1.05540
$$809$$ 26.0000 0.914111 0.457056 0.889438i $$-0.348904\pi$$
0.457056 + 0.889438i $$0.348904\pi$$
$$810$$ 0 0
$$811$$ 44.0000 1.54505 0.772524 0.634985i $$-0.218994\pi$$
0.772524 + 0.634985i $$0.218994\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 6.00000 0.210042
$$817$$ −4.00000 −0.139942
$$818$$ 14.0000 0.489499
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −42.0000 −1.46581 −0.732905 0.680331i $$-0.761836\pi$$
−0.732905 + 0.680331i $$0.761836\pi$$
$$822$$ −18.0000 −0.627822
$$823$$ 32.0000 1.11545 0.557725 0.830026i $$-0.311674\pi$$
0.557725 + 0.830026i $$0.311674\pi$$
$$824$$ −24.0000 −0.836080
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 28.0000 0.973655 0.486828 0.873498i $$-0.338154\pi$$
0.486828 + 0.873498i $$0.338154\pi$$
$$828$$ 4.00000 0.139010
$$829$$ −10.0000 −0.347314 −0.173657 0.984806i $$-0.555558\pi$$
−0.173657 + 0.984806i $$0.555558\pi$$
$$830$$ 0 0
$$831$$ 22.0000 0.763172
$$832$$ −42.0000 −1.45609
$$833$$ −42.0000 −1.45521
$$834$$ 4.00000 0.138509
$$835$$ 0 0
$$836$$ 0 0
$$837$$ −8.00000 −0.276520
$$838$$ −8.00000 −0.276355
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ −25.0000 −0.862069
$$842$$ −14.0000 −0.482472
$$843$$ 10.0000 0.344418
$$844$$ 4.00000 0.137686
$$845$$ 0 0
$$846$$ 12.0000 0.412568
$$847$$ 0 0
$$848$$ −6.00000 −0.206041
$$849$$ −20.0000 −0.686398
$$850$$ 0 0
$$851$$ −40.0000 −1.37118
$$852$$ 0 0
$$853$$ −22.0000 −0.753266 −0.376633 0.926363i $$-0.622918\pi$$
−0.376633 + 0.926363i $$0.622918\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ −12.0000 −0.410152
$$857$$ −30.0000 −1.02478 −0.512390 0.858753i $$-0.671240\pi$$
−0.512390 + 0.858753i $$0.671240\pi$$
$$858$$ 0 0
$$859$$ −28.0000 −0.955348 −0.477674 0.878537i $$-0.658520\pi$$
−0.477674 + 0.878537i $$0.658520\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 24.0000 0.817443
$$863$$ 40.0000 1.36162 0.680808 0.732462i $$-0.261629\pi$$
0.680808 + 0.732462i $$0.261629\pi$$
$$864$$ 5.00000 0.170103
$$865$$ 0 0
$$866$$ −14.0000 −0.475739
$$867$$ −19.0000 −0.645274
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ −24.0000 −0.813209
$$872$$ −30.0000 −1.01593
$$873$$ −10.0000 −0.338449
$$874$$ −4.00000 −0.135302
$$875$$ 0 0
$$876$$ −10.0000 −0.337869
$$877$$ 34.0000 1.14810 0.574049 0.818821i $$-0.305372\pi$$
0.574049 + 0.818821i $$0.305372\pi$$
$$878$$ 8.00000 0.269987
$$879$$ −14.0000 −0.472208
$$880$$ 0 0
$$881$$ −38.0000 −1.28025 −0.640126 0.768270i $$-0.721118\pi$$
−0.640126 + 0.768270i $$0.721118\pi$$
$$882$$ 7.00000 0.235702
$$883$$ 36.0000 1.21150 0.605748 0.795656i $$-0.292874\pi$$
0.605748 + 0.795656i $$0.292874\pi$$
$$884$$ 36.0000 1.21081
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 40.0000 1.34307 0.671534 0.740973i $$-0.265636\pi$$
0.671534 + 0.740973i $$0.265636\pi$$
$$888$$ −30.0000 −1.00673
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 16.0000 0.535720
$$893$$ 12.0000 0.401565
$$894$$ 6.00000 0.200670
$$895$$ 0 0
$$896$$ 0 0
$$897$$ −24.0000 −0.801337
$$898$$ 2.00000 0.0667409
$$899$$ 16.0000 0.533630
$$900$$ 0 0
$$901$$ 36.0000 1.19933
$$902$$ 0 0
$$903$$ 0 0
$$904$$ −18.0000 −0.598671
$$905$$ 0 0
$$906$$ −8.00000 −0.265782
$$907$$ −4.00000 −0.132818 −0.0664089 0.997792i $$-0.521154\pi$$
−0.0664089 + 0.997792i $$0.521154\pi$$
$$908$$ −12.0000 −0.398234
$$909$$ −10.0000 −0.331679
$$910$$ 0 0
$$911$$ −16.0000 −0.530104 −0.265052 0.964234i $$-0.585389\pi$$
−0.265052 + 0.964234i $$0.585389\pi$$
$$912$$ −1.00000 −0.0331133
$$913$$ 0 0
$$914$$ −6.00000 −0.198462
$$915$$ 0 0
$$916$$ −6.00000 −0.198246
$$917$$ 0 0
$$918$$ 6.00000 0.198030
$$919$$ −16.0000 −0.527791 −0.263896 0.964551i $$-0.585007\pi$$
−0.263896 + 0.964551i $$0.585007\pi$$
$$920$$ 0 0
$$921$$ −12.0000 −0.395413
$$922$$ 18.0000 0.592798
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 32.0000 1.05159
$$927$$ −8.00000 −0.262754
$$928$$ −10.0000 −0.328266
$$929$$ 34.0000 1.11550 0.557752 0.830008i $$-0.311664\pi$$
0.557752 + 0.830008i $$0.311664\pi$$
$$930$$ 0 0
$$931$$ 7.00000 0.229416
$$932$$ 10.0000 0.327561
$$933$$ −4.00000 −0.130954
$$934$$ −32.0000 −1.04707
$$935$$ 0 0
$$936$$ −18.0000 −0.588348
$$937$$ 22.0000 0.718709 0.359354 0.933201i $$-0.382997\pi$$
0.359354 + 0.933201i $$0.382997\pi$$
$$938$$ 0 0
$$939$$ −22.0000 −0.717943
$$940$$ 0 0
$$941$$ −22.0000 −0.717180 −0.358590 0.933495i $$-0.616742\pi$$
−0.358590 + 0.933495i $$0.616742\pi$$
$$942$$ 2.00000 0.0651635
$$943$$ 8.00000 0.260516
$$944$$ 12.0000 0.390567
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 8.00000 0.259965 0.129983 0.991516i $$-0.458508\pi$$
0.129983 + 0.991516i $$0.458508\pi$$
$$948$$ 0 0
$$949$$ 60.0000 1.94768
$$950$$ 0 0
$$951$$ −6.00000 −0.194563
$$952$$ 0 0
$$953$$ −38.0000 −1.23094 −0.615470 0.788160i $$-0.711034\pi$$
−0.615470 + 0.788160i $$0.711034\pi$$
$$954$$ −6.00000 −0.194257
$$955$$ 0 0
$$956$$ 12.0000 0.388108
$$957$$ 0 0
$$958$$ −20.0000 −0.646171
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 60.0000 1.93448
$$963$$ −4.00000 −0.128898
$$964$$ 6.00000 0.193247
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 32.0000 1.02905 0.514525 0.857475i $$-0.327968\pi$$
0.514525 + 0.857475i $$0.327968\pi$$
$$968$$ −33.0000 −1.06066
$$969$$ 6.00000 0.192748
$$970$$ 0 0
$$971$$ −36.0000 −1.15529 −0.577647 0.816286i $$-0.696029\pi$$
−0.577647 + 0.816286i $$0.696029\pi$$
$$972$$ 1.00000 0.0320750
$$973$$ 0 0
$$974$$ 32.0000 1.02535
$$975$$ 0 0
$$976$$ 2.00000 0.0640184
$$977$$ 42.0000 1.34370 0.671850 0.740688i $$-0.265500\pi$$
0.671850 + 0.740688i $$0.265500\pi$$
$$978$$ 4.00000 0.127906
$$979$$ 0 0
$$980$$ 0 0
$$981$$ −10.0000 −0.319275
$$982$$ 32.0000 1.02116
$$983$$ 8.00000 0.255160 0.127580 0.991828i $$-0.459279\pi$$
0.127580 + 0.991828i $$0.459279\pi$$
$$984$$ 6.00000 0.191273
$$985$$ 0 0
$$986$$ −12.0000 −0.382158
$$987$$ 0 0
$$988$$ −6.00000 −0.190885
$$989$$ −16.0000 −0.508770
$$990$$ 0 0
$$991$$ 40.0000 1.27064 0.635321 0.772248i $$-0.280868\pi$$
0.635321 + 0.772248i $$0.280868\pi$$
$$992$$ −40.0000 −1.27000
$$993$$ −12.0000 −0.380808
$$994$$ 0 0
$$995$$ 0 0
$$996$$ −16.0000 −0.506979
$$997$$ 58.0000 1.83688 0.918439 0.395562i $$-0.129450\pi$$
0.918439 + 0.395562i $$0.129450\pi$$
$$998$$ −28.0000 −0.886325
$$999$$ −10.0000 −0.316386
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.a.a.1.1 1
3.2 odd 2 4275.2.a.m.1.1 1
5.2 odd 4 1425.2.c.g.799.1 2
5.3 odd 4 1425.2.c.g.799.2 2
5.4 even 2 57.2.a.c.1.1 1
15.14 odd 2 171.2.a.a.1.1 1
20.19 odd 2 912.2.a.b.1.1 1
35.34 odd 2 2793.2.a.i.1.1 1
40.19 odd 2 3648.2.a.bf.1.1 1
40.29 even 2 3648.2.a.o.1.1 1
55.54 odd 2 6897.2.a.a.1.1 1
60.59 even 2 2736.2.a.s.1.1 1
65.64 even 2 9633.2.a.h.1.1 1
95.94 odd 2 1083.2.a.a.1.1 1
105.104 even 2 8379.2.a.e.1.1 1
285.284 even 2 3249.2.a.g.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.a.c.1.1 1 5.4 even 2
171.2.a.a.1.1 1 15.14 odd 2
912.2.a.b.1.1 1 20.19 odd 2
1083.2.a.a.1.1 1 95.94 odd 2
1425.2.a.a.1.1 1 1.1 even 1 trivial
1425.2.c.g.799.1 2 5.2 odd 4
1425.2.c.g.799.2 2 5.3 odd 4
2736.2.a.s.1.1 1 60.59 even 2
2793.2.a.i.1.1 1 35.34 odd 2
3249.2.a.g.1.1 1 285.284 even 2
3648.2.a.o.1.1 1 40.29 even 2
3648.2.a.bf.1.1 1 40.19 odd 2
4275.2.a.m.1.1 1 3.2 odd 2
6897.2.a.a.1.1 1 55.54 odd 2
8379.2.a.e.1.1 1 105.104 even 2
9633.2.a.h.1.1 1 65.64 even 2