gp:[N,k,chi] = [14079,2,Mod(1,14079)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14079, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("14079.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage:traces = [1,-1,1,-1,2,-1,-4,3,1,-2,4,-1,-1,4,2,-1,2,-1,0,-2,-4,-4,0,3,
-1,1,1,4,10,-2,-4,-5,4,-2,-8,-1,2,0,-1,6,-6,4,-12,-4,2,0,0,-1,9,1,2,1,
-6,-1,8,-12,0,-10,-12,-2,-2,4,-4,7,-2,-4,8,-2,0,8,0,3,2,-2,-1,0,-16,1,
-8,-2,1,6,4,4,4,12,10,12,2,-2,4,0,-4,0,0,-5,-10,-9,4,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(3\) |
\( -1 \) |
\(13\) |
\( +1 \) |
\(19\) |
\( -1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.