Properties

Label 1400.2.x.c.993.8
Level $1400$
Weight $2$
Character 1400.993
Analytic conductor $11.179$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1400,2,Mod(657,1400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1400.657");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.x (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 993.8
Character \(\chi\) \(=\) 1400.993
Dual form 1400.2.x.c.657.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.409160 + 0.409160i) q^{3} +(2.54072 + 0.738062i) q^{7} +2.66518i q^{9} +O(q^{10})\) \(q+(-0.409160 + 0.409160i) q^{3} +(2.54072 + 0.738062i) q^{7} +2.66518i q^{9} -3.54935 q^{11} +(-2.95189 + 2.95189i) q^{13} +(-5.59675 - 5.59675i) q^{17} -3.59597 q^{19} +(-1.34155 + 0.737576i) q^{21} +(0.0472877 + 0.0472877i) q^{23} +(-2.31796 - 2.31796i) q^{27} -5.34827i q^{29} +10.3924i q^{31} +(1.45225 - 1.45225i) q^{33} +(7.80067 - 7.80067i) q^{37} -2.41560i q^{39} +5.63913i q^{41} +(-6.93871 - 6.93871i) q^{43} +(-3.44333 - 3.44333i) q^{47} +(5.91053 + 3.75042i) q^{49} +4.57993 q^{51} +(0.646830 + 0.646830i) q^{53} +(1.47133 - 1.47133i) q^{57} -9.22732 q^{59} +3.51832i q^{61} +(-1.96707 + 6.77147i) q^{63} +(-1.70777 + 1.70777i) q^{67} -0.0386965 q^{69} -8.54487 q^{71} +(-2.43511 + 2.43511i) q^{73} +(-9.01790 - 2.61964i) q^{77} +5.72713i q^{79} -6.09869 q^{81} +(-2.04580 + 2.04580i) q^{83} +(2.18830 + 2.18830i) q^{87} +8.18639 q^{89} +(-9.67862 + 5.32126i) q^{91} +(-4.25215 - 4.25215i) q^{93} +(-6.23068 - 6.23068i) q^{97} -9.45963i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 16 q^{11} - 40 q^{21} + 32 q^{51} + 128 q^{71}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.409160 + 0.409160i −0.236229 + 0.236229i −0.815287 0.579058i \(-0.803421\pi\)
0.579058 + 0.815287i \(0.303421\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.54072 + 0.738062i 0.960302 + 0.278961i
\(8\) 0 0
\(9\) 2.66518i 0.888392i
\(10\) 0 0
\(11\) −3.54935 −1.07017 −0.535084 0.844799i \(-0.679720\pi\)
−0.535084 + 0.844799i \(0.679720\pi\)
\(12\) 0 0
\(13\) −2.95189 + 2.95189i −0.818708 + 0.818708i −0.985921 0.167213i \(-0.946523\pi\)
0.167213 + 0.985921i \(0.446523\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.59675 5.59675i −1.35741 1.35741i −0.877097 0.480314i \(-0.840523\pi\)
−0.480314 0.877097i \(-0.659477\pi\)
\(18\) 0 0
\(19\) −3.59597 −0.824972 −0.412486 0.910964i \(-0.635339\pi\)
−0.412486 + 0.910964i \(0.635339\pi\)
\(20\) 0 0
\(21\) −1.34155 + 0.737576i −0.292750 + 0.160952i
\(22\) 0 0
\(23\) 0.0472877 + 0.0472877i 0.00986016 + 0.00986016i 0.712020 0.702160i \(-0.247781\pi\)
−0.702160 + 0.712020i \(0.747781\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −2.31796 2.31796i −0.446092 0.446092i
\(28\) 0 0
\(29\) 5.34827i 0.993149i −0.867994 0.496574i \(-0.834591\pi\)
0.867994 0.496574i \(-0.165409\pi\)
\(30\) 0 0
\(31\) 10.3924i 1.86653i 0.359192 + 0.933264i \(0.383052\pi\)
−0.359192 + 0.933264i \(0.616948\pi\)
\(32\) 0 0
\(33\) 1.45225 1.45225i 0.252804 0.252804i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.80067 7.80067i 1.28242 1.28242i 0.343137 0.939285i \(-0.388510\pi\)
0.939285 0.343137i \(-0.111490\pi\)
\(38\) 0 0
\(39\) 2.41560i 0.386805i
\(40\) 0 0
\(41\) 5.63913i 0.880685i 0.897830 + 0.440342i \(0.145143\pi\)
−0.897830 + 0.440342i \(0.854857\pi\)
\(42\) 0 0
\(43\) −6.93871 6.93871i −1.05814 1.05814i −0.998202 0.0599420i \(-0.980908\pi\)
−0.0599420 0.998202i \(-0.519092\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.44333 3.44333i −0.502261 0.502261i 0.409879 0.912140i \(-0.365571\pi\)
−0.912140 + 0.409879i \(0.865571\pi\)
\(48\) 0 0
\(49\) 5.91053 + 3.75042i 0.844361 + 0.535774i
\(50\) 0 0
\(51\) 4.57993 0.641319
\(52\) 0 0
\(53\) 0.646830 + 0.646830i 0.0888490 + 0.0888490i 0.750134 0.661285i \(-0.229989\pi\)
−0.661285 + 0.750134i \(0.729989\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.47133 1.47133i 0.194882 0.194882i
\(58\) 0 0
\(59\) −9.22732 −1.20130 −0.600648 0.799514i \(-0.705090\pi\)
−0.600648 + 0.799514i \(0.705090\pi\)
\(60\) 0 0
\(61\) 3.51832i 0.450474i 0.974304 + 0.225237i \(0.0723157\pi\)
−0.974304 + 0.225237i \(0.927684\pi\)
\(62\) 0 0
\(63\) −1.96707 + 6.77147i −0.247827 + 0.853125i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.70777 + 1.70777i −0.208637 + 0.208637i −0.803688 0.595051i \(-0.797132\pi\)
0.595051 + 0.803688i \(0.297132\pi\)
\(68\) 0 0
\(69\) −0.0386965 −0.00465851
\(70\) 0 0
\(71\) −8.54487 −1.01409 −0.507045 0.861920i \(-0.669262\pi\)
−0.507045 + 0.861920i \(0.669262\pi\)
\(72\) 0 0
\(73\) −2.43511 + 2.43511i −0.285009 + 0.285009i −0.835103 0.550094i \(-0.814592\pi\)
0.550094 + 0.835103i \(0.314592\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.01790 2.61964i −1.02768 0.298535i
\(78\) 0 0
\(79\) 5.72713i 0.644352i 0.946680 + 0.322176i \(0.104414\pi\)
−0.946680 + 0.322176i \(0.895586\pi\)
\(80\) 0 0
\(81\) −6.09869 −0.677632
\(82\) 0 0
\(83\) −2.04580 + 2.04580i −0.224556 + 0.224556i −0.810414 0.585858i \(-0.800758\pi\)
0.585858 + 0.810414i \(0.300758\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.18830 + 2.18830i 0.234610 + 0.234610i
\(88\) 0 0
\(89\) 8.18639 0.867756 0.433878 0.900972i \(-0.357145\pi\)
0.433878 + 0.900972i \(0.357145\pi\)
\(90\) 0 0
\(91\) −9.67862 + 5.32126i −1.01460 + 0.557820i
\(92\) 0 0
\(93\) −4.25215 4.25215i −0.440927 0.440927i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.23068 6.23068i −0.632629 0.632629i 0.316097 0.948727i \(-0.397627\pi\)
−0.948727 + 0.316097i \(0.897627\pi\)
\(98\) 0 0
\(99\) 9.45963i 0.950729i
\(100\) 0 0
\(101\) 13.7868i 1.37184i −0.727677 0.685920i \(-0.759400\pi\)
0.727677 0.685920i \(-0.240600\pi\)
\(102\) 0 0
\(103\) −10.3752 + 10.3752i −1.02230 + 1.02230i −0.0225506 + 0.999746i \(0.507179\pi\)
−0.999746 + 0.0225506i \(0.992821\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.54863 4.54863i 0.439733 0.439733i −0.452189 0.891922i \(-0.649357\pi\)
0.891922 + 0.452189i \(0.149357\pi\)
\(108\) 0 0
\(109\) 3.76387i 0.360513i 0.983620 + 0.180257i \(0.0576928\pi\)
−0.983620 + 0.180257i \(0.942307\pi\)
\(110\) 0 0
\(111\) 6.38345i 0.605890i
\(112\) 0 0
\(113\) 4.83006 + 4.83006i 0.454374 + 0.454374i 0.896803 0.442429i \(-0.145883\pi\)
−0.442429 + 0.896803i \(0.645883\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −7.86732 7.86732i −0.727334 0.727334i
\(118\) 0 0
\(119\) −10.0890 18.3505i −0.924860 1.68219i
\(120\) 0 0
\(121\) 1.59785 0.145259
\(122\) 0 0
\(123\) −2.30731 2.30731i −0.208043 0.208043i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −9.86172 + 9.86172i −0.875086 + 0.875086i −0.993021 0.117936i \(-0.962372\pi\)
0.117936 + 0.993021i \(0.462372\pi\)
\(128\) 0 0
\(129\) 5.67809 0.499928
\(130\) 0 0
\(131\) 13.8255i 1.20794i 0.797006 + 0.603971i \(0.206416\pi\)
−0.797006 + 0.603971i \(0.793584\pi\)
\(132\) 0 0
\(133\) −9.13636 2.65405i −0.792223 0.230135i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.2776 13.2776i 1.13438 1.13438i 0.144938 0.989441i \(-0.453702\pi\)
0.989441 0.144938i \(-0.0462984\pi\)
\(138\) 0 0
\(139\) −7.55843 −0.641097 −0.320549 0.947232i \(-0.603867\pi\)
−0.320549 + 0.947232i \(0.603867\pi\)
\(140\) 0 0
\(141\) 2.81774 0.237297
\(142\) 0 0
\(143\) 10.4773 10.4773i 0.876155 0.876155i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.95288 + 0.883831i −0.326028 + 0.0728971i
\(148\) 0 0
\(149\) 17.1912i 1.40836i 0.710021 + 0.704180i \(0.248685\pi\)
−0.710021 + 0.704180i \(0.751315\pi\)
\(150\) 0 0
\(151\) 6.81237 0.554383 0.277192 0.960815i \(-0.410596\pi\)
0.277192 + 0.960815i \(0.410596\pi\)
\(152\) 0 0
\(153\) 14.9163 14.9163i 1.20591 1.20591i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.15071 1.15071i −0.0918367 0.0918367i 0.659696 0.751533i \(-0.270685\pi\)
−0.751533 + 0.659696i \(0.770685\pi\)
\(158\) 0 0
\(159\) −0.529315 −0.0419774
\(160\) 0 0
\(161\) 0.0852436 + 0.155046i 0.00671814 + 0.0122193i
\(162\) 0 0
\(163\) 10.4137 + 10.4137i 0.815660 + 0.815660i 0.985476 0.169816i \(-0.0543172\pi\)
−0.169816 + 0.985476i \(0.554317\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.46637 + 8.46637i 0.655147 + 0.655147i 0.954228 0.299080i \(-0.0966799\pi\)
−0.299080 + 0.954228i \(0.596680\pi\)
\(168\) 0 0
\(169\) 4.42736i 0.340566i
\(170\) 0 0
\(171\) 9.58389i 0.732899i
\(172\) 0 0
\(173\) −8.19971 + 8.19971i −0.623412 + 0.623412i −0.946402 0.322990i \(-0.895312\pi\)
0.322990 + 0.946402i \(0.395312\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.77545 3.77545i 0.283780 0.283780i
\(178\) 0 0
\(179\) 15.9103i 1.18919i 0.804025 + 0.594595i \(0.202688\pi\)
−0.804025 + 0.594595i \(0.797312\pi\)
\(180\) 0 0
\(181\) 15.5721i 1.15746i −0.815518 0.578732i \(-0.803548\pi\)
0.815518 0.578732i \(-0.196452\pi\)
\(182\) 0 0
\(183\) −1.43955 1.43955i −0.106415 0.106415i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 19.8648 + 19.8648i 1.45266 + 1.45266i
\(188\) 0 0
\(189\) −4.17850 7.60010i −0.303941 0.552826i
\(190\) 0 0
\(191\) 6.52605 0.472209 0.236104 0.971728i \(-0.424129\pi\)
0.236104 + 0.971728i \(0.424129\pi\)
\(192\) 0 0
\(193\) 4.64028 + 4.64028i 0.334014 + 0.334014i 0.854109 0.520094i \(-0.174103\pi\)
−0.520094 + 0.854109i \(0.674103\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.95497 + 7.95497i −0.566768 + 0.566768i −0.931222 0.364453i \(-0.881256\pi\)
0.364453 + 0.931222i \(0.381256\pi\)
\(198\) 0 0
\(199\) 7.84512 0.556126 0.278063 0.960563i \(-0.410308\pi\)
0.278063 + 0.960563i \(0.410308\pi\)
\(200\) 0 0
\(201\) 1.39750i 0.0985720i
\(202\) 0 0
\(203\) 3.94736 13.5885i 0.277050 0.953723i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.126030 + 0.126030i −0.00875969 + 0.00875969i
\(208\) 0 0
\(209\) 12.7633 0.882859
\(210\) 0 0
\(211\) −13.9461 −0.960091 −0.480045 0.877244i \(-0.659380\pi\)
−0.480045 + 0.877244i \(0.659380\pi\)
\(212\) 0 0
\(213\) 3.49622 3.49622i 0.239557 0.239557i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −7.67022 + 26.4041i −0.520689 + 1.79243i
\(218\) 0 0
\(219\) 1.99270i 0.134654i
\(220\) 0 0
\(221\) 33.0420 2.22265
\(222\) 0 0
\(223\) −3.17116 + 3.17116i −0.212357 + 0.212357i −0.805268 0.592911i \(-0.797979\pi\)
0.592911 + 0.805268i \(0.297979\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.25072 + 2.25072i 0.149386 + 0.149386i 0.777844 0.628458i \(-0.216314\pi\)
−0.628458 + 0.777844i \(0.716314\pi\)
\(228\) 0 0
\(229\) 12.1177 0.800758 0.400379 0.916350i \(-0.368878\pi\)
0.400379 + 0.916350i \(0.368878\pi\)
\(230\) 0 0
\(231\) 4.76162 2.61791i 0.313291 0.172246i
\(232\) 0 0
\(233\) 4.60978 + 4.60978i 0.301996 + 0.301996i 0.841795 0.539798i \(-0.181499\pi\)
−0.539798 + 0.841795i \(0.681499\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.34331 2.34331i −0.152215 0.152215i
\(238\) 0 0
\(239\) 0.804297i 0.0520257i 0.999662 + 0.0260128i \(0.00828108\pi\)
−0.999662 + 0.0260128i \(0.991719\pi\)
\(240\) 0 0
\(241\) 17.1249i 1.10311i 0.834138 + 0.551555i \(0.185965\pi\)
−0.834138 + 0.551555i \(0.814035\pi\)
\(242\) 0 0
\(243\) 9.44923 9.44923i 0.606169 0.606169i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.6149 10.6149i 0.675411 0.675411i
\(248\) 0 0
\(249\) 1.67412i 0.106093i
\(250\) 0 0
\(251\) 12.6371i 0.797645i −0.917028 0.398822i \(-0.869419\pi\)
0.917028 0.398822i \(-0.130581\pi\)
\(252\) 0 0
\(253\) −0.167840 0.167840i −0.0105520 0.0105520i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.59946 + 6.59946i 0.411663 + 0.411663i 0.882318 0.470655i \(-0.155982\pi\)
−0.470655 + 0.882318i \(0.655982\pi\)
\(258\) 0 0
\(259\) 25.5767 14.0620i 1.58926 0.873767i
\(260\) 0 0
\(261\) 14.2541 0.882306
\(262\) 0 0
\(263\) −7.56907 7.56907i −0.466729 0.466729i 0.434124 0.900853i \(-0.357058\pi\)
−0.900853 + 0.434124i \(0.857058\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.34955 + 3.34955i −0.204989 + 0.204989i
\(268\) 0 0
\(269\) −22.1148 −1.34836 −0.674181 0.738566i \(-0.735503\pi\)
−0.674181 + 0.738566i \(0.735503\pi\)
\(270\) 0 0
\(271\) 29.7020i 1.80427i −0.431456 0.902134i \(-0.642000\pi\)
0.431456 0.902134i \(-0.358000\pi\)
\(272\) 0 0
\(273\) 1.78286 6.13735i 0.107904 0.371450i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.38005 3.38005i 0.203087 0.203087i −0.598234 0.801321i \(-0.704131\pi\)
0.801321 + 0.598234i \(0.204131\pi\)
\(278\) 0 0
\(279\) −27.6975 −1.65821
\(280\) 0 0
\(281\) −26.0224 −1.55237 −0.776184 0.630507i \(-0.782847\pi\)
−0.776184 + 0.630507i \(0.782847\pi\)
\(282\) 0 0
\(283\) −13.9610 + 13.9610i −0.829895 + 0.829895i −0.987502 0.157607i \(-0.949622\pi\)
0.157607 + 0.987502i \(0.449622\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.16203 + 14.3275i −0.245677 + 0.845724i
\(288\) 0 0
\(289\) 45.6472i 2.68513i
\(290\) 0 0
\(291\) 5.09869 0.298891
\(292\) 0 0
\(293\) −6.51568 + 6.51568i −0.380650 + 0.380650i −0.871336 0.490686i \(-0.836746\pi\)
0.490686 + 0.871336i \(0.336746\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 8.22726 + 8.22726i 0.477394 + 0.477394i
\(298\) 0 0
\(299\) −0.279177 −0.0161452
\(300\) 0 0
\(301\) −12.5081 22.7505i −0.720957 1.31132i
\(302\) 0 0
\(303\) 5.64102 + 5.64102i 0.324068 + 0.324068i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6.13557 + 6.13557i 0.350176 + 0.350176i 0.860175 0.509999i \(-0.170354\pi\)
−0.509999 + 0.860175i \(0.670354\pi\)
\(308\) 0 0
\(309\) 8.49022i 0.482992i
\(310\) 0 0
\(311\) 1.36872i 0.0776131i 0.999247 + 0.0388065i \(0.0123556\pi\)
−0.999247 + 0.0388065i \(0.987644\pi\)
\(312\) 0 0
\(313\) 13.9335 13.9335i 0.787565 0.787565i −0.193529 0.981095i \(-0.561993\pi\)
0.981095 + 0.193529i \(0.0619934\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.42849 8.42849i 0.473391 0.473391i −0.429619 0.903010i \(-0.641352\pi\)
0.903010 + 0.429619i \(0.141352\pi\)
\(318\) 0 0
\(319\) 18.9829i 1.06284i
\(320\) 0 0
\(321\) 3.72224i 0.207755i
\(322\) 0 0
\(323\) 20.1257 + 20.1257i 1.11983 + 1.11983i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.54002 1.54002i −0.0851635 0.0851635i
\(328\) 0 0
\(329\) −6.20714 11.2899i −0.342211 0.622433i
\(330\) 0 0
\(331\) 25.5762 1.40580 0.702899 0.711290i \(-0.251889\pi\)
0.702899 + 0.711290i \(0.251889\pi\)
\(332\) 0 0
\(333\) 20.7902 + 20.7902i 1.13929 + 1.13929i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −19.0296 + 19.0296i −1.03661 + 1.03661i −0.0373062 + 0.999304i \(0.511878\pi\)
−0.999304 + 0.0373062i \(0.988122\pi\)
\(338\) 0 0
\(339\) −3.95254 −0.214672
\(340\) 0 0
\(341\) 36.8862i 1.99750i
\(342\) 0 0
\(343\) 12.2490 + 13.8911i 0.661382 + 0.750049i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.1175 + 10.1175i −0.543135 + 0.543135i −0.924447 0.381311i \(-0.875473\pi\)
0.381311 + 0.924447i \(0.375473\pi\)
\(348\) 0 0
\(349\) 17.7082 0.947898 0.473949 0.880552i \(-0.342828\pi\)
0.473949 + 0.880552i \(0.342828\pi\)
\(350\) 0 0
\(351\) 13.6848 0.730439
\(352\) 0 0
\(353\) 18.8566 18.8566i 1.00363 1.00363i 0.00364095 0.999993i \(-0.498841\pi\)
0.999993 0.00364095i \(-0.00115895\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 11.6363 + 3.38027i 0.615860 + 0.178903i
\(358\) 0 0
\(359\) 15.0844i 0.796123i 0.917359 + 0.398061i \(0.130317\pi\)
−0.917359 + 0.398061i \(0.869683\pi\)
\(360\) 0 0
\(361\) −6.06900 −0.319421
\(362\) 0 0
\(363\) −0.653777 + 0.653777i −0.0343144 + 0.0343144i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.09830 5.09830i −0.266129 0.266129i 0.561409 0.827538i \(-0.310259\pi\)
−0.827538 + 0.561409i \(0.810259\pi\)
\(368\) 0 0
\(369\) −15.0293 −0.782393
\(370\) 0 0
\(371\) 1.16601 + 2.12082i 0.0605365 + 0.110107i
\(372\) 0 0
\(373\) −12.5295 12.5295i −0.648754 0.648754i 0.303938 0.952692i \(-0.401698\pi\)
−0.952692 + 0.303938i \(0.901698\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.7875 + 15.7875i 0.813099 + 0.813099i
\(378\) 0 0
\(379\) 28.0665i 1.44168i −0.693103 0.720838i \(-0.743757\pi\)
0.693103 0.720838i \(-0.256243\pi\)
\(380\) 0 0
\(381\) 8.07004i 0.413441i
\(382\) 0 0
\(383\) 19.4556 19.4556i 0.994136 0.994136i −0.00584671 0.999983i \(-0.501861\pi\)
0.999983 + 0.00584671i \(0.00186108\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 18.4929 18.4929i 0.940046 0.940046i
\(388\) 0 0
\(389\) 35.4128i 1.79550i −0.440505 0.897750i \(-0.645201\pi\)
0.440505 0.897750i \(-0.354799\pi\)
\(390\) 0 0
\(391\) 0.529315i 0.0267686i
\(392\) 0 0
\(393\) −5.65685 5.65685i −0.285351 0.285351i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.0002 + 13.0002i 0.652460 + 0.652460i 0.953585 0.301124i \(-0.0973620\pi\)
−0.301124 + 0.953585i \(0.597362\pi\)
\(398\) 0 0
\(399\) 4.82416 2.65230i 0.241510 0.132781i
\(400\) 0 0
\(401\) 26.6516 1.33092 0.665460 0.746434i \(-0.268236\pi\)
0.665460 + 0.746434i \(0.268236\pi\)
\(402\) 0 0
\(403\) −30.6772 30.6772i −1.52814 1.52814i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −27.6873 + 27.6873i −1.37241 + 1.37241i
\(408\) 0 0
\(409\) 24.9874 1.23555 0.617775 0.786355i \(-0.288034\pi\)
0.617775 + 0.786355i \(0.288034\pi\)
\(410\) 0 0
\(411\) 10.8653i 0.535946i
\(412\) 0 0
\(413\) −23.4441 6.81034i −1.15361 0.335115i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.09261 3.09261i 0.151446 0.151446i
\(418\) 0 0
\(419\) 29.7544 1.45360 0.726799 0.686850i \(-0.241007\pi\)
0.726799 + 0.686850i \(0.241007\pi\)
\(420\) 0 0
\(421\) 6.60400 0.321859 0.160930 0.986966i \(-0.448551\pi\)
0.160930 + 0.986966i \(0.448551\pi\)
\(422\) 0 0
\(423\) 9.17707 9.17707i 0.446204 0.446204i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.59674 + 8.93906i −0.125665 + 0.432592i
\(428\) 0 0
\(429\) 8.57378i 0.413946i
\(430\) 0 0
\(431\) −18.0134 −0.867677 −0.433839 0.900991i \(-0.642841\pi\)
−0.433839 + 0.900991i \(0.642841\pi\)
\(432\) 0 0
\(433\) 3.25124 3.25124i 0.156244 0.156244i −0.624656 0.780900i \(-0.714761\pi\)
0.780900 + 0.624656i \(0.214761\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.170045 0.170045i −0.00813436 0.00813436i
\(438\) 0 0
\(439\) 11.5574 0.551607 0.275803 0.961214i \(-0.411056\pi\)
0.275803 + 0.961214i \(0.411056\pi\)
\(440\) 0 0
\(441\) −9.99553 + 15.7526i −0.475978 + 0.750124i
\(442\) 0 0
\(443\) 22.0498 + 22.0498i 1.04762 + 1.04762i 0.998808 + 0.0488073i \(0.0155420\pi\)
0.0488073 + 0.998808i \(0.484458\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −7.03397 7.03397i −0.332695 0.332695i
\(448\) 0 0
\(449\) 22.8564i 1.07866i −0.842094 0.539330i \(-0.818677\pi\)
0.842094 0.539330i \(-0.181323\pi\)
\(450\) 0 0
\(451\) 20.0152i 0.942480i
\(452\) 0 0
\(453\) −2.78735 + 2.78735i −0.130961 + 0.130961i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.19406 + 6.19406i −0.289746 + 0.289746i −0.836980 0.547234i \(-0.815681\pi\)
0.547234 + 0.836980i \(0.315681\pi\)
\(458\) 0 0
\(459\) 25.9461i 1.21106i
\(460\) 0 0
\(461\) 9.63815i 0.448893i 0.974486 + 0.224447i \(0.0720575\pi\)
−0.974486 + 0.224447i \(0.927943\pi\)
\(462\) 0 0
\(463\) −25.9680 25.9680i −1.20684 1.20684i −0.972046 0.234791i \(-0.924560\pi\)
−0.234791 0.972046i \(-0.575440\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.6556 20.6556i −0.955825 0.955825i 0.0432393 0.999065i \(-0.486232\pi\)
−0.999065 + 0.0432393i \(0.986232\pi\)
\(468\) 0 0
\(469\) −5.59939 + 3.07852i −0.258556 + 0.142153i
\(470\) 0 0
\(471\) 0.941650 0.0433889
\(472\) 0 0
\(473\) 24.6279 + 24.6279i 1.13239 + 1.13239i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.72392 + 1.72392i −0.0789327 + 0.0789327i
\(478\) 0 0
\(479\) 8.74688 0.399655 0.199828 0.979831i \(-0.435962\pi\)
0.199828 + 0.979831i \(0.435962\pi\)
\(480\) 0 0
\(481\) 46.0535i 2.09986i
\(482\) 0 0
\(483\) −0.0983170 0.0285604i −0.00447358 0.00129954i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −6.18084 + 6.18084i −0.280081 + 0.280081i −0.833141 0.553061i \(-0.813460\pi\)
0.553061 + 0.833141i \(0.313460\pi\)
\(488\) 0 0
\(489\) −8.52170 −0.385365
\(490\) 0 0
\(491\) −11.4596 −0.517166 −0.258583 0.965989i \(-0.583256\pi\)
−0.258583 + 0.965989i \(0.583256\pi\)
\(492\) 0 0
\(493\) −29.9329 + 29.9329i −1.34811 + 1.34811i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.7101 6.30665i −0.973833 0.282892i
\(498\) 0 0
\(499\) 37.1794i 1.66438i 0.554493 + 0.832189i \(0.312912\pi\)
−0.554493 + 0.832189i \(0.687088\pi\)
\(500\) 0 0
\(501\) −6.92820 −0.309529
\(502\) 0 0
\(503\) 6.72761 6.72761i 0.299969 0.299969i −0.541032 0.841002i \(-0.681966\pi\)
0.841002 + 0.541032i \(0.181966\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.81150 + 1.81150i 0.0804516 + 0.0804516i
\(508\) 0 0
\(509\) −42.5874 −1.88765 −0.943826 0.330442i \(-0.892802\pi\)
−0.943826 + 0.330442i \(0.892802\pi\)
\(510\) 0 0
\(511\) −7.98421 + 4.38968i −0.353201 + 0.194188i
\(512\) 0 0
\(513\) 8.33533 + 8.33533i 0.368014 + 0.368014i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 12.2216 + 12.2216i 0.537503 + 0.537503i
\(518\) 0 0
\(519\) 6.70999i 0.294536i
\(520\) 0 0
\(521\) 18.0438i 0.790512i −0.918571 0.395256i \(-0.870656\pi\)
0.918571 0.395256i \(-0.129344\pi\)
\(522\) 0 0
\(523\) −19.0355 + 19.0355i −0.832363 + 0.832363i −0.987840 0.155477i \(-0.950309\pi\)
0.155477 + 0.987840i \(0.450309\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 58.1635 58.1635i 2.53364 2.53364i
\(528\) 0 0
\(529\) 22.9955i 0.999806i
\(530\) 0 0
\(531\) 24.5924i 1.06722i
\(532\) 0 0
\(533\) −16.6461 16.6461i −0.721024 0.721024i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6.50985 6.50985i −0.280921 0.280921i
\(538\) 0 0
\(539\) −20.9785 13.3115i −0.903608 0.573368i
\(540\) 0 0
\(541\) −3.51876 −0.151283 −0.0756416 0.997135i \(-0.524100\pi\)
−0.0756416 + 0.997135i \(0.524100\pi\)
\(542\) 0 0
\(543\) 6.37147 + 6.37147i 0.273426 + 0.273426i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10.4209 10.4209i 0.445564 0.445564i −0.448313 0.893877i \(-0.647975\pi\)
0.893877 + 0.448313i \(0.147975\pi\)
\(548\) 0 0
\(549\) −9.37693 −0.400198
\(550\) 0 0
\(551\) 19.2322i 0.819320i
\(552\) 0 0
\(553\) −4.22698 + 14.5510i −0.179749 + 0.618773i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.59156 + 1.59156i −0.0674367 + 0.0674367i −0.740021 0.672584i \(-0.765184\pi\)
0.672584 + 0.740021i \(0.265184\pi\)
\(558\) 0 0
\(559\) 40.9647 1.73262
\(560\) 0 0
\(561\) −16.2558 −0.686319
\(562\) 0 0
\(563\) 12.0816 12.0816i 0.509178 0.509178i −0.405096 0.914274i \(-0.632762\pi\)
0.914274 + 0.405096i \(0.132762\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −15.4951 4.50121i −0.650732 0.189033i
\(568\) 0 0
\(569\) 29.0881i 1.21944i 0.792619 + 0.609718i \(0.208717\pi\)
−0.792619 + 0.609718i \(0.791283\pi\)
\(570\) 0 0
\(571\) 5.95879 0.249368 0.124684 0.992197i \(-0.460208\pi\)
0.124684 + 0.992197i \(0.460208\pi\)
\(572\) 0 0
\(573\) −2.67020 + 2.67020i −0.111549 + 0.111549i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 14.6203 + 14.6203i 0.608650 + 0.608650i 0.942593 0.333943i \(-0.108379\pi\)
−0.333943 + 0.942593i \(0.608379\pi\)
\(578\) 0 0
\(579\) −3.79723 −0.157808
\(580\) 0 0
\(581\) −6.70774 + 3.68788i −0.278284 + 0.152999i
\(582\) 0 0
\(583\) −2.29582 2.29582i −0.0950833 0.0950833i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.5748 23.5748i −0.973035 0.973035i 0.0266107 0.999646i \(-0.491529\pi\)
−0.999646 + 0.0266107i \(0.991529\pi\)
\(588\) 0 0
\(589\) 37.3707i 1.53983i
\(590\) 0 0
\(591\) 6.50972i 0.267774i
\(592\) 0 0
\(593\) −6.48482 + 6.48482i −0.266300 + 0.266300i −0.827607 0.561308i \(-0.810299\pi\)
0.561308 + 0.827607i \(0.310299\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.20991 + 3.20991i −0.131373 + 0.131373i
\(598\) 0 0
\(599\) 26.8124i 1.09552i 0.836634 + 0.547762i \(0.184520\pi\)
−0.836634 + 0.547762i \(0.815480\pi\)
\(600\) 0 0
\(601\) 42.1513i 1.71939i 0.510811 + 0.859693i \(0.329345\pi\)
−0.510811 + 0.859693i \(0.670655\pi\)
\(602\) 0 0
\(603\) −4.55150 4.55150i −0.185351 0.185351i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −21.1320 21.1320i −0.857720 0.857720i 0.133349 0.991069i \(-0.457427\pi\)
−0.991069 + 0.133349i \(0.957427\pi\)
\(608\) 0 0
\(609\) 3.94476 + 7.17496i 0.159850 + 0.290744i
\(610\) 0 0
\(611\) 20.3287 0.822410
\(612\) 0 0
\(613\) −0.374096 0.374096i −0.0151096 0.0151096i 0.699512 0.714621i \(-0.253401\pi\)
−0.714621 + 0.699512i \(0.753401\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.3289 10.3289i 0.415826 0.415826i −0.467936 0.883762i \(-0.655002\pi\)
0.883762 + 0.467936i \(0.155002\pi\)
\(618\) 0 0
\(619\) 9.30472 0.373988 0.186994 0.982361i \(-0.440125\pi\)
0.186994 + 0.982361i \(0.440125\pi\)
\(620\) 0 0
\(621\) 0.219222i 0.00879709i
\(622\) 0 0
\(623\) 20.7993 + 6.04206i 0.833308 + 0.242070i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5.22225 + 5.22225i −0.208557 + 0.208557i
\(628\) 0 0
\(629\) −87.3168 −3.48155
\(630\) 0 0
\(631\) 6.74964 0.268699 0.134349 0.990934i \(-0.457106\pi\)
0.134349 + 0.990934i \(0.457106\pi\)
\(632\) 0 0
\(633\) 5.70620 5.70620i 0.226801 0.226801i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −28.5181 + 6.37642i −1.12993 + 0.252643i
\(638\) 0 0
\(639\) 22.7736i 0.900909i
\(640\) 0 0
\(641\) −12.2287 −0.483006 −0.241503 0.970400i \(-0.577640\pi\)
−0.241503 + 0.970400i \(0.577640\pi\)
\(642\) 0 0
\(643\) −5.61879 + 5.61879i −0.221584 + 0.221584i −0.809165 0.587581i \(-0.800080\pi\)
0.587581 + 0.809165i \(0.300080\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.37047 + 5.37047i 0.211135 + 0.211135i 0.804749 0.593615i \(-0.202300\pi\)
−0.593615 + 0.804749i \(0.702300\pi\)
\(648\) 0 0
\(649\) 32.7510 1.28559
\(650\) 0 0
\(651\) −7.66518 13.9419i −0.300422 0.546425i
\(652\) 0 0
\(653\) −20.1562 20.1562i −0.788774 0.788774i 0.192519 0.981293i \(-0.438334\pi\)
−0.981293 + 0.192519i \(0.938334\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6.49001 6.49001i −0.253199 0.253199i
\(658\) 0 0
\(659\) 0.712783i 0.0277661i −0.999904 0.0138830i \(-0.995581\pi\)
0.999904 0.0138830i \(-0.00441925\pi\)
\(660\) 0 0
\(661\) 28.3507i 1.10271i 0.834269 + 0.551357i \(0.185890\pi\)
−0.834269 + 0.551357i \(0.814110\pi\)
\(662\) 0 0
\(663\) −13.5195 + 13.5195i −0.525053 + 0.525053i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.252907 0.252907i 0.00979261 0.00979261i
\(668\) 0 0
\(669\) 2.59503i 0.100330i
\(670\) 0 0
\(671\) 12.4877i 0.482083i
\(672\) 0 0
\(673\) 5.58066 + 5.58066i 0.215119 + 0.215119i 0.806438 0.591319i \(-0.201393\pi\)
−0.591319 + 0.806438i \(0.701393\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.82232 8.82232i −0.339069 0.339069i 0.516948 0.856017i \(-0.327068\pi\)
−0.856017 + 0.516948i \(0.827068\pi\)
\(678\) 0 0
\(679\) −11.2318 20.4290i −0.431037 0.783995i
\(680\) 0 0
\(681\) −1.84181 −0.0705784
\(682\) 0 0
\(683\) −6.51153 6.51153i −0.249157 0.249157i 0.571468 0.820625i \(-0.306374\pi\)
−0.820625 + 0.571468i \(0.806374\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −4.95807 + 4.95807i −0.189162 + 0.189162i
\(688\) 0 0
\(689\) −3.81875 −0.145483
\(690\) 0 0
\(691\) 26.2458i 0.998436i −0.866476 0.499218i \(-0.833621\pi\)
0.866476 0.499218i \(-0.166379\pi\)
\(692\) 0 0
\(693\) 6.98179 24.0343i 0.265216 0.912987i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 31.5608 31.5608i 1.19545 1.19545i
\(698\) 0 0
\(699\) −3.77227 −0.142680
\(700\) 0 0
\(701\) −12.5261 −0.473103 −0.236551 0.971619i \(-0.576017\pi\)
−0.236551 + 0.971619i \(0.576017\pi\)
\(702\) 0 0
\(703\) −28.0510 + 28.0510i −1.05796 + 1.05796i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10.1755 35.0285i 0.382690 1.31738i
\(708\) 0 0
\(709\) 32.8204i 1.23260i 0.787512 + 0.616299i \(0.211369\pi\)
−0.787512 + 0.616299i \(0.788631\pi\)
\(710\) 0 0
\(711\) −15.2638 −0.572437
\(712\) 0 0
\(713\) −0.491432 + 0.491432i −0.0184043 + 0.0184043i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.329086 0.329086i −0.0122900 0.0122900i
\(718\) 0 0
\(719\) 19.4184 0.724186 0.362093 0.932142i \(-0.382062\pi\)
0.362093 + 0.932142i \(0.382062\pi\)
\(720\) 0 0
\(721\) −34.0179 + 18.7029i −1.26689 + 0.696533i
\(722\) 0 0
\(723\) −7.00682 7.00682i −0.260586 0.260586i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −5.73374 5.73374i −0.212653 0.212653i 0.592741 0.805393i \(-0.298046\pi\)
−0.805393 + 0.592741i \(0.798046\pi\)
\(728\) 0 0
\(729\) 10.5636i 0.391243i
\(730\) 0 0
\(731\) 77.6685i 2.87267i
\(732\) 0 0
\(733\) −8.52329 + 8.52329i −0.314815 + 0.314815i −0.846772 0.531957i \(-0.821457\pi\)
0.531957 + 0.846772i \(0.321457\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.06145 6.06145i 0.223276 0.223276i
\(738\) 0 0
\(739\) 42.1938i 1.55212i 0.630656 + 0.776062i \(0.282786\pi\)
−0.630656 + 0.776062i \(0.717214\pi\)
\(740\) 0 0
\(741\) 8.68641i 0.319103i
\(742\) 0 0
\(743\) 4.65010 + 4.65010i 0.170596 + 0.170596i 0.787241 0.616645i \(-0.211509\pi\)
−0.616645 + 0.787241i \(0.711509\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.45242 5.45242i −0.199494 0.199494i
\(748\) 0 0
\(749\) 14.9140 8.19963i 0.544945 0.299608i
\(750\) 0 0
\(751\) −12.7801 −0.466353 −0.233176 0.972434i \(-0.574912\pi\)
−0.233176 + 0.972434i \(0.574912\pi\)
\(752\) 0 0
\(753\) 5.17059 + 5.17059i 0.188427 + 0.188427i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −10.6724 + 10.6724i −0.387893 + 0.387893i −0.873935 0.486042i \(-0.838440\pi\)
0.486042 + 0.873935i \(0.338440\pi\)
\(758\) 0 0
\(759\) 0.137347 0.00498539
\(760\) 0 0
\(761\) 28.1860i 1.02174i 0.859657 + 0.510871i \(0.170677\pi\)
−0.859657 + 0.510871i \(0.829323\pi\)
\(762\) 0 0
\(763\) −2.77797 + 9.56294i −0.100569 + 0.346201i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.2381 27.2381i 0.983510 0.983510i
\(768\) 0 0
\(769\) 14.1998 0.512058 0.256029 0.966669i \(-0.417586\pi\)
0.256029 + 0.966669i \(0.417586\pi\)
\(770\) 0 0
\(771\) −5.40047 −0.194493
\(772\) 0 0
\(773\) −34.8461 + 34.8461i −1.25333 + 1.25333i −0.299110 + 0.954219i \(0.596690\pi\)
−0.954219 + 0.299110i \(0.903310\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4.71138 + 16.2186i −0.169020 + 0.581838i
\(778\) 0 0
\(779\) 20.2782i 0.726540i
\(780\) 0 0
\(781\) 30.3287 1.08525
\(782\) 0 0
\(783\) −12.3971 + 12.3971i −0.443036 + 0.443036i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −19.6599 19.6599i −0.700799 0.700799i 0.263783 0.964582i \(-0.415030\pi\)
−0.964582 + 0.263783i \(0.915030\pi\)
\(788\) 0 0
\(789\) 6.19393 0.220510
\(790\) 0 0
\(791\) 8.70696 + 15.8367i 0.309584 + 0.563089i
\(792\) 0 0
\(793\) −10.3857 10.3857i −0.368807 0.368807i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.8992 15.8992i −0.563178 0.563178i 0.367031 0.930209i \(-0.380374\pi\)
−0.930209 + 0.367031i \(0.880374\pi\)
\(798\) 0 0
\(799\) 38.5429i 1.36355i
\(800\) 0 0
\(801\) 21.8182i 0.770907i
\(802\) 0 0
\(803\) 8.64306 8.64306i 0.305007 0.305007i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.04849 9.04849i 0.318522 0.318522i
\(808\) 0 0
\(809\) 3.53959i 0.124445i −0.998062 0.0622227i \(-0.980181\pi\)
0.998062 0.0622227i \(-0.0198189\pi\)
\(810\) 0 0
\(811\) 48.2187i 1.69319i 0.532240 + 0.846593i \(0.321350\pi\)
−0.532240 + 0.846593i \(0.678650\pi\)
\(812\) 0 0
\(813\) 12.1529 + 12.1529i 0.426220 + 0.426220i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 24.9514 + 24.9514i 0.872939 + 0.872939i
\(818\) 0 0
\(819\) −14.1821 25.7952i −0.495562 0.901358i
\(820\) 0 0
\(821\) 19.7728 0.690077 0.345038 0.938589i \(-0.387866\pi\)
0.345038 + 0.938589i \(0.387866\pi\)
\(822\) 0 0
\(823\) −29.9476 29.9476i −1.04391 1.04391i −0.998991 0.0449175i \(-0.985697\pi\)
−0.0449175 0.998991i \(-0.514303\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.77895 + 3.77895i −0.131407 + 0.131407i −0.769751 0.638344i \(-0.779620\pi\)
0.638344 + 0.769751i \(0.279620\pi\)
\(828\) 0 0
\(829\) −17.2917 −0.600564 −0.300282 0.953850i \(-0.597081\pi\)
−0.300282 + 0.953850i \(0.597081\pi\)
\(830\) 0 0
\(831\) 2.76596i 0.0959501i
\(832\) 0 0
\(833\) −12.0896 54.0699i −0.418879 1.87341i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 24.0892 24.0892i 0.832644 0.832644i
\(838\) 0 0
\(839\) −13.5329 −0.467207 −0.233603 0.972332i \(-0.575052\pi\)
−0.233603 + 0.972332i \(0.575052\pi\)
\(840\) 0 0
\(841\) 0.395998 0.0136551
\(842\) 0 0
\(843\) 10.6473 10.6473i 0.366714 0.366714i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.05970 + 1.17931i 0.139493 + 0.0405217i
\(848\) 0 0
\(849\) 11.4246i 0.392090i
\(850\) 0 0
\(851\) 0.737751 0.0252898
\(852\) 0 0
\(853\) −25.8248 + 25.8248i −0.884225 + 0.884225i −0.993961 0.109736i \(-0.964999\pi\)
0.109736 + 0.993961i \(0.464999\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −36.0854 36.0854i −1.23265 1.23265i −0.962941 0.269711i \(-0.913072\pi\)
−0.269711 0.962941i \(-0.586928\pi\)
\(858\) 0 0
\(859\) −7.18630 −0.245193 −0.122597 0.992457i \(-0.539122\pi\)
−0.122597 + 0.992457i \(0.539122\pi\)
\(860\) 0 0
\(861\) −4.15929 7.56517i −0.141748 0.257820i
\(862\) 0 0
\(863\) 20.2042 + 20.2042i 0.687758 + 0.687758i 0.961736 0.273978i \(-0.0883397\pi\)
−0.273978 + 0.961736i \(0.588340\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −18.6770 18.6770i −0.634304 0.634304i
\(868\) 0 0
\(869\) 20.3276i 0.689565i
\(870\) 0 0
\(871\) 10.0823i 0.341625i
\(872\) 0 0
\(873\) 16.6059 16.6059i 0.562023 0.562023i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 15.5068 15.5068i 0.523626 0.523626i −0.395038 0.918665i \(-0.629269\pi\)
0.918665 + 0.395038i \(0.129269\pi\)
\(878\) 0 0
\(879\) 5.33191i 0.179841i
\(880\) 0 0
\(881\) 35.4110i 1.19303i −0.802603 0.596513i \(-0.796552\pi\)
0.802603 0.596513i \(-0.203448\pi\)
\(882\) 0 0
\(883\) −29.1344 29.1344i −0.980449 0.980449i 0.0193631 0.999813i \(-0.493836\pi\)
−0.999813 + 0.0193631i \(0.993836\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.6553 + 27.6553i 0.928575 + 0.928575i 0.997614 0.0690386i \(-0.0219932\pi\)
−0.0690386 + 0.997614i \(0.521993\pi\)
\(888\) 0 0
\(889\) −32.3344 + 17.7773i −1.08446 + 0.596232i
\(890\) 0 0
\(891\) 21.6464 0.725180
\(892\) 0 0
\(893\) 12.3821 + 12.3821i 0.414351 + 0.414351i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.114228 0.114228i 0.00381396 0.00381396i
\(898\) 0 0
\(899\) 55.5813 1.85374
\(900\) 0 0
\(901\) 7.24029i 0.241209i
\(902\) 0 0
\(903\) 14.4264 + 4.19078i 0.480082 + 0.139461i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −12.7400 + 12.7400i −0.423024 + 0.423024i −0.886244 0.463220i \(-0.846694\pi\)
0.463220 + 0.886244i \(0.346694\pi\)
\(908\) 0 0
\(909\) 36.7443 1.21873
\(910\) 0 0
\(911\) −16.1219 −0.534142 −0.267071 0.963677i \(-0.586056\pi\)
−0.267071 + 0.963677i \(0.586056\pi\)
\(912\) 0 0
\(913\) 7.26125 7.26125i 0.240312 0.240312i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.2041 + 35.1268i −0.336969 + 1.15999i
\(918\) 0 0
\(919\) 10.2370i 0.337689i −0.985643 0.168844i \(-0.945997\pi\)
0.985643 0.168844i \(-0.0540035\pi\)
\(920\) 0 0
\(921\) −5.02086 −0.165443
\(922\) 0 0
\(923\) 25.2236 25.2236i 0.830244 0.830244i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −27.6517 27.6517i −0.908200 0.908200i
\(928\) 0 0
\(929\) −41.9048 −1.37485 −0.687427 0.726254i \(-0.741260\pi\)
−0.687427 + 0.726254i \(0.741260\pi\)
\(930\) 0 0
\(931\) −21.2541 13.4864i −0.696574 0.441999i
\(932\) 0 0
\(933\) −0.560026 0.560026i −0.0183344 0.0183344i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 13.6396 + 13.6396i 0.445587 + 0.445587i 0.893884 0.448298i \(-0.147970\pi\)
−0.448298 + 0.893884i \(0.647970\pi\)
\(938\) 0 0
\(939\) 11.4020i 0.372091i
\(940\) 0 0
\(941\) 12.4316i 0.405258i −0.979256 0.202629i \(-0.935051\pi\)
0.979256 0.202629i \(-0.0649486\pi\)
\(942\) 0 0
\(943\) −0.266662 + 0.266662i −0.00868370 + 0.00868370i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.8423 + 32.8423i −1.06723 + 1.06723i −0.0696622 + 0.997571i \(0.522192\pi\)
−0.997571 + 0.0696622i \(0.977808\pi\)
\(948\) 0 0
\(949\) 14.3764i 0.466678i
\(950\) 0 0
\(951\) 6.89720i 0.223657i
\(952\) 0 0
\(953\) 19.7497 + 19.7497i 0.639756 + 0.639756i 0.950495 0.310739i \(-0.100576\pi\)
−0.310739 + 0.950495i \(0.600576\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −7.76703 7.76703i −0.251072 0.251072i
\(958\) 0 0
\(959\) 43.5343 23.9349i 1.40579 0.772899i
\(960\) 0 0
\(961\) −77.0016 −2.48392
\(962\) 0 0
\(963\) 12.1229 + 12.1229i 0.390655 + 0.390655i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.760423 + 0.760423i −0.0244535 + 0.0244535i −0.719228 0.694774i \(-0.755504\pi\)
0.694774 + 0.719228i \(0.255504\pi\)
\(968\) 0 0
\(969\) −16.4693 −0.529070
\(970\) 0 0
\(971\) 35.7520i 1.14733i −0.819088 0.573667i \(-0.805520\pi\)
0.819088 0.573667i \(-0.194480\pi\)
\(972\) 0 0
\(973\) −19.2039 5.57859i −0.615647 0.178841i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −22.3370 + 22.3370i −0.714625 + 0.714625i −0.967499 0.252874i \(-0.918624\pi\)
0.252874 + 0.967499i \(0.418624\pi\)
\(978\) 0 0
\(979\) −29.0563 −0.928644
\(980\) 0 0
\(981\) −10.0314 −0.320277
\(982\) 0 0
\(983\) −21.6708 + 21.6708i −0.691191 + 0.691191i −0.962494 0.271303i \(-0.912545\pi\)
0.271303 + 0.962494i \(0.412545\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 7.15910 + 2.07967i 0.227877 + 0.0661966i
\(988\) 0 0
\(989\) 0.656231i 0.0208669i
\(990\) 0 0
\(991\) 45.0277 1.43035 0.715176 0.698944i \(-0.246347\pi\)
0.715176 + 0.698944i \(0.246347\pi\)
\(992\) 0 0
\(993\) −10.4648 + 10.4648i −0.332090 + 0.332090i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 11.7911 + 11.7911i 0.373427 + 0.373427i 0.868724 0.495297i \(-0.164941\pi\)
−0.495297 + 0.868724i \(0.664941\pi\)
\(998\) 0 0
\(999\) −36.1634 −1.14416
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1400.2.x.c.993.8 yes 32
5.2 odd 4 inner 1400.2.x.c.657.10 yes 32
5.3 odd 4 inner 1400.2.x.c.657.7 32
5.4 even 2 inner 1400.2.x.c.993.9 yes 32
7.6 odd 2 inner 1400.2.x.c.993.10 yes 32
35.13 even 4 inner 1400.2.x.c.657.9 yes 32
35.27 even 4 inner 1400.2.x.c.657.8 yes 32
35.34 odd 2 inner 1400.2.x.c.993.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1400.2.x.c.657.7 32 5.3 odd 4 inner
1400.2.x.c.657.8 yes 32 35.27 even 4 inner
1400.2.x.c.657.9 yes 32 35.13 even 4 inner
1400.2.x.c.657.10 yes 32 5.2 odd 4 inner
1400.2.x.c.993.7 yes 32 35.34 odd 2 inner
1400.2.x.c.993.8 yes 32 1.1 even 1 trivial
1400.2.x.c.993.9 yes 32 5.4 even 2 inner
1400.2.x.c.993.10 yes 32 7.6 odd 2 inner