Properties

Label 1400.2.x.c.993.1
Level $1400$
Weight $2$
Character 1400.993
Analytic conductor $11.179$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 993.1
Character \(\chi\) \(=\) 1400.993
Dual form 1400.2.x.c.657.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.09284 + 2.09284i) q^{3} +(0.510946 + 2.59595i) q^{7} -5.75996i q^{9} +O(q^{10})\) \(q+(-2.09284 + 2.09284i) q^{3} +(0.510946 + 2.59595i) q^{7} -5.75996i q^{9} -3.94864 q^{11} +(1.69798 - 1.69798i) q^{13} +(2.66927 + 2.66927i) q^{17} -5.36102 q^{19} +(-6.50223 - 4.36357i) q^{21} +(-3.55527 - 3.55527i) q^{23} +(5.77616 + 5.77616i) q^{27} -7.24449i q^{29} +0.174160i q^{31} +(8.26386 - 8.26386i) q^{33} +(-4.85737 + 4.85737i) q^{37} +7.10719i q^{39} +0.732583i q^{41} +(-8.20187 - 8.20187i) q^{43} +(2.31716 + 2.31716i) q^{47} +(-6.47787 + 2.65278i) q^{49} -11.1727 q^{51} +(4.53449 + 4.53449i) q^{53} +(11.2198 - 11.2198i) q^{57} +13.1904 q^{59} -13.3556i q^{61} +(14.9525 - 2.94303i) q^{63} +(6.55658 - 6.55658i) q^{67} +14.8812 q^{69} +16.3312 q^{71} +(-7.02549 + 7.02549i) q^{73} +(-2.01754 - 10.2504i) q^{77} -6.63234i q^{79} -6.89727 q^{81} +(-10.4642 + 10.4642i) q^{83} +(15.1616 + 15.1616i) q^{87} -3.43554 q^{89} +(5.27543 + 3.54028i) q^{91} +(-0.364490 - 0.364490i) q^{93} +(-1.40892 - 1.40892i) q^{97} +22.7440i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + O(q^{10}) \) \( 32q - 16q^{11} - 40q^{21} + 32q^{51} + 128q^{71} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.09284 + 2.09284i −1.20830 + 1.20830i −0.236725 + 0.971577i \(0.576074\pi\)
−0.971577 + 0.236725i \(0.923926\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.510946 + 2.59595i 0.193119 + 0.981175i
\(8\) 0 0
\(9\) 5.75996i 1.91999i
\(10\) 0 0
\(11\) −3.94864 −1.19056 −0.595279 0.803519i \(-0.702959\pi\)
−0.595279 + 0.803519i \(0.702959\pi\)
\(12\) 0 0
\(13\) 1.69798 1.69798i 0.470934 0.470934i −0.431283 0.902217i \(-0.641939\pi\)
0.902217 + 0.431283i \(0.141939\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.66927 + 2.66927i 0.647392 + 0.647392i 0.952362 0.304970i \(-0.0986464\pi\)
−0.304970 + 0.952362i \(0.598646\pi\)
\(18\) 0 0
\(19\) −5.36102 −1.22990 −0.614952 0.788565i \(-0.710824\pi\)
−0.614952 + 0.788565i \(0.710824\pi\)
\(20\) 0 0
\(21\) −6.50223 4.36357i −1.41890 0.952209i
\(22\) 0 0
\(23\) −3.55527 3.55527i −0.741325 0.741325i 0.231508 0.972833i \(-0.425634\pi\)
−0.972833 + 0.231508i \(0.925634\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.77616 + 5.77616i 1.11162 + 1.11162i
\(28\) 0 0
\(29\) 7.24449i 1.34527i −0.739975 0.672634i \(-0.765163\pi\)
0.739975 0.672634i \(-0.234837\pi\)
\(30\) 0 0
\(31\) 0.174160i 0.0312801i 0.999878 + 0.0156401i \(0.00497859\pi\)
−0.999878 + 0.0156401i \(0.995021\pi\)
\(32\) 0 0
\(33\) 8.26386 8.26386i 1.43855 1.43855i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.85737 + 4.85737i −0.798547 + 0.798547i −0.982866 0.184320i \(-0.940992\pi\)
0.184320 + 0.982866i \(0.440992\pi\)
\(38\) 0 0
\(39\) 7.10719i 1.13806i
\(40\) 0 0
\(41\) 0.732583i 0.114410i 0.998362 + 0.0572051i \(0.0182189\pi\)
−0.998362 + 0.0572051i \(0.981781\pi\)
\(42\) 0 0
\(43\) −8.20187 8.20187i −1.25077 1.25077i −0.955374 0.295400i \(-0.904547\pi\)
−0.295400 0.955374i \(-0.595453\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.31716 + 2.31716i 0.337993 + 0.337993i 0.855612 0.517619i \(-0.173181\pi\)
−0.517619 + 0.855612i \(0.673181\pi\)
\(48\) 0 0
\(49\) −6.47787 + 2.65278i −0.925410 + 0.378968i
\(50\) 0 0
\(51\) −11.1727 −1.56449
\(52\) 0 0
\(53\) 4.53449 + 4.53449i 0.622860 + 0.622860i 0.946262 0.323402i \(-0.104827\pi\)
−0.323402 + 0.946262i \(0.604827\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 11.2198 11.2198i 1.48609 1.48609i
\(58\) 0 0
\(59\) 13.1904 1.71724 0.858620 0.512613i \(-0.171322\pi\)
0.858620 + 0.512613i \(0.171322\pi\)
\(60\) 0 0
\(61\) 13.3556i 1.71001i −0.518622 0.855004i \(-0.673555\pi\)
0.518622 0.855004i \(-0.326445\pi\)
\(62\) 0 0
\(63\) 14.9525 2.94303i 1.88384 0.370787i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.55658 6.55658i 0.801014 0.801014i −0.182240 0.983254i \(-0.558335\pi\)
0.983254 + 0.182240i \(0.0583349\pi\)
\(68\) 0 0
\(69\) 14.8812 1.79149
\(70\) 0 0
\(71\) 16.3312 1.93816 0.969081 0.246742i \(-0.0793599\pi\)
0.969081 + 0.246742i \(0.0793599\pi\)
\(72\) 0 0
\(73\) −7.02549 + 7.02549i −0.822271 + 0.822271i −0.986433 0.164162i \(-0.947508\pi\)
0.164162 + 0.986433i \(0.447508\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.01754 10.2504i −0.229920 1.16815i
\(78\) 0 0
\(79\) 6.63234i 0.746197i −0.927792 0.373098i \(-0.878295\pi\)
0.927792 0.373098i \(-0.121705\pi\)
\(80\) 0 0
\(81\) −6.89727 −0.766363
\(82\) 0 0
\(83\) −10.4642 + 10.4642i −1.14860 + 1.14860i −0.161766 + 0.986829i \(0.551719\pi\)
−0.986829 + 0.161766i \(0.948281\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 15.1616 + 15.1616i 1.62549 + 1.62549i
\(88\) 0 0
\(89\) −3.43554 −0.364166 −0.182083 0.983283i \(-0.558284\pi\)
−0.182083 + 0.983283i \(0.558284\pi\)
\(90\) 0 0
\(91\) 5.27543 + 3.54028i 0.553015 + 0.371122i
\(92\) 0 0
\(93\) −0.364490 0.364490i −0.0377958 0.0377958i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.40892 1.40892i −0.143054 0.143054i 0.631953 0.775007i \(-0.282254\pi\)
−0.775007 + 0.631953i \(0.782254\pi\)
\(98\) 0 0
\(99\) 22.7440i 2.28586i
\(100\) 0 0
\(101\) 12.1783i 1.21178i −0.795547 0.605891i \(-0.792817\pi\)
0.795547 0.605891i \(-0.207183\pi\)
\(102\) 0 0
\(103\) 9.52421 9.52421i 0.938449 0.938449i −0.0597638 0.998213i \(-0.519035\pi\)
0.998213 + 0.0597638i \(0.0190348\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.98949 8.98949i 0.869046 0.869046i −0.123321 0.992367i \(-0.539354\pi\)
0.992367 + 0.123321i \(0.0393543\pi\)
\(108\) 0 0
\(109\) 3.86269i 0.369979i −0.982741 0.184989i \(-0.940775\pi\)
0.982741 0.184989i \(-0.0592251\pi\)
\(110\) 0 0
\(111\) 20.3314i 1.92977i
\(112\) 0 0
\(113\) −2.94525 2.94525i −0.277066 0.277066i 0.554870 0.831937i \(-0.312768\pi\)
−0.831937 + 0.554870i \(0.812768\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −9.78028 9.78028i −0.904187 0.904187i
\(118\) 0 0
\(119\) −5.56542 + 8.29312i −0.510181 + 0.760229i
\(120\) 0 0
\(121\) 4.59172 0.417429
\(122\) 0 0
\(123\) −1.53318 1.53318i −0.138242 0.138242i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.73709 1.73709i 0.154142 0.154142i −0.625823 0.779965i \(-0.715237\pi\)
0.779965 + 0.625823i \(0.215237\pi\)
\(128\) 0 0
\(129\) 34.3304 3.02262
\(130\) 0 0
\(131\) 2.70296i 0.236158i −0.993004 0.118079i \(-0.962326\pi\)
0.993004 0.118079i \(-0.0376737\pi\)
\(132\) 0 0
\(133\) −2.73919 13.9169i −0.237518 1.20675i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.26814 + 3.26814i −0.279216 + 0.279216i −0.832796 0.553580i \(-0.813261\pi\)
0.553580 + 0.832796i \(0.313261\pi\)
\(138\) 0 0
\(139\) −21.4638 −1.82054 −0.910269 0.414017i \(-0.864126\pi\)
−0.910269 + 0.414017i \(0.864126\pi\)
\(140\) 0 0
\(141\) −9.69891 −0.816795
\(142\) 0 0
\(143\) −6.70469 + 6.70469i −0.560674 + 0.560674i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 8.00531 19.1090i 0.660267 1.57608i
\(148\) 0 0
\(149\) 2.09645i 0.171747i −0.996306 0.0858737i \(-0.972632\pi\)
0.996306 0.0858737i \(-0.0273682\pi\)
\(150\) 0 0
\(151\) 1.78039 0.144886 0.0724432 0.997373i \(-0.476920\pi\)
0.0724432 + 0.997373i \(0.476920\pi\)
\(152\) 0 0
\(153\) 15.3749 15.3749i 1.24298 1.24298i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.64528 + 4.64528i 0.370734 + 0.370734i 0.867744 0.497011i \(-0.165569\pi\)
−0.497011 + 0.867744i \(0.665569\pi\)
\(158\) 0 0
\(159\) −18.9799 −1.50521
\(160\) 0 0
\(161\) 7.41274 11.0458i 0.584205 0.870534i
\(162\) 0 0
\(163\) −1.67419 1.67419i −0.131132 0.131132i 0.638494 0.769627i \(-0.279558\pi\)
−0.769627 + 0.638494i \(0.779558\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.65522 1.65522i −0.128084 0.128084i 0.640158 0.768243i \(-0.278869\pi\)
−0.768243 + 0.640158i \(0.778869\pi\)
\(168\) 0 0
\(169\) 7.23375i 0.556443i
\(170\) 0 0
\(171\) 30.8793i 2.36140i
\(172\) 0 0
\(173\) −0.949313 + 0.949313i −0.0721750 + 0.0721750i −0.742273 0.670098i \(-0.766252\pi\)
0.670098 + 0.742273i \(0.266252\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −27.6053 + 27.6053i −2.07494 + 2.07494i
\(178\) 0 0
\(179\) 16.6926i 1.24767i −0.781558 0.623833i \(-0.785575\pi\)
0.781558 0.623833i \(-0.214425\pi\)
\(180\) 0 0
\(181\) 18.6406i 1.38554i 0.721158 + 0.692771i \(0.243610\pi\)
−0.721158 + 0.692771i \(0.756390\pi\)
\(182\) 0 0
\(183\) 27.9511 + 27.9511i 2.06621 + 2.06621i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10.5400 10.5400i −0.770758 0.770758i
\(188\) 0 0
\(189\) −12.0433 + 17.9459i −0.876020 + 1.30537i
\(190\) 0 0
\(191\) −4.33648 −0.313777 −0.156888 0.987616i \(-0.550146\pi\)
−0.156888 + 0.987616i \(0.550146\pi\)
\(192\) 0 0
\(193\) −11.8884 11.8884i −0.855747 0.855747i 0.135087 0.990834i \(-0.456869\pi\)
−0.990834 + 0.135087i \(0.956869\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.85131 + 2.85131i −0.203148 + 0.203148i −0.801347 0.598200i \(-0.795883\pi\)
0.598200 + 0.801347i \(0.295883\pi\)
\(198\) 0 0
\(199\) 4.34228 0.307816 0.153908 0.988085i \(-0.450814\pi\)
0.153908 + 0.988085i \(0.450814\pi\)
\(200\) 0 0
\(201\) 27.4438i 1.93573i
\(202\) 0 0
\(203\) 18.8063 3.70154i 1.31994 0.259797i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −20.4782 + 20.4782i −1.42333 + 1.42333i
\(208\) 0 0
\(209\) 21.1687 1.46427
\(210\) 0 0
\(211\) −18.8362 −1.29674 −0.648369 0.761326i \(-0.724549\pi\)
−0.648369 + 0.761326i \(0.724549\pi\)
\(212\) 0 0
\(213\) −34.1787 + 34.1787i −2.34189 + 2.34189i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.452111 + 0.0889865i −0.0306913 + 0.00604080i
\(218\) 0 0
\(219\) 29.4065i 1.98710i
\(220\) 0 0
\(221\) 9.06470 0.609758
\(222\) 0 0
\(223\) −13.9232 + 13.9232i −0.932366 + 0.932366i −0.997853 0.0654872i \(-0.979140\pi\)
0.0654872 + 0.997853i \(0.479140\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.91799 + 6.91799i 0.459163 + 0.459163i 0.898381 0.439218i \(-0.144744\pi\)
−0.439218 + 0.898381i \(0.644744\pi\)
\(228\) 0 0
\(229\) −1.64658 −0.108809 −0.0544047 0.998519i \(-0.517326\pi\)
−0.0544047 + 0.998519i \(0.517326\pi\)
\(230\) 0 0
\(231\) 25.6749 + 17.2302i 1.68929 + 1.13366i
\(232\) 0 0
\(233\) −4.73081 4.73081i −0.309926 0.309926i 0.534955 0.844881i \(-0.320329\pi\)
−0.844881 + 0.534955i \(0.820329\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 13.8804 + 13.8804i 0.901631 + 0.901631i
\(238\) 0 0
\(239\) 5.18344i 0.335289i −0.985848 0.167644i \(-0.946384\pi\)
0.985848 0.167644i \(-0.0536160\pi\)
\(240\) 0 0
\(241\) 8.65109i 0.557265i −0.960398 0.278633i \(-0.910119\pi\)
0.960398 0.278633i \(-0.0898812\pi\)
\(242\) 0 0
\(243\) −2.89359 + 2.89359i −0.185624 + 0.185624i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.10289 + 9.10289i −0.579203 + 0.579203i
\(248\) 0 0
\(249\) 43.7998i 2.77570i
\(250\) 0 0
\(251\) 11.0974i 0.700459i 0.936664 + 0.350230i \(0.113896\pi\)
−0.936664 + 0.350230i \(0.886104\pi\)
\(252\) 0 0
\(253\) 14.0385 + 14.0385i 0.882591 + 0.882591i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.62391 + 1.62391i 0.101297 + 0.101297i 0.755939 0.654642i \(-0.227181\pi\)
−0.654642 + 0.755939i \(0.727181\pi\)
\(258\) 0 0
\(259\) −15.0913 10.1276i −0.937729 0.629300i
\(260\) 0 0
\(261\) −41.7280 −2.58290
\(262\) 0 0
\(263\) −20.7161 20.7161i −1.27741 1.27741i −0.942111 0.335301i \(-0.891162\pi\)
−0.335301 0.942111i \(-0.608838\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7.19003 7.19003i 0.440023 0.440023i
\(268\) 0 0
\(269\) −31.0977 −1.89606 −0.948031 0.318179i \(-0.896929\pi\)
−0.948031 + 0.318179i \(0.896929\pi\)
\(270\) 0 0
\(271\) 9.24962i 0.561875i −0.959726 0.280937i \(-0.909355\pi\)
0.959726 0.280937i \(-0.0906453\pi\)
\(272\) 0 0
\(273\) −18.4499 + 3.63139i −1.11664 + 0.219782i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.3476 + 14.3476i −0.862066 + 0.862066i −0.991578 0.129512i \(-0.958659\pi\)
0.129512 + 0.991578i \(0.458659\pi\)
\(278\) 0 0
\(279\) 1.00316 0.0600574
\(280\) 0 0
\(281\) 12.3108 0.734402 0.367201 0.930142i \(-0.380316\pi\)
0.367201 + 0.930142i \(0.380316\pi\)
\(282\) 0 0
\(283\) 7.14401 7.14401i 0.424667 0.424667i −0.462140 0.886807i \(-0.652918\pi\)
0.886807 + 0.462140i \(0.152918\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.90174 + 0.374310i −0.112256 + 0.0220948i
\(288\) 0 0
\(289\) 2.75003i 0.161766i
\(290\) 0 0
\(291\) 5.89727 0.345704
\(292\) 0 0
\(293\) −10.8037 + 10.8037i −0.631156 + 0.631156i −0.948358 0.317202i \(-0.897257\pi\)
0.317202 + 0.948358i \(0.397257\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −22.8079 22.8079i −1.32345 1.32345i
\(298\) 0 0
\(299\) −12.0735 −0.698230
\(300\) 0 0
\(301\) 17.1009 25.4823i 0.985680 1.46878i
\(302\) 0 0
\(303\) 25.4872 + 25.4872i 1.46420 + 1.46420i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −21.5142 21.5142i −1.22788 1.22788i −0.964765 0.263113i \(-0.915251\pi\)
−0.263113 0.964765i \(-0.584749\pi\)
\(308\) 0 0
\(309\) 39.8653i 2.26786i
\(310\) 0 0
\(311\) 15.8682i 0.899802i 0.893078 + 0.449901i \(0.148541\pi\)
−0.893078 + 0.449901i \(0.851459\pi\)
\(312\) 0 0
\(313\) 16.6132 16.6132i 0.939036 0.939036i −0.0592093 0.998246i \(-0.518858\pi\)
0.998246 + 0.0592093i \(0.0188579\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.53714 + 9.53714i −0.535659 + 0.535659i −0.922251 0.386592i \(-0.873652\pi\)
0.386592 + 0.922251i \(0.373652\pi\)
\(318\) 0 0
\(319\) 28.6059i 1.60162i
\(320\) 0 0
\(321\) 37.6271i 2.10014i
\(322\) 0 0
\(323\) −14.3100 14.3100i −0.796230 0.796230i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.08400 + 8.08400i 0.447046 + 0.447046i
\(328\) 0 0
\(329\) −4.83129 + 7.19917i −0.266357 + 0.396903i
\(330\) 0 0
\(331\) 12.9177 0.710021 0.355011 0.934862i \(-0.384477\pi\)
0.355011 + 0.934862i \(0.384477\pi\)
\(332\) 0 0
\(333\) 27.9783 + 27.9783i 1.53320 + 1.53320i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.12871 + 7.12871i −0.388326 + 0.388326i −0.874090 0.485764i \(-0.838541\pi\)
0.485764 + 0.874090i \(0.338541\pi\)
\(338\) 0 0
\(339\) 12.3279 0.669559
\(340\) 0 0
\(341\) 0.687696i 0.0372408i
\(342\) 0 0
\(343\) −10.1963 15.4608i −0.550549 0.834803i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.28294 + 1.28294i −0.0688717 + 0.0688717i −0.740704 0.671832i \(-0.765508\pi\)
0.671832 + 0.740704i \(0.265508\pi\)
\(348\) 0 0
\(349\) −14.4635 −0.774213 −0.387106 0.922035i \(-0.626525\pi\)
−0.387106 + 0.922035i \(0.626525\pi\)
\(350\) 0 0
\(351\) 19.6156 1.04700
\(352\) 0 0
\(353\) −1.19731 + 1.19731i −0.0637263 + 0.0637263i −0.738252 0.674525i \(-0.764348\pi\)
0.674525 + 0.738252i \(0.264348\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −5.70864 29.0037i −0.302133 1.53504i
\(358\) 0 0
\(359\) 27.1832i 1.43467i −0.696726 0.717337i \(-0.745361\pi\)
0.696726 0.717337i \(-0.254639\pi\)
\(360\) 0 0
\(361\) 9.74058 0.512662
\(362\) 0 0
\(363\) −9.60974 + 9.60974i −0.504380 + 0.504380i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −18.0535 18.0535i −0.942383 0.942383i 0.0560450 0.998428i \(-0.482151\pi\)
−0.998428 + 0.0560450i \(0.982151\pi\)
\(368\) 0 0
\(369\) 4.21965 0.219666
\(370\) 0 0
\(371\) −9.45441 + 14.0882i −0.490849 + 0.731421i
\(372\) 0 0
\(373\) −23.4769 23.4769i −1.21559 1.21559i −0.969161 0.246430i \(-0.920743\pi\)
−0.246430 0.969161i \(-0.579257\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.3010 12.3010i −0.633533 0.633533i
\(378\) 0 0
\(379\) 32.9476i 1.69241i 0.532861 + 0.846203i \(0.321117\pi\)
−0.532861 + 0.846203i \(0.678883\pi\)
\(380\) 0 0
\(381\) 7.27092i 0.372501i
\(382\) 0 0
\(383\) −12.6328 + 12.6328i −0.645506 + 0.645506i −0.951904 0.306398i \(-0.900876\pi\)
0.306398 + 0.951904i \(0.400876\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −47.2425 + 47.2425i −2.40147 + 2.40147i
\(388\) 0 0
\(389\) 3.77597i 0.191449i 0.995408 + 0.0957246i \(0.0305168\pi\)
−0.995408 + 0.0957246i \(0.969483\pi\)
\(390\) 0 0
\(391\) 18.9799i 0.959856i
\(392\) 0 0
\(393\) 5.65685 + 5.65685i 0.285351 + 0.285351i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −16.0271 16.0271i −0.804375 0.804375i 0.179401 0.983776i \(-0.442584\pi\)
−0.983776 + 0.179401i \(0.942584\pi\)
\(398\) 0 0
\(399\) 34.8586 + 23.3932i 1.74511 + 1.17113i
\(400\) 0 0
\(401\) 3.52985 0.176272 0.0881362 0.996108i \(-0.471909\pi\)
0.0881362 + 0.996108i \(0.471909\pi\)
\(402\) 0 0
\(403\) 0.295720 + 0.295720i 0.0147309 + 0.0147309i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 19.1800 19.1800i 0.950717 0.950717i
\(408\) 0 0
\(409\) −5.07318 −0.250852 −0.125426 0.992103i \(-0.540030\pi\)
−0.125426 + 0.992103i \(0.540030\pi\)
\(410\) 0 0
\(411\) 13.6794i 0.674754i
\(412\) 0 0
\(413\) 6.73957 + 34.2415i 0.331632 + 1.68491i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 44.9204 44.9204i 2.19976 2.19976i
\(418\) 0 0
\(419\) 9.44663 0.461498 0.230749 0.973013i \(-0.425882\pi\)
0.230749 + 0.973013i \(0.425882\pi\)
\(420\) 0 0
\(421\) 30.4827 1.48564 0.742818 0.669493i \(-0.233489\pi\)
0.742818 + 0.669493i \(0.233489\pi\)
\(422\) 0 0
\(423\) 13.3468 13.3468i 0.648942 0.648942i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 34.6704 6.82398i 1.67782 0.330236i
\(428\) 0 0
\(429\) 28.0637i 1.35493i
\(430\) 0 0
\(431\) −11.4845 −0.553191 −0.276595 0.960987i \(-0.589206\pi\)
−0.276595 + 0.960987i \(0.589206\pi\)
\(432\) 0 0
\(433\) 26.8641 26.8641i 1.29101 1.29101i 0.356845 0.934164i \(-0.383852\pi\)
0.934164 0.356845i \(-0.116148\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 19.0599 + 19.0599i 0.911758 + 0.911758i
\(438\) 0 0
\(439\) 13.5387 0.646166 0.323083 0.946371i \(-0.395281\pi\)
0.323083 + 0.946371i \(0.395281\pi\)
\(440\) 0 0
\(441\) 15.2799 + 37.3123i 0.727614 + 1.77677i
\(442\) 0 0
\(443\) 7.27325 + 7.27325i 0.345563 + 0.345563i 0.858454 0.512891i \(-0.171426\pi\)
−0.512891 + 0.858454i \(0.671426\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.38752 + 4.38752i 0.207523 + 0.207523i
\(448\) 0 0
\(449\) 4.85641i 0.229188i 0.993412 + 0.114594i \(0.0365567\pi\)
−0.993412 + 0.114594i \(0.963443\pi\)
\(450\) 0 0
\(451\) 2.89270i 0.136212i
\(452\) 0 0
\(453\) −3.72608 + 3.72608i −0.175066 + 0.175066i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.5716 14.5716i 0.681629 0.681629i −0.278738 0.960367i \(-0.589916\pi\)
0.960367 + 0.278738i \(0.0899162\pi\)
\(458\) 0 0
\(459\) 30.8362i 1.43931i
\(460\) 0 0
\(461\) 7.19256i 0.334991i −0.985873 0.167495i \(-0.946432\pi\)
0.985873 0.167495i \(-0.0535680\pi\)
\(462\) 0 0
\(463\) −3.74846 3.74846i −0.174206 0.174206i 0.614619 0.788824i \(-0.289310\pi\)
−0.788824 + 0.614619i \(0.789310\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.4030 17.4030i −0.805314 0.805314i 0.178607 0.983921i \(-0.442841\pi\)
−0.983921 + 0.178607i \(0.942841\pi\)
\(468\) 0 0
\(469\) 20.3706 + 13.6705i 0.940626 + 0.631244i
\(470\) 0 0
\(471\) −19.4437 −0.895917
\(472\) 0 0
\(473\) 32.3862 + 32.3862i 1.48912 + 1.48912i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 26.1185 26.1185i 1.19588 1.19588i
\(478\) 0 0
\(479\) 29.8582 1.36426 0.682129 0.731232i \(-0.261054\pi\)
0.682129 + 0.731232i \(0.261054\pi\)
\(480\) 0 0
\(481\) 16.4954i 0.752125i
\(482\) 0 0
\(483\) 7.60350 + 38.6308i 0.345971 + 1.75776i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −18.7577 + 18.7577i −0.849993 + 0.849993i −0.990132 0.140139i \(-0.955245\pi\)
0.140139 + 0.990132i \(0.455245\pi\)
\(488\) 0 0
\(489\) 7.00761 0.316895
\(490\) 0 0
\(491\) 20.7440 0.936163 0.468081 0.883685i \(-0.344945\pi\)
0.468081 + 0.883685i \(0.344945\pi\)
\(492\) 0 0
\(493\) 19.3375 19.3375i 0.870917 0.870917i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.34438 + 42.3950i 0.374297 + 1.90168i
\(498\) 0 0
\(499\) 1.19553i 0.0535192i −0.999642 0.0267596i \(-0.991481\pi\)
0.999642 0.0267596i \(-0.00851886\pi\)
\(500\) 0 0
\(501\) 6.92820 0.309529
\(502\) 0 0
\(503\) −12.8461 + 12.8461i −0.572779 + 0.572779i −0.932904 0.360125i \(-0.882734\pi\)
0.360125 + 0.932904i \(0.382734\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15.1391 15.1391i −0.672351 0.672351i
\(508\) 0 0
\(509\) 18.4311 0.816943 0.408471 0.912771i \(-0.366062\pi\)
0.408471 + 0.912771i \(0.366062\pi\)
\(510\) 0 0
\(511\) −21.8274 14.6481i −0.965589 0.647996i
\(512\) 0 0
\(513\) −30.9661 30.9661i −1.36719 1.36719i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.14963 9.14963i −0.402400 0.402400i
\(518\) 0 0
\(519\) 3.97352i 0.174418i
\(520\) 0 0
\(521\) 30.4435i 1.33375i −0.745168 0.666877i \(-0.767631\pi\)
0.745168 0.666877i \(-0.232369\pi\)
\(522\) 0 0
\(523\) −12.5460 + 12.5460i −0.548599 + 0.548599i −0.926036 0.377436i \(-0.876806\pi\)
0.377436 + 0.926036i \(0.376806\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.464880 + 0.464880i −0.0202505 + 0.0202505i
\(528\) 0 0
\(529\) 2.27988i 0.0991254i
\(530\) 0 0
\(531\) 75.9760i 3.29708i
\(532\) 0 0
\(533\) 1.24391 + 1.24391i 0.0538796 + 0.0538796i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 34.9350 + 34.9350i 1.50756 + 1.50756i
\(538\) 0 0
\(539\) 25.5787 10.4748i 1.10175 0.451183i
\(540\) 0 0
\(541\) −20.0700 −0.862875 −0.431438 0.902143i \(-0.641994\pi\)
−0.431438 + 0.902143i \(0.641994\pi\)
\(542\) 0 0
\(543\) −39.0117 39.0117i −1.67415 1.67415i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.3298 12.3298i 0.527185 0.527185i −0.392547 0.919732i \(-0.628406\pi\)
0.919732 + 0.392547i \(0.128406\pi\)
\(548\) 0 0
\(549\) −76.9277 −3.28319
\(550\) 0 0
\(551\) 38.8379i 1.65455i
\(552\) 0 0
\(553\) 17.2172 3.38877i 0.732150 0.144105i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.8455 10.8455i 0.459541 0.459541i −0.438964 0.898505i \(-0.644654\pi\)
0.898505 + 0.438964i \(0.144654\pi\)
\(558\) 0 0
\(559\) −27.8532 −1.17806
\(560\) 0 0
\(561\) 44.1169 1.86262
\(562\) 0 0
\(563\) 29.8745 29.8745i 1.25906 1.25906i 0.307517 0.951542i \(-0.400502\pi\)
0.951542 0.307517i \(-0.0994982\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.52413 17.9049i −0.148000 0.751937i
\(568\) 0 0
\(569\) 16.2736i 0.682225i −0.940023 0.341112i \(-0.889196\pi\)
0.940023 0.341112i \(-0.110804\pi\)
\(570\) 0 0
\(571\) −24.0495 −1.00644 −0.503221 0.864158i \(-0.667852\pi\)
−0.503221 + 0.864158i \(0.667852\pi\)
\(572\) 0 0
\(573\) 9.07557 9.07557i 0.379137 0.379137i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.1701 11.1701i −0.465017 0.465017i 0.435278 0.900296i \(-0.356650\pi\)
−0.900296 + 0.435278i \(0.856650\pi\)
\(578\) 0 0
\(579\) 49.7611 2.06800
\(580\) 0 0
\(581\) −32.5111 21.8179i −1.34879 0.905157i
\(582\) 0 0
\(583\) −17.9050 17.9050i −0.741551 0.741551i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.4617 + 15.4617i 0.638171 + 0.638171i 0.950104 0.311933i \(-0.100977\pi\)
−0.311933 + 0.950104i \(0.600977\pi\)
\(588\) 0 0
\(589\) 0.933678i 0.0384715i
\(590\) 0 0
\(591\) 11.9347i 0.490928i
\(592\) 0 0
\(593\) −32.5438 + 32.5438i −1.33641 + 1.33641i −0.436904 + 0.899508i \(0.643925\pi\)
−0.899508 + 0.436904i \(0.856075\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9.08770 + 9.08770i −0.371935 + 0.371935i
\(598\) 0 0
\(599\) 21.7804i 0.889923i 0.895550 + 0.444961i \(0.146783\pi\)
−0.895550 + 0.444961i \(0.853217\pi\)
\(600\) 0 0
\(601\) 19.8736i 0.810660i 0.914170 + 0.405330i \(0.132843\pi\)
−0.914170 + 0.405330i \(0.867157\pi\)
\(602\) 0 0
\(603\) −37.7657 37.7657i −1.53794 1.53794i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.80167 6.80167i −0.276071 0.276071i 0.555467 0.831538i \(-0.312539\pi\)
−0.831538 + 0.555467i \(0.812539\pi\)
\(608\) 0 0
\(609\) −31.6119 + 47.1054i −1.28098 + 1.90881i
\(610\) 0 0
\(611\) 7.86898 0.318345
\(612\) 0 0
\(613\) 13.0751 + 13.0751i 0.528098 + 0.528098i 0.920005 0.391907i \(-0.128185\pi\)
−0.391907 + 0.920005i \(0.628185\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.6256 21.6256i 0.870614 0.870614i −0.121925 0.992539i \(-0.538907\pi\)
0.992539 + 0.121925i \(0.0389068\pi\)
\(618\) 0 0
\(619\) −42.9528 −1.72642 −0.863210 0.504845i \(-0.831549\pi\)
−0.863210 + 0.504845i \(0.831549\pi\)
\(620\) 0 0
\(621\) 41.0716i 1.64815i
\(622\) 0 0
\(623\) −1.75537 8.91847i −0.0703276 0.357311i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −44.3028 + 44.3028i −1.76928 + 1.76928i
\(628\) 0 0
\(629\) −25.9312 −1.03395
\(630\) 0 0
\(631\) −22.7175 −0.904370 −0.452185 0.891924i \(-0.649355\pi\)
−0.452185 + 0.891924i \(0.649355\pi\)
\(632\) 0 0
\(633\) 39.4212 39.4212i 1.56685 1.56685i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −6.49492 + 15.5036i −0.257338 + 0.614276i
\(638\) 0 0
\(639\) 94.0674i 3.72125i
\(640\) 0 0
\(641\) −26.0435 −1.02866 −0.514328 0.857594i \(-0.671959\pi\)
−0.514328 + 0.857594i \(0.671959\pi\)
\(642\) 0 0
\(643\) 12.7907 12.7907i 0.504416 0.504416i −0.408391 0.912807i \(-0.633910\pi\)
0.912807 + 0.408391i \(0.133910\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.81311 + 1.81311i 0.0712805 + 0.0712805i 0.741848 0.670568i \(-0.233949\pi\)
−0.670568 + 0.741848i \(0.733949\pi\)
\(648\) 0 0
\(649\) −52.0840 −2.04447
\(650\) 0 0
\(651\) 0.759961 1.13243i 0.0297852 0.0443834i
\(652\) 0 0
\(653\) 21.4676 + 21.4676i 0.840092 + 0.840092i 0.988871 0.148778i \(-0.0475340\pi\)
−0.148778 + 0.988871i \(0.547534\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 40.4665 + 40.4665i 1.57875 + 1.57875i
\(658\) 0 0
\(659\) 27.6423i 1.07679i −0.842692 0.538396i \(-0.819031\pi\)
0.842692 0.538396i \(-0.180969\pi\)
\(660\) 0 0
\(661\) 7.38292i 0.287162i −0.989639 0.143581i \(-0.954138\pi\)
0.989639 0.143581i \(-0.0458618\pi\)
\(662\) 0 0
\(663\) −18.9710 + 18.9710i −0.736772 + 0.736772i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −25.7561 + 25.7561i −0.997281 + 0.997281i
\(668\) 0 0
\(669\) 58.2781i 2.25316i
\(670\) 0 0
\(671\) 52.7363i 2.03586i
\(672\) 0 0
\(673\) −12.4963 12.4963i −0.481697 0.481697i 0.423976 0.905673i \(-0.360634\pi\)
−0.905673 + 0.423976i \(0.860634\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27.0753 + 27.0753i 1.04059 + 1.04059i 0.999141 + 0.0414483i \(0.0131972\pi\)
0.0414483 + 0.999141i \(0.486803\pi\)
\(678\) 0 0
\(679\) 2.93759 4.37735i 0.112734 0.167987i
\(680\) 0 0
\(681\) −28.9565 −1.10962
\(682\) 0 0
\(683\) 17.7113 + 17.7113i 0.677704 + 0.677704i 0.959480 0.281776i \(-0.0909235\pi\)
−0.281776 + 0.959480i \(0.590924\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.44604 3.44604i 0.131474 0.131474i
\(688\) 0 0
\(689\) 15.3989 0.586652
\(690\) 0 0
\(691\) 2.75386i 0.104762i −0.998627 0.0523810i \(-0.983319\pi\)
0.998627 0.0523810i \(-0.0166810\pi\)
\(692\) 0 0
\(693\) −59.0422 + 11.6209i −2.24283 + 0.441443i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.95546 + 1.95546i −0.0740683 + 0.0740683i
\(698\) 0 0
\(699\) 19.8017 0.748968
\(700\) 0 0
\(701\) −1.66352 −0.0628301 −0.0314151 0.999506i \(-0.510001\pi\)
−0.0314151 + 0.999506i \(0.510001\pi\)
\(702\) 0 0
\(703\) 26.0405 26.0405i 0.982135 0.982135i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 31.6141 6.22244i 1.18897 0.234019i
\(708\) 0 0
\(709\) 28.7442i 1.07951i 0.841822 + 0.539756i \(0.181484\pi\)
−0.841822 + 0.539756i \(0.818516\pi\)
\(710\) 0 0
\(711\) −38.2020 −1.43269
\(712\) 0 0
\(713\) 0.619187 0.619187i 0.0231887 0.0231887i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.8481 + 10.8481i 0.405130 + 0.405130i
\(718\) 0 0
\(719\) 42.1059 1.57029 0.785143 0.619314i \(-0.212589\pi\)
0.785143 + 0.619314i \(0.212589\pi\)
\(720\) 0 0
\(721\) 29.5907 + 19.8580i 1.10202 + 0.739550i
\(722\) 0 0
\(723\) 18.1053 + 18.1053i 0.673345 + 0.673345i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −15.6639 15.6639i −0.580943 0.580943i 0.354219 0.935162i \(-0.384747\pi\)
−0.935162 + 0.354219i \(0.884747\pi\)
\(728\) 0 0
\(729\) 32.8035i 1.21494i
\(730\) 0 0
\(731\) 43.7860i 1.61948i
\(732\) 0 0
\(733\) −3.73703 + 3.73703i −0.138031 + 0.138031i −0.772746 0.634715i \(-0.781117\pi\)
0.634715 + 0.772746i \(0.281117\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −25.8895 + 25.8895i −0.953654 + 0.953654i
\(738\) 0 0
\(739\) 14.2445i 0.523993i −0.965069 0.261997i \(-0.915619\pi\)
0.965069 0.261997i \(-0.0843809\pi\)
\(740\) 0 0
\(741\) 38.1018i 1.39970i
\(742\) 0 0
\(743\) 4.30083 + 4.30083i 0.157782 + 0.157782i 0.781583 0.623801i \(-0.214412\pi\)
−0.623801 + 0.781583i \(0.714412\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 60.2734 + 60.2734i 2.20529 + 2.20529i
\(748\) 0 0
\(749\) 27.9294 + 18.7431i 1.02052 + 0.684857i
\(750\) 0 0
\(751\) −28.2906 −1.03234 −0.516170 0.856486i \(-0.672643\pi\)
−0.516170 + 0.856486i \(0.672643\pi\)
\(752\) 0 0
\(753\) −23.2250 23.2250i −0.846366 0.846366i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −15.1132 + 15.1132i −0.549299 + 0.549299i −0.926238 0.376939i \(-0.876977\pi\)
0.376939 + 0.926238i \(0.376977\pi\)
\(758\) 0 0
\(759\) −58.7605 −2.13287
\(760\) 0 0
\(761\) 23.7113i 0.859533i 0.902940 + 0.429766i \(0.141404\pi\)
−0.902940 + 0.429766i \(0.858596\pi\)
\(762\) 0 0
\(763\) 10.0273 1.97363i 0.363014 0.0714501i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.3969 22.3969i 0.808706 0.808706i
\(768\) 0 0
\(769\) 27.3228 0.985286 0.492643 0.870232i \(-0.336031\pi\)
0.492643 + 0.870232i \(0.336031\pi\)
\(770\) 0 0
\(771\) −6.79718 −0.244794
\(772\) 0 0
\(773\) −7.79374 + 7.79374i −0.280321 + 0.280321i −0.833237 0.552916i \(-0.813515\pi\)
0.552916 + 0.833237i \(0.313515\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 52.7792 10.3882i 1.89344 0.372676i
\(778\) 0 0
\(779\) 3.92739i 0.140713i
\(780\) 0 0
\(781\) −64.4861 −2.30750
\(782\) 0 0
\(783\) 41.8453 41.8453i 1.49543 1.49543i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 6.99375 + 6.99375i 0.249300 + 0.249300i 0.820683 0.571383i \(-0.193593\pi\)
−0.571383 + 0.820683i \(0.693593\pi\)
\(788\) 0 0
\(789\) 86.7112 3.08700
\(790\) 0 0
\(791\) 6.14086 9.15059i 0.218344 0.325357i
\(792\) 0 0
\(793\) −22.6775 22.6775i −0.805300 0.805300i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.1365 14.1365i −0.500740 0.500740i 0.410928 0.911668i \(-0.365205\pi\)
−0.911668 + 0.410928i \(0.865205\pi\)
\(798\) 0 0
\(799\) 12.3703i 0.437628i
\(800\) 0 0
\(801\) 19.7886i 0.699195i
\(802\) 0 0
\(803\) 27.7411 27.7411i 0.978962 0.978962i
\(804\) 0