Properties

Label 1400.2.x.b.993.7
Level $1400$
Weight $2$
Character 1400.993
Analytic conductor $11.179$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 993.7
Character \(\chi\) \(=\) 1400.993
Dual form 1400.2.x.b.657.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0703127 - 0.0703127i) q^{3} +(2.58523 - 0.562657i) q^{7} +2.99011i q^{9} +O(q^{10})\) \(q+(0.0703127 - 0.0703127i) q^{3} +(2.58523 - 0.562657i) q^{7} +2.99011i q^{9} +0.777018 q^{11} +(3.93876 - 3.93876i) q^{13} +(-0.982018 - 0.982018i) q^{17} -1.14872 q^{19} +(0.142213 - 0.221337i) q^{21} +(1.46167 + 1.46167i) q^{23} +(0.421181 + 0.421181i) q^{27} +4.69033i q^{29} -6.45186i q^{31} +(0.0546342 - 0.0546342i) q^{33} +(1.30390 - 1.30390i) q^{37} -0.553890i q^{39} +9.81800i q^{41} +(7.13800 + 7.13800i) q^{43} +(-7.34914 - 7.34914i) q^{47} +(6.36683 - 2.90920i) q^{49} -0.138097 q^{51} +(2.08092 + 2.08092i) q^{53} +(-0.0807696 + 0.0807696i) q^{57} +8.29508 q^{59} -5.88837i q^{61} +(1.68241 + 7.73013i) q^{63} +(6.30957 - 6.30957i) q^{67} +0.205548 q^{69} +12.3373 q^{71} +(-7.23861 + 7.23861i) q^{73} +(2.00877 - 0.437195i) q^{77} +2.83831i q^{79} -8.91111 q^{81} +(10.4188 - 10.4188i) q^{83} +(0.329790 + 0.329790i) q^{87} +3.41911 q^{89} +(7.96643 - 12.3988i) q^{91} +(-0.453647 - 0.453647i) q^{93} +(-8.50258 - 8.50258i) q^{97} +2.32337i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 4q^{7} + O(q^{10}) \) \( 24q - 4q^{7} + 8q^{11} + 16q^{21} + 32q^{23} + 8q^{37} - 16q^{43} - 24q^{51} + 16q^{53} - 20q^{63} + 32q^{67} - 32q^{71} + 40q^{77} - 72q^{81} - 64q^{91} - 72q^{93} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0703127 0.0703127i 0.0405951 0.0405951i −0.686518 0.727113i \(-0.740862\pi\)
0.727113 + 0.686518i \(0.240862\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.58523 0.562657i 0.977125 0.212664i
\(8\) 0 0
\(9\) 2.99011i 0.996704i
\(10\) 0 0
\(11\) 0.777018 0.234280 0.117140 0.993115i \(-0.462627\pi\)
0.117140 + 0.993115i \(0.462627\pi\)
\(12\) 0 0
\(13\) 3.93876 3.93876i 1.09241 1.09241i 0.0971446 0.995270i \(-0.469029\pi\)
0.995270 0.0971446i \(-0.0309709\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.982018 0.982018i −0.238174 0.238174i 0.577920 0.816094i \(-0.303865\pi\)
−0.816094 + 0.577920i \(0.803865\pi\)
\(18\) 0 0
\(19\) −1.14872 −0.263534 −0.131767 0.991281i \(-0.542065\pi\)
−0.131767 + 0.991281i \(0.542065\pi\)
\(20\) 0 0
\(21\) 0.142213 0.221337i 0.0310333 0.0482996i
\(22\) 0 0
\(23\) 1.46167 + 1.46167i 0.304780 + 0.304780i 0.842881 0.538101i \(-0.180858\pi\)
−0.538101 + 0.842881i \(0.680858\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.421181 + 0.421181i 0.0810563 + 0.0810563i
\(28\) 0 0
\(29\) 4.69033i 0.870973i 0.900195 + 0.435486i \(0.143424\pi\)
−0.900195 + 0.435486i \(0.856576\pi\)
\(30\) 0 0
\(31\) 6.45186i 1.15879i −0.815048 0.579394i \(-0.803289\pi\)
0.815048 0.579394i \(-0.196711\pi\)
\(32\) 0 0
\(33\) 0.0546342 0.0546342i 0.00951060 0.00951060i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.30390 1.30390i 0.214359 0.214359i −0.591757 0.806116i \(-0.701565\pi\)
0.806116 + 0.591757i \(0.201565\pi\)
\(38\) 0 0
\(39\) 0.553890i 0.0886933i
\(40\) 0 0
\(41\) 9.81800i 1.53331i 0.642057 + 0.766657i \(0.278081\pi\)
−0.642057 + 0.766657i \(0.721919\pi\)
\(42\) 0 0
\(43\) 7.13800 + 7.13800i 1.08853 + 1.08853i 0.995680 + 0.0928552i \(0.0295994\pi\)
0.0928552 + 0.995680i \(0.470401\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.34914 7.34914i −1.07198 1.07198i −0.997200 0.0747825i \(-0.976174\pi\)
−0.0747825 0.997200i \(-0.523826\pi\)
\(48\) 0 0
\(49\) 6.36683 2.90920i 0.909548 0.415600i
\(50\) 0 0
\(51\) −0.138097 −0.0193374
\(52\) 0 0
\(53\) 2.08092 + 2.08092i 0.285836 + 0.285836i 0.835431 0.549595i \(-0.185218\pi\)
−0.549595 + 0.835431i \(0.685218\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.0807696 + 0.0807696i −0.0106982 + 0.0106982i
\(58\) 0 0
\(59\) 8.29508 1.07993 0.539964 0.841688i \(-0.318438\pi\)
0.539964 + 0.841688i \(0.318438\pi\)
\(60\) 0 0
\(61\) 5.88837i 0.753929i −0.926228 0.376965i \(-0.876968\pi\)
0.926228 0.376965i \(-0.123032\pi\)
\(62\) 0 0
\(63\) 1.68241 + 7.73013i 0.211963 + 0.973905i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.30957 6.30957i 0.770837 0.770837i −0.207416 0.978253i \(-0.566505\pi\)
0.978253 + 0.207416i \(0.0665053\pi\)
\(68\) 0 0
\(69\) 0.205548 0.0247451
\(70\) 0 0
\(71\) 12.3373 1.46417 0.732084 0.681214i \(-0.238548\pi\)
0.732084 + 0.681214i \(0.238548\pi\)
\(72\) 0 0
\(73\) −7.23861 + 7.23861i −0.847216 + 0.847216i −0.989785 0.142569i \(-0.954464\pi\)
0.142569 + 0.989785i \(0.454464\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00877 0.437195i 0.228921 0.0498229i
\(78\) 0 0
\(79\) 2.83831i 0.319335i 0.987171 + 0.159668i \(0.0510423\pi\)
−0.987171 + 0.159668i \(0.948958\pi\)
\(80\) 0 0
\(81\) −8.91111 −0.990123
\(82\) 0 0
\(83\) 10.4188 10.4188i 1.14361 1.14361i 0.155823 0.987785i \(-0.450197\pi\)
0.987785 0.155823i \(-0.0498029\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.329790 + 0.329790i 0.0353572 + 0.0353572i
\(88\) 0 0
\(89\) 3.41911 0.362425 0.181213 0.983444i \(-0.441998\pi\)
0.181213 + 0.983444i \(0.441998\pi\)
\(90\) 0 0
\(91\) 7.96643 12.3988i 0.835108 1.29974i
\(92\) 0 0
\(93\) −0.453647 0.453647i −0.0470411 0.0470411i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.50258 8.50258i −0.863306 0.863306i 0.128414 0.991721i \(-0.459011\pi\)
−0.991721 + 0.128414i \(0.959011\pi\)
\(98\) 0 0
\(99\) 2.32337i 0.233507i
\(100\) 0 0
\(101\) 4.88126i 0.485703i −0.970063 0.242852i \(-0.921917\pi\)
0.970063 0.242852i \(-0.0780828\pi\)
\(102\) 0 0
\(103\) 10.0443 10.0443i 0.989697 0.989697i −0.0102503 0.999947i \(-0.503263\pi\)
0.999947 + 0.0102503i \(0.00326282\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.67065 + 5.67065i −0.548203 + 0.548203i −0.925921 0.377718i \(-0.876709\pi\)
0.377718 + 0.925921i \(0.376709\pi\)
\(108\) 0 0
\(109\) 11.9012i 1.13993i 0.821669 + 0.569965i \(0.193043\pi\)
−0.821669 + 0.569965i \(0.806957\pi\)
\(110\) 0 0
\(111\) 0.183361i 0.0174039i
\(112\) 0 0
\(113\) 1.36519 + 1.36519i 0.128427 + 0.128427i 0.768398 0.639972i \(-0.221054\pi\)
−0.639972 + 0.768398i \(0.721054\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 11.7773 + 11.7773i 1.08881 + 1.08881i
\(118\) 0 0
\(119\) −3.09128 1.98620i −0.283377 0.182075i
\(120\) 0 0
\(121\) −10.3962 −0.945113
\(122\) 0 0
\(123\) 0.690330 + 0.690330i 0.0622450 + 0.0622450i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.49331 9.49331i 0.842395 0.842395i −0.146775 0.989170i \(-0.546889\pi\)
0.989170 + 0.146775i \(0.0468894\pi\)
\(128\) 0 0
\(129\) 1.00378 0.0883783
\(130\) 0 0
\(131\) 19.4938i 1.70318i 0.524206 + 0.851592i \(0.324362\pi\)
−0.524206 + 0.851592i \(0.675638\pi\)
\(132\) 0 0
\(133\) −2.96971 + 0.646335i −0.257506 + 0.0560444i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.77702 + 5.77702i −0.493564 + 0.493564i −0.909427 0.415863i \(-0.863479\pi\)
0.415863 + 0.909427i \(0.363479\pi\)
\(138\) 0 0
\(139\) −15.2115 −1.29023 −0.645113 0.764087i \(-0.723190\pi\)
−0.645113 + 0.764087i \(0.723190\pi\)
\(140\) 0 0
\(141\) −1.03348 −0.0870344
\(142\) 0 0
\(143\) 3.06048 3.06048i 0.255931 0.255931i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.243116 0.652223i 0.0200519 0.0537944i
\(148\) 0 0
\(149\) 16.5328i 1.35442i 0.735789 + 0.677211i \(0.236812\pi\)
−0.735789 + 0.677211i \(0.763188\pi\)
\(150\) 0 0
\(151\) 12.4421 1.01252 0.506262 0.862380i \(-0.331027\pi\)
0.506262 + 0.862380i \(0.331027\pi\)
\(152\) 0 0
\(153\) 2.93634 2.93634i 0.237389 0.237389i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.24218 + 6.24218i 0.498180 + 0.498180i 0.910871 0.412691i \(-0.135411\pi\)
−0.412691 + 0.910871i \(0.635411\pi\)
\(158\) 0 0
\(159\) 0.292630 0.0232070
\(160\) 0 0
\(161\) 4.60118 + 2.95634i 0.362624 + 0.232992i
\(162\) 0 0
\(163\) −9.47383 9.47383i −0.742048 0.742048i 0.230924 0.972972i \(-0.425825\pi\)
−0.972972 + 0.230924i \(0.925825\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.725303 + 0.725303i 0.0561257 + 0.0561257i 0.734613 0.678487i \(-0.237364\pi\)
−0.678487 + 0.734613i \(0.737364\pi\)
\(168\) 0 0
\(169\) 18.0276i 1.38674i
\(170\) 0 0
\(171\) 3.43480i 0.262666i
\(172\) 0 0
\(173\) −3.12344 + 3.12344i −0.237471 + 0.237471i −0.815802 0.578331i \(-0.803704\pi\)
0.578331 + 0.815802i \(0.303704\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.583250 0.583250i 0.0438397 0.0438397i
\(178\) 0 0
\(179\) 9.18800i 0.686743i −0.939200 0.343372i \(-0.888431\pi\)
0.939200 0.343372i \(-0.111569\pi\)
\(180\) 0 0
\(181\) 9.51164i 0.706995i 0.935435 + 0.353497i \(0.115008\pi\)
−0.935435 + 0.353497i \(0.884992\pi\)
\(182\) 0 0
\(183\) −0.414028 0.414028i −0.0306058 0.0306058i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.763045 0.763045i −0.0557994 0.0557994i
\(188\) 0 0
\(189\) 1.32583 + 0.851870i 0.0964400 + 0.0619644i
\(190\) 0 0
\(191\) −21.2171 −1.53522 −0.767609 0.640918i \(-0.778554\pi\)
−0.767609 + 0.640918i \(0.778554\pi\)
\(192\) 0 0
\(193\) −5.15371 5.15371i −0.370972 0.370972i 0.496859 0.867831i \(-0.334487\pi\)
−0.867831 + 0.496859i \(0.834487\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.83269 + 3.83269i −0.273068 + 0.273068i −0.830334 0.557266i \(-0.811850\pi\)
0.557266 + 0.830334i \(0.311850\pi\)
\(198\) 0 0
\(199\) −13.4648 −0.954496 −0.477248 0.878769i \(-0.658366\pi\)
−0.477248 + 0.878769i \(0.658366\pi\)
\(200\) 0 0
\(201\) 0.887286i 0.0625844i
\(202\) 0 0
\(203\) 2.63905 + 12.1256i 0.185225 + 0.851049i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.37057 + 4.37057i −0.303775 + 0.303775i
\(208\) 0 0
\(209\) −0.892576 −0.0617408
\(210\) 0 0
\(211\) 8.11050 0.558350 0.279175 0.960240i \(-0.409939\pi\)
0.279175 + 0.960240i \(0.409939\pi\)
\(212\) 0 0
\(213\) 0.867469 0.867469i 0.0594380 0.0594380i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.63018 16.6795i −0.246433 1.13228i
\(218\) 0 0
\(219\) 1.01793i 0.0687855i
\(220\) 0 0
\(221\) −7.73586 −0.520370
\(222\) 0 0
\(223\) −18.5407 + 18.5407i −1.24157 + 1.24157i −0.282226 + 0.959348i \(0.591073\pi\)
−0.959348 + 0.282226i \(0.908927\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.84230 4.84230i −0.321395 0.321395i 0.527907 0.849302i \(-0.322977\pi\)
−0.849302 + 0.527907i \(0.822977\pi\)
\(228\) 0 0
\(229\) −4.14288 −0.273769 −0.136884 0.990587i \(-0.543709\pi\)
−0.136884 + 0.990587i \(0.543709\pi\)
\(230\) 0 0
\(231\) 0.110502 0.171982i 0.00727048 0.0113156i
\(232\) 0 0
\(233\) −17.7734 17.7734i −1.16437 1.16437i −0.983508 0.180864i \(-0.942110\pi\)
−0.180864 0.983508i \(-0.557890\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.199570 + 0.199570i 0.0129634 + 0.0129634i
\(238\) 0 0
\(239\) 24.8714i 1.60880i −0.594090 0.804399i \(-0.702488\pi\)
0.594090 0.804399i \(-0.297512\pi\)
\(240\) 0 0
\(241\) 5.11385i 0.329412i 0.986343 + 0.164706i \(0.0526676\pi\)
−0.986343 + 0.164706i \(0.947332\pi\)
\(242\) 0 0
\(243\) −1.89011 + 1.89011i −0.121250 + 0.121250i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.52453 + 4.52453i −0.287889 + 0.287889i
\(248\) 0 0
\(249\) 1.46514i 0.0928497i
\(250\) 0 0
\(251\) 21.4745i 1.35546i −0.735311 0.677729i \(-0.762964\pi\)
0.735311 0.677729i \(-0.237036\pi\)
\(252\) 0 0
\(253\) 1.13575 + 1.13575i 0.0714037 + 0.0714037i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.08456 + 2.08456i 0.130031 + 0.130031i 0.769127 0.639096i \(-0.220691\pi\)
−0.639096 + 0.769127i \(0.720691\pi\)
\(258\) 0 0
\(259\) 2.63723 4.10452i 0.163869 0.255043i
\(260\) 0 0
\(261\) −14.0246 −0.868102
\(262\) 0 0
\(263\) −6.37087 6.37087i −0.392845 0.392845i 0.482855 0.875700i \(-0.339600\pi\)
−0.875700 + 0.482855i \(0.839600\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.240407 0.240407i 0.0147127 0.0147127i
\(268\) 0 0
\(269\) 9.57242 0.583641 0.291820 0.956473i \(-0.405739\pi\)
0.291820 + 0.956473i \(0.405739\pi\)
\(270\) 0 0
\(271\) 12.1076i 0.735486i −0.929927 0.367743i \(-0.880131\pi\)
0.929927 0.367743i \(-0.119869\pi\)
\(272\) 0 0
\(273\) −0.311650 1.43193i −0.0188619 0.0866645i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −16.2663 + 16.2663i −0.977345 + 0.977345i −0.999749 0.0224036i \(-0.992868\pi\)
0.0224036 + 0.999749i \(0.492868\pi\)
\(278\) 0 0
\(279\) 19.2918 1.15497
\(280\) 0 0
\(281\) −0.910882 −0.0543387 −0.0271693 0.999631i \(-0.508649\pi\)
−0.0271693 + 0.999631i \(0.508649\pi\)
\(282\) 0 0
\(283\) −12.5625 + 12.5625i −0.746766 + 0.746766i −0.973870 0.227105i \(-0.927074\pi\)
0.227105 + 0.973870i \(0.427074\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.52417 + 25.3818i 0.326081 + 1.49824i
\(288\) 0 0
\(289\) 15.0713i 0.886546i
\(290\) 0 0
\(291\) −1.19568 −0.0700920
\(292\) 0 0
\(293\) −6.48178 + 6.48178i −0.378670 + 0.378670i −0.870622 0.491952i \(-0.836283\pi\)
0.491952 + 0.870622i \(0.336283\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0.327265 + 0.327265i 0.0189899 + 0.0189899i
\(298\) 0 0
\(299\) 11.5144 0.665892
\(300\) 0 0
\(301\) 22.4696 + 14.4371i 1.29513 + 0.832142i
\(302\) 0 0
\(303\) −0.343215 0.343215i −0.0197172 0.0197172i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.48970 + 8.48970i 0.484533 + 0.484533i 0.906576 0.422043i \(-0.138687\pi\)
−0.422043 + 0.906576i \(0.638687\pi\)
\(308\) 0 0
\(309\) 1.41249i 0.0803537i
\(310\) 0 0
\(311\) 25.9749i 1.47290i 0.676490 + 0.736452i \(0.263500\pi\)
−0.676490 + 0.736452i \(0.736500\pi\)
\(312\) 0 0
\(313\) −12.3142 + 12.3142i −0.696037 + 0.696037i −0.963553 0.267516i \(-0.913797\pi\)
0.267516 + 0.963553i \(0.413797\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.4909 + 14.4909i −0.813888 + 0.813888i −0.985214 0.171327i \(-0.945195\pi\)
0.171327 + 0.985214i \(0.445195\pi\)
\(318\) 0 0
\(319\) 3.64447i 0.204051i
\(320\) 0 0
\(321\) 0.797438i 0.0445086i
\(322\) 0 0
\(323\) 1.12806 + 1.12806i 0.0627671 + 0.0627671i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.836807 + 0.836807i 0.0462755 + 0.0462755i
\(328\) 0 0
\(329\) −23.1343 14.8642i −1.27543 0.819489i
\(330\) 0 0
\(331\) −27.4165 −1.50695 −0.753474 0.657477i \(-0.771624\pi\)
−0.753474 + 0.657477i \(0.771624\pi\)
\(332\) 0 0
\(333\) 3.89880 + 3.89880i 0.213653 + 0.213653i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11.1698 11.1698i 0.608460 0.608460i −0.334084 0.942543i \(-0.608427\pi\)
0.942543 + 0.334084i \(0.108427\pi\)
\(338\) 0 0
\(339\) 0.191981 0.0104270
\(340\) 0 0
\(341\) 5.01321i 0.271480i
\(342\) 0 0
\(343\) 14.8229 11.1033i 0.800359 0.599521i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.4376 11.4376i 0.614004 0.614004i −0.329983 0.943987i \(-0.607043\pi\)
0.943987 + 0.329983i \(0.107043\pi\)
\(348\) 0 0
\(349\) 17.1401 0.917487 0.458744 0.888569i \(-0.348300\pi\)
0.458744 + 0.888569i \(0.348300\pi\)
\(350\) 0 0
\(351\) 3.31786 0.177094
\(352\) 0 0
\(353\) 11.1570 11.1570i 0.593826 0.593826i −0.344837 0.938663i \(-0.612066\pi\)
0.938663 + 0.344837i \(0.112066\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.357012 + 0.0777011i −0.0188951 + 0.00411238i
\(358\) 0 0
\(359\) 20.9982i 1.10824i 0.832437 + 0.554120i \(0.186945\pi\)
−0.832437 + 0.554120i \(0.813055\pi\)
\(360\) 0 0
\(361\) −17.6804 −0.930550
\(362\) 0 0
\(363\) −0.730988 + 0.730988i −0.0383669 + 0.0383669i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.32101 2.32101i −0.121156 0.121156i 0.643929 0.765085i \(-0.277303\pi\)
−0.765085 + 0.643929i \(0.777303\pi\)
\(368\) 0 0
\(369\) −29.3569 −1.52826
\(370\) 0 0
\(371\) 6.55049 + 4.20880i 0.340084 + 0.218510i
\(372\) 0 0
\(373\) −25.8674 25.8674i −1.33937 1.33937i −0.896674 0.442691i \(-0.854024\pi\)
−0.442691 0.896674i \(-0.645976\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.4741 + 18.4741i 0.951463 + 0.951463i
\(378\) 0 0
\(379\) 13.1682i 0.676406i −0.941073 0.338203i \(-0.890181\pi\)
0.941073 0.338203i \(-0.109819\pi\)
\(380\) 0 0
\(381\) 1.33500i 0.0683942i
\(382\) 0 0
\(383\) −13.7289 + 13.7289i −0.701514 + 0.701514i −0.964736 0.263221i \(-0.915215\pi\)
0.263221 + 0.964736i \(0.415215\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −21.3434 + 21.3434i −1.08495 + 1.08495i
\(388\) 0 0
\(389\) 13.4553i 0.682209i 0.940025 + 0.341104i \(0.110801\pi\)
−0.940025 + 0.341104i \(0.889199\pi\)
\(390\) 0 0
\(391\) 2.87078i 0.145181i
\(392\) 0 0
\(393\) 1.37066 + 1.37066i 0.0691408 + 0.0691408i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9.78221 9.78221i −0.490955 0.490955i 0.417652 0.908607i \(-0.362853\pi\)
−0.908607 + 0.417652i \(0.862853\pi\)
\(398\) 0 0
\(399\) −0.163362 + 0.254254i −0.00817835 + 0.0127286i
\(400\) 0 0
\(401\) −10.6960 −0.534134 −0.267067 0.963678i \(-0.586055\pi\)
−0.267067 + 0.963678i \(0.586055\pi\)
\(402\) 0 0
\(403\) −25.4123 25.4123i −1.26588 1.26588i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.01315 1.01315i 0.0502201 0.0502201i
\(408\) 0 0
\(409\) −30.2026 −1.49342 −0.746712 0.665148i \(-0.768369\pi\)
−0.746712 + 0.665148i \(0.768369\pi\)
\(410\) 0 0
\(411\) 0.812396i 0.0400725i
\(412\) 0 0
\(413\) 21.4447 4.66729i 1.05522 0.229662i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.06957 + 1.06957i −0.0523768 + 0.0523768i
\(418\) 0 0
\(419\) −29.8749 −1.45948 −0.729742 0.683722i \(-0.760360\pi\)
−0.729742 + 0.683722i \(0.760360\pi\)
\(420\) 0 0
\(421\) 35.1836 1.71474 0.857372 0.514697i \(-0.172096\pi\)
0.857372 + 0.514697i \(0.172096\pi\)
\(422\) 0 0
\(423\) 21.9748 21.9748i 1.06845 1.06845i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3.31314 15.2228i −0.160334 0.736683i
\(428\) 0 0
\(429\) 0.430382i 0.0207790i
\(430\) 0 0
\(431\) −20.9552 −1.00937 −0.504687 0.863302i \(-0.668392\pi\)
−0.504687 + 0.863302i \(0.668392\pi\)
\(432\) 0 0
\(433\) −12.5824 + 12.5824i −0.604670 + 0.604670i −0.941548 0.336878i \(-0.890629\pi\)
0.336878 + 0.941548i \(0.390629\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.67905 1.67905i −0.0803200 0.0803200i
\(438\) 0 0
\(439\) −7.23208 −0.345168 −0.172584 0.984995i \(-0.555212\pi\)
−0.172584 + 0.984995i \(0.555212\pi\)
\(440\) 0 0
\(441\) 8.69882 + 19.0375i 0.414230 + 0.906550i
\(442\) 0 0
\(443\) −3.46509 3.46509i −0.164632 0.164632i 0.619983 0.784615i \(-0.287139\pi\)
−0.784615 + 0.619983i \(0.787139\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.16247 + 1.16247i 0.0549829 + 0.0549829i
\(448\) 0 0
\(449\) 6.08724i 0.287274i 0.989630 + 0.143637i \(0.0458798\pi\)
−0.989630 + 0.143637i \(0.954120\pi\)
\(450\) 0 0
\(451\) 7.62876i 0.359224i
\(452\) 0 0
\(453\) 0.874838 0.874838i 0.0411035 0.0411035i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.2746 19.2746i 0.901630 0.901630i −0.0939472 0.995577i \(-0.529948\pi\)
0.995577 + 0.0939472i \(0.0299485\pi\)
\(458\) 0 0
\(459\) 0.827214i 0.0386111i
\(460\) 0 0
\(461\) 30.3964i 1.41570i −0.706363 0.707850i \(-0.749665\pi\)
0.706363 0.707850i \(-0.250335\pi\)
\(462\) 0 0
\(463\) −12.0768 12.0768i −0.561259 0.561259i 0.368406 0.929665i \(-0.379904\pi\)
−0.929665 + 0.368406i \(0.879904\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.89096 4.89096i −0.226327 0.226327i 0.584830 0.811156i \(-0.301161\pi\)
−0.811156 + 0.584830i \(0.801161\pi\)
\(468\) 0 0
\(469\) 12.7616 19.8618i 0.589275 0.917134i
\(470\) 0 0
\(471\) 0.877809 0.0404473
\(472\) 0 0
\(473\) 5.54635 + 5.54635i 0.255022 + 0.255022i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.22217 + 6.22217i −0.284894 + 0.284894i
\(478\) 0 0
\(479\) −22.8349 −1.04335 −0.521676 0.853144i \(-0.674693\pi\)
−0.521676 + 0.853144i \(0.674693\pi\)
\(480\) 0 0
\(481\) 10.2715i 0.468339i
\(482\) 0 0
\(483\) 0.531390 0.115653i 0.0241791 0.00526241i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 11.1182 11.1182i 0.503812 0.503812i −0.408808 0.912620i \(-0.634056\pi\)
0.912620 + 0.408808i \(0.134056\pi\)
\(488\) 0 0
\(489\) −1.33226 −0.0602470
\(490\) 0 0
\(491\) 4.45336 0.200977 0.100489 0.994938i \(-0.467959\pi\)
0.100489 + 0.994938i \(0.467959\pi\)
\(492\) 0 0
\(493\) 4.60599 4.60599i 0.207443 0.207443i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 31.8948 6.94167i 1.43068 0.311376i
\(498\) 0 0
\(499\) 27.6446i 1.23754i 0.785572 + 0.618770i \(0.212369\pi\)
−0.785572 + 0.618770i \(0.787631\pi\)
\(500\) 0 0
\(501\) 0.101996 0.00455685
\(502\) 0 0
\(503\) −16.9763 + 16.9763i −0.756936 + 0.756936i −0.975764 0.218828i \(-0.929777\pi\)
0.218828 + 0.975764i \(0.429777\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.26757 1.26757i −0.0562948 0.0562948i
\(508\) 0 0
\(509\) 32.3762 1.43505 0.717525 0.696533i \(-0.245275\pi\)
0.717525 + 0.696533i \(0.245275\pi\)
\(510\) 0 0
\(511\) −14.6406 + 22.7863i −0.647663 + 1.00801i
\(512\) 0 0
\(513\) −0.483819 0.483819i −0.0213611 0.0213611i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −5.71041 5.71041i −0.251144 0.251144i
\(518\) 0 0
\(519\) 0.439236i 0.0192803i
\(520\) 0 0
\(521\) 4.38603i 0.192156i −0.995374 0.0960778i \(-0.969370\pi\)
0.995374 0.0960778i \(-0.0306297\pi\)
\(522\) 0 0
\(523\) 4.73788 4.73788i 0.207173 0.207173i −0.595892 0.803065i \(-0.703201\pi\)
0.803065 + 0.595892i \(0.203201\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.33583 + 6.33583i −0.275993 + 0.275993i
\(528\) 0 0
\(529\) 18.7270i 0.814218i
\(530\) 0 0
\(531\) 24.8032i 1.07637i
\(532\) 0 0
\(533\) 38.6707 + 38.6707i 1.67502 + 1.67502i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.646033 0.646033i −0.0278784 0.0278784i
\(538\) 0 0
\(539\) 4.94714 2.26050i 0.213089 0.0973665i
\(540\) 0 0
\(541\) 7.48796 0.321933 0.160966 0.986960i \(-0.448539\pi\)
0.160966 + 0.986960i \(0.448539\pi\)
\(542\) 0 0
\(543\) 0.668790 + 0.668790i 0.0287005 + 0.0287005i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.12562 + 1.12562i −0.0481278 + 0.0481278i −0.730761 0.682633i \(-0.760835\pi\)
0.682633 + 0.730761i \(0.260835\pi\)
\(548\) 0 0
\(549\) 17.6069 0.751444
\(550\) 0 0
\(551\) 5.38788i 0.229531i
\(552\) 0 0
\(553\) 1.59700 + 7.33770i 0.0679113 + 0.312031i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20.9130 + 20.9130i −0.886113 + 0.886113i −0.994147 0.108034i \(-0.965544\pi\)
0.108034 + 0.994147i \(0.465544\pi\)
\(558\) 0 0
\(559\) 56.2297 2.37826
\(560\) 0 0
\(561\) −0.107304 −0.00453036
\(562\) 0 0
\(563\) −5.94306 + 5.94306i −0.250470 + 0.250470i −0.821163 0.570693i \(-0.806675\pi\)
0.570693 + 0.821163i \(0.306675\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −23.0373 + 5.01390i −0.967474 + 0.210564i
\(568\) 0 0
\(569\) 6.64150i 0.278426i 0.990262 + 0.139213i \(0.0444573\pi\)
−0.990262 + 0.139213i \(0.955543\pi\)
\(570\) 0 0
\(571\) 33.4643 1.40044 0.700218 0.713929i \(-0.253086\pi\)
0.700218 + 0.713929i \(0.253086\pi\)
\(572\) 0 0
\(573\) −1.49183 + 1.49183i −0.0623223 + 0.0623223i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.86048 7.86048i −0.327236 0.327236i 0.524299 0.851535i \(-0.324328\pi\)
−0.851535 + 0.524299i \(0.824328\pi\)
\(578\) 0 0
\(579\) −0.724743 −0.0301193
\(580\) 0 0
\(581\) 21.0727 32.7971i 0.874244 1.36065i
\(582\) 0 0
\(583\) 1.61691 + 1.61691i 0.0669655 + 0.0669655i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.65881 + 7.65881i 0.316113 + 0.316113i 0.847272 0.531159i \(-0.178243\pi\)
−0.531159 + 0.847272i \(0.678243\pi\)
\(588\) 0 0
\(589\) 7.41137i 0.305380i
\(590\) 0 0
\(591\) 0.538974i 0.0221704i
\(592\) 0 0
\(593\) 8.24682 8.24682i 0.338656 0.338656i −0.517205 0.855861i \(-0.673028\pi\)
0.855861 + 0.517205i \(0.173028\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.946748 + 0.946748i −0.0387478 + 0.0387478i
\(598\) 0 0
\(599\) 1.72554i 0.0705038i −0.999378 0.0352519i \(-0.988777\pi\)
0.999378 0.0352519i \(-0.0112233\pi\)
\(600\) 0 0
\(601\) 39.3868i 1.60662i −0.595561 0.803310i \(-0.703070\pi\)
0.595561 0.803310i \(-0.296930\pi\)
\(602\) 0 0
\(603\) 18.8663 + 18.8663i 0.768296 + 0.768296i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13.0555 + 13.0555i 0.529905 + 0.529905i 0.920544 0.390639i \(-0.127746\pi\)
−0.390639 + 0.920544i \(0.627746\pi\)
\(608\) 0 0
\(609\) 1.03814 + 0.667024i 0.0420676 + 0.0270292i
\(610\) 0 0
\(611\) −57.8930 −2.34210
\(612\) 0 0
\(613\) 19.5565 + 19.5565i 0.789878 + 0.789878i 0.981474 0.191596i \(-0.0613664\pi\)
−0.191596 + 0.981474i \(0.561366\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.82431 4.82431i 0.194219 0.194219i −0.603297 0.797517i \(-0.706147\pi\)
0.797517 + 0.603297i \(0.206147\pi\)
\(618\) 0 0
\(619\) 35.5806 1.43011 0.715053 0.699070i \(-0.246402\pi\)
0.715053 + 0.699070i \(0.246402\pi\)
\(620\) 0 0
\(621\) 1.23126i 0.0494087i
\(622\) 0 0
\(623\) 8.83919 1.92379i 0.354135 0.0770749i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.0627594 + 0.0627594i −0.00250637 + 0.00250637i
\(628\) 0 0
\(629\) −2.56090 −0.102110
\(630\) 0 0
\(631\) 28.6285 1.13968 0.569841 0.821755i \(-0.307005\pi\)
0.569841 + 0.821755i \(0.307005\pi\)
\(632\) 0 0
\(633\) 0.570271 0.570271i 0.0226663 0.0226663i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 13.6188 36.5360i 0.539596 1.44761i
\(638\) 0 0
\(639\) 36.8899i 1.45934i
\(640\) 0 0
\(641\) −20.9369 −0.826956 −0.413478 0.910514i \(-0.635686\pi\)
−0.413478 + 0.910514i \(0.635686\pi\)
\(642\) 0 0
\(643\) 13.5706 13.5706i 0.535174 0.535174i −0.386934 0.922108i \(-0.626466\pi\)
0.922108 + 0.386934i \(0.126466\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.1526 + 12.1526i 0.477768 + 0.477768i 0.904417 0.426649i \(-0.140306\pi\)
−0.426649 + 0.904417i \(0.640306\pi\)
\(648\) 0 0
\(649\) 6.44543 0.253005
\(650\) 0 0
\(651\) −1.42803 0.917535i −0.0559690 0.0359610i
\(652\) 0 0
\(653\) 16.3014 + 16.3014i 0.637921 + 0.637921i 0.950042 0.312121i \(-0.101039\pi\)
−0.312121 + 0.950042i \(0.601039\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −21.6443 21.6443i −0.844423 0.844423i
\(658\) 0 0
\(659\) 24.5415i 0.956001i 0.878360 + 0.478000i \(0.158638\pi\)
−0.878360 + 0.478000i \(0.841362\pi\)
\(660\) 0 0
\(661\) 22.1516i 0.861596i 0.902448 + 0.430798i \(0.141768\pi\)
−0.902448 + 0.430798i \(0.858232\pi\)
\(662\) 0 0
\(663\) −0.543929 + 0.543929i −0.0211245 + 0.0211245i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.85573 + 6.85573i −0.265455 + 0.265455i
\(668\) 0 0
\(669\) 2.60729i 0.100804i
\(670\) 0 0
\(671\) 4.57537i 0.176630i
\(672\) 0 0
\(673\) 9.43387 + 9.43387i 0.363649 + 0.363649i 0.865154 0.501505i \(-0.167220\pi\)
−0.501505 + 0.865154i \(0.667220\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.4956 10.4956i −0.403378 0.403378i 0.476044 0.879422i \(-0.342070\pi\)
−0.879422 + 0.476044i \(0.842070\pi\)
\(678\) 0 0
\(679\) −26.7652 17.1971i −1.02715 0.659964i
\(680\) 0 0
\(681\) −0.680951 −0.0260941
\(682\) 0 0
\(683\) −7.11456 7.11456i −0.272231 0.272231i 0.557767 0.829998i \(-0.311658\pi\)
−0.829998 + 0.557767i \(0.811658\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −0.291297 + 0.291297i −0.0111137 + 0.0111137i
\(688\) 0 0
\(689\) 16.3924 0.624502
\(690\) 0 0
\(691\) 6.29829i 0.239598i −0.992798 0.119799i \(-0.961775\pi\)
0.992798 0.119799i \(-0.0382251\pi\)
\(692\) 0 0
\(693\) 1.30726 + 6.00645i 0.0496587 + 0.228166i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9.64145 9.64145i 0.365196 0.365196i
\(698\) 0 0
\(699\) −2.49939 −0.0945356
\(700\) 0 0
\(701\) 30.1579 1.13905 0.569523 0.821975i \(-0.307128\pi\)
0.569523 + 0.821975i \(0.307128\pi\)
\(702\) 0 0
\(703\) −1.49781 + 1.49781i −0.0564911 + 0.0564911i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.74648 12.6192i −0.103292 0.474593i
\(708\) 0 0
\(709\) 1.75232i 0.0658099i 0.999458 + 0.0329049i \(0.0104759\pi\)
−0.999458 + 0.0329049i \(0.989524\pi\)
\(710\) 0 0
\(711\) −8.48688 −0.318283
\(712\) 0 0
\(713\) 9.43050 9.43050i 0.353175 0.353175i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.74878 1.74878i −0.0653093 0.0653093i
\(718\) 0 0
\(719\) 22.1398 0.825675 0.412837 0.910805i \(-0.364538\pi\)
0.412837 + 0.910805i \(0.364538\pi\)
\(720\) 0 0
\(721\) 20.3154 31.6184i 0.756585 1.17753i
\(722\) 0 0
\(723\) 0.359569 + 0.359569i 0.0133725 + 0.0133725i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −36.3804 36.3804i −1.34927 1.34927i −0.886450 0.462825i \(-0.846836\pi\)
−0.462825 0.886450i \(-0.653164\pi\)
\(728\) 0 0
\(729\) 26.4675i 0.980279i
\(730\) 0 0
\(731\) 14.0193i 0.518522i
\(732\) 0 0
\(733\) 26.3741 26.3741i 0.974149 0.974149i −0.0255249 0.999674i \(-0.508126\pi\)
0.999674 + 0.0255249i \(0.00812572\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.90265 4.90265i 0.180591 0.180591i
\(738\) 0 0
\(739\) 6.48932i 0.238714i 0.992851 + 0.119357i \(0.0380832\pi\)
−0.992851 + 0.119357i \(0.961917\pi\)
\(740\) 0 0
\(741\) 0.636264i 0.0233737i
\(742\) 0 0
\(743\) −7.68617 7.68617i −0.281978 0.281978i 0.551919 0.833897i \(-0.313896\pi\)
−0.833897 + 0.551919i \(0.813896\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 31.1533 + 31.1533i 1.13984 + 1.13984i
\(748\) 0 0
\(749\) −11.4693 + 17.8506i −0.419079 + 0.652246i
\(750\) 0 0
\(751\) −2.05149 −0.0748599 −0.0374300 0.999299i \(-0.511917\pi\)
−0.0374300 + 0.999299i \(0.511917\pi\)
\(752\) 0 0
\(753\) −1.50993 1.50993i −0.0550249 0.0550249i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 4.22246 4.22246i 0.153468 0.153468i −0.626197 0.779665i \(-0.715389\pi\)
0.779665 + 0.626197i \(0.215389\pi\)
\(758\) 0 0
\(759\) 0.159715 0.00579728
\(760\) 0 0
\(761\) 46.0616i 1.66973i 0.550453 + 0.834866i \(0.314455\pi\)
−0.550453 + 0.834866i \(0.685545\pi\)
\(762\) 0 0
\(763\) 6.69631 + 30.7674i 0.242423 + 1.11385i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.6723 32.6723i 1.17973 1.17973i
\(768\) 0 0
\(769\) −44.8809 −1.61845 −0.809223 0.587501i \(-0.800112\pi\)
−0.809223 + 0.587501i \(0.800112\pi\)
\(770\) 0 0
\(771\) 0.293143 0.0105573
\(772\) 0 0
\(773\) 4.22724 4.22724i 0.152043 0.152043i −0.626987 0.779030i \(-0.715712\pi\)
0.779030 + 0.626987i \(0.215712\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.103169 0.474031i −0.00370118 0.0170058i
\(778\) 0 0
\(779\) 11.2781i 0.404081i
\(780\) 0 0
\(781\) 9.58630 0.343025
\(782\) 0 0
\(783\) −1.97548 + 1.97548i −0.0705978 + 0.0705978i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −2.71942 2.71942i −0.0969367 0.0969367i 0.656975 0.753912i \(-0.271836\pi\)
−0.753912 + 0.656975i \(0.771836\pi\)
\(788\) 0 0
\(789\) −0.895906 −0.0318951
\(790\) 0 0
\(791\) 4.29748 + 2.76121i 0.152801 + 0.0981772i
\(792\) 0 0
\(793\) −23.1929 23.1929i −0.823603 0.823603i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.8991 + 28.8991i 1.02366 + 1.02366i 0.999713 + 0.0239445i \(0.00762250\pi\)
0.0239445 + 0.999713i \(0.492377\pi\)
\(798\) 0 0
\(799\) 14.4340i 0.510637i
\(800\) 0 0
\(801\) 10.2235i 0.361231i
\(802\) 0 0
\(803\) −5.62453 + 5.62453i −0.198485 + 0.198485i
\(804\) 0