Properties

Label 1400.2.x.b.993.3
Level $1400$
Weight $2$
Character 1400.993
Analytic conductor $11.179$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 993.3
Character \(\chi\) \(=\) 1400.993
Dual form 1400.2.x.b.657.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.41195 + 1.41195i) q^{3} +(-2.64529 + 0.0496428i) q^{7} -0.987218i q^{9} +O(q^{10})\) \(q+(-1.41195 + 1.41195i) q^{3} +(-2.64529 + 0.0496428i) q^{7} -0.987218i q^{9} -5.75599 q^{11} +(2.89353 - 2.89353i) q^{13} +(-2.13286 - 2.13286i) q^{17} +2.18921 q^{19} +(3.66492 - 3.80511i) q^{21} +(4.79842 + 4.79842i) q^{23} +(-2.84195 - 2.84195i) q^{27} +5.19456i q^{29} -6.68465i q^{31} +(8.12718 - 8.12718i) q^{33} +(6.50613 - 6.50613i) q^{37} +8.17106i q^{39} -0.846034i q^{41} +(-2.68215 - 2.68215i) q^{43} +(4.55094 + 4.55094i) q^{47} +(6.99507 - 0.262639i) q^{49} +6.02299 q^{51} +(0.750143 + 0.750143i) q^{53} +(-3.09107 + 3.09107i) q^{57} +4.25478 q^{59} +7.62115i q^{61} +(0.0490083 + 2.61147i) q^{63} +(2.14628 - 2.14628i) q^{67} -13.5503 q^{69} -2.44951 q^{71} +(-3.51423 + 3.51423i) q^{73} +(15.2262 - 0.285743i) q^{77} +1.15879i q^{79} +10.9871 q^{81} +(11.1544 - 11.1544i) q^{83} +(-7.33447 - 7.33447i) q^{87} +5.57119 q^{89} +(-7.51057 + 7.79786i) q^{91} +(9.43841 + 9.43841i) q^{93} +(-5.66525 - 5.66525i) q^{97} +5.68242i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 4q^{7} + O(q^{10}) \) \( 24q - 4q^{7} + 8q^{11} + 16q^{21} + 32q^{23} + 8q^{37} - 16q^{43} - 24q^{51} + 16q^{53} - 20q^{63} + 32q^{67} - 32q^{71} + 40q^{77} - 72q^{81} - 64q^{91} - 72q^{93} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41195 + 1.41195i −0.815191 + 0.815191i −0.985407 0.170216i \(-0.945554\pi\)
0.170216 + 0.985407i \(0.445554\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.64529 + 0.0496428i −0.999824 + 0.0187632i
\(8\) 0 0
\(9\) 0.987218i 0.329073i
\(10\) 0 0
\(11\) −5.75599 −1.73550 −0.867748 0.497004i \(-0.834433\pi\)
−0.867748 + 0.497004i \(0.834433\pi\)
\(12\) 0 0
\(13\) 2.89353 2.89353i 0.802521 0.802521i −0.180968 0.983489i \(-0.557923\pi\)
0.983489 + 0.180968i \(0.0579230\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.13286 2.13286i −0.517294 0.517294i 0.399458 0.916752i \(-0.369198\pi\)
−0.916752 + 0.399458i \(0.869198\pi\)
\(18\) 0 0
\(19\) 2.18921 0.502240 0.251120 0.967956i \(-0.419201\pi\)
0.251120 + 0.967956i \(0.419201\pi\)
\(20\) 0 0
\(21\) 3.66492 3.80511i 0.799752 0.830343i
\(22\) 0 0
\(23\) 4.79842 + 4.79842i 1.00054 + 1.00054i 1.00000 0.000540386i \(0.000172010\pi\)
0.000540386 1.00000i \(0.499828\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −2.84195 2.84195i −0.546934 0.546934i
\(28\) 0 0
\(29\) 5.19456i 0.964606i 0.876005 + 0.482303i \(0.160199\pi\)
−0.876005 + 0.482303i \(0.839801\pi\)
\(30\) 0 0
\(31\) 6.68465i 1.20060i −0.799775 0.600299i \(-0.795048\pi\)
0.799775 0.600299i \(-0.204952\pi\)
\(32\) 0 0
\(33\) 8.12718 8.12718i 1.41476 1.41476i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.50613 6.50613i 1.06960 1.06960i 0.0722123 0.997389i \(-0.476994\pi\)
0.997389 0.0722123i \(-0.0230059\pi\)
\(38\) 0 0
\(39\) 8.17106i 1.30842i
\(40\) 0 0
\(41\) 0.846034i 0.132128i −0.997815 0.0660642i \(-0.978956\pi\)
0.997815 0.0660642i \(-0.0210442\pi\)
\(42\) 0 0
\(43\) −2.68215 2.68215i −0.409024 0.409024i 0.472374 0.881398i \(-0.343397\pi\)
−0.881398 + 0.472374i \(0.843397\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.55094 + 4.55094i 0.663823 + 0.663823i 0.956279 0.292456i \(-0.0944726\pi\)
−0.292456 + 0.956279i \(0.594473\pi\)
\(48\) 0 0
\(49\) 6.99507 0.262639i 0.999296 0.0375198i
\(50\) 0 0
\(51\) 6.02299 0.843387
\(52\) 0 0
\(53\) 0.750143 + 0.750143i 0.103040 + 0.103040i 0.756747 0.653707i \(-0.226787\pi\)
−0.653707 + 0.756747i \(0.726787\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3.09107 + 3.09107i −0.409422 + 0.409422i
\(58\) 0 0
\(59\) 4.25478 0.553926 0.276963 0.960881i \(-0.410672\pi\)
0.276963 + 0.960881i \(0.410672\pi\)
\(60\) 0 0
\(61\) 7.62115i 0.975788i 0.872903 + 0.487894i \(0.162235\pi\)
−0.872903 + 0.487894i \(0.837765\pi\)
\(62\) 0 0
\(63\) 0.0490083 + 2.61147i 0.00617446 + 0.329015i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.14628 2.14628i 0.262210 0.262210i −0.563741 0.825951i \(-0.690639\pi\)
0.825951 + 0.563741i \(0.190639\pi\)
\(68\) 0 0
\(69\) −13.5503 −1.63126
\(70\) 0 0
\(71\) −2.44951 −0.290704 −0.145352 0.989380i \(-0.546431\pi\)
−0.145352 + 0.989380i \(0.546431\pi\)
\(72\) 0 0
\(73\) −3.51423 + 3.51423i −0.411310 + 0.411310i −0.882195 0.470885i \(-0.843935\pi\)
0.470885 + 0.882195i \(0.343935\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.2262 0.285743i 1.73519 0.0325635i
\(78\) 0 0
\(79\) 1.15879i 0.130374i 0.997873 + 0.0651871i \(0.0207644\pi\)
−0.997873 + 0.0651871i \(0.979236\pi\)
\(80\) 0 0
\(81\) 10.9871 1.22078
\(82\) 0 0
\(83\) 11.1544 11.1544i 1.22436 1.22436i 0.258290 0.966067i \(-0.416841\pi\)
0.966067 0.258290i \(-0.0831590\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −7.33447 7.33447i −0.786338 0.786338i
\(88\) 0 0
\(89\) 5.57119 0.590545 0.295273 0.955413i \(-0.404590\pi\)
0.295273 + 0.955413i \(0.404590\pi\)
\(90\) 0 0
\(91\) −7.51057 + 7.79786i −0.787322 + 0.817438i
\(92\) 0 0
\(93\) 9.43841 + 9.43841i 0.978717 + 0.978717i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.66525 5.66525i −0.575219 0.575219i 0.358363 0.933582i \(-0.383335\pi\)
−0.933582 + 0.358363i \(0.883335\pi\)
\(98\) 0 0
\(99\) 5.68242i 0.571104i
\(100\) 0 0
\(101\) 17.3456i 1.72595i −0.505247 0.862975i \(-0.668599\pi\)
0.505247 0.862975i \(-0.331401\pi\)
\(102\) 0 0
\(103\) −0.942158 + 0.942158i −0.0928336 + 0.0928336i −0.751998 0.659165i \(-0.770910\pi\)
0.659165 + 0.751998i \(0.270910\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.87928 + 1.87928i −0.181677 + 0.181677i −0.792086 0.610409i \(-0.791005\pi\)
0.610409 + 0.792086i \(0.291005\pi\)
\(108\) 0 0
\(109\) 11.9743i 1.14693i −0.819231 0.573464i \(-0.805599\pi\)
0.819231 0.573464i \(-0.194401\pi\)
\(110\) 0 0
\(111\) 18.3727i 1.74386i
\(112\) 0 0
\(113\) 11.4209 + 11.4209i 1.07439 + 1.07439i 0.997001 + 0.0773881i \(0.0246580\pi\)
0.0773881 + 0.997001i \(0.475342\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.85655 2.85655i −0.264088 0.264088i
\(118\) 0 0
\(119\) 5.74790 + 5.53614i 0.526909 + 0.507497i
\(120\) 0 0
\(121\) 22.1314 2.01195
\(122\) 0 0
\(123\) 1.19456 + 1.19456i 0.107710 + 0.107710i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.75155 5.75155i 0.510367 0.510367i −0.404272 0.914639i \(-0.632475\pi\)
0.914639 + 0.404272i \(0.132475\pi\)
\(128\) 0 0
\(129\) 7.57413 0.666865
\(130\) 0 0
\(131\) 2.88815i 0.252339i 0.992009 + 0.126169i \(0.0402683\pi\)
−0.992009 + 0.126169i \(0.959732\pi\)
\(132\) 0 0
\(133\) −5.79110 + 0.108679i −0.502152 + 0.00942364i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.755989 0.755989i 0.0645885 0.0645885i −0.674075 0.738663i \(-0.735457\pi\)
0.738663 + 0.674075i \(0.235457\pi\)
\(138\) 0 0
\(139\) 13.0811 1.10952 0.554761 0.832010i \(-0.312810\pi\)
0.554761 + 0.832010i \(0.312810\pi\)
\(140\) 0 0
\(141\) −12.8514 −1.08228
\(142\) 0 0
\(143\) −16.6551 + 16.6551i −1.39277 + 1.39277i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −9.50587 + 10.2475i −0.784031 + 0.845203i
\(148\) 0 0
\(149\) 11.1067i 0.909898i −0.890517 0.454949i \(-0.849657\pi\)
0.890517 0.454949i \(-0.150343\pi\)
\(150\) 0 0
\(151\) 13.9630 1.13629 0.568146 0.822928i \(-0.307661\pi\)
0.568146 + 0.822928i \(0.307661\pi\)
\(152\) 0 0
\(153\) −2.10560 + 2.10560i −0.170227 + 0.170227i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.3990 13.3990i −1.06936 1.06936i −0.997408 0.0719505i \(-0.977078\pi\)
−0.0719505 0.997408i \(-0.522922\pi\)
\(158\) 0 0
\(159\) −2.11833 −0.167995
\(160\) 0 0
\(161\) −12.9314 12.4550i −1.01914 0.981591i
\(162\) 0 0
\(163\) −7.57526 7.57526i −0.593340 0.593340i 0.345192 0.938532i \(-0.387814\pi\)
−0.938532 + 0.345192i \(0.887814\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.6666 + 10.6666i 0.825405 + 0.825405i 0.986877 0.161472i \(-0.0516242\pi\)
−0.161472 + 0.986877i \(0.551624\pi\)
\(168\) 0 0
\(169\) 3.74505i 0.288081i
\(170\) 0 0
\(171\) 2.16123i 0.165274i
\(172\) 0 0
\(173\) 3.56140 3.56140i 0.270768 0.270768i −0.558641 0.829409i \(-0.688677\pi\)
0.829409 + 0.558641i \(0.188677\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.00755 + 6.00755i −0.451555 + 0.451555i
\(178\) 0 0
\(179\) 14.9523i 1.11758i −0.829308 0.558792i \(-0.811265\pi\)
0.829308 0.558792i \(-0.188735\pi\)
\(180\) 0 0
\(181\) 4.34072i 0.322643i −0.986902 0.161322i \(-0.948424\pi\)
0.986902 0.161322i \(-0.0515757\pi\)
\(182\) 0 0
\(183\) −10.7607 10.7607i −0.795454 0.795454i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.2767 + 12.2767i 0.897762 + 0.897762i
\(188\) 0 0
\(189\) 7.65886 + 7.37669i 0.557100 + 0.536575i
\(190\) 0 0
\(191\) −1.64962 −0.119362 −0.0596812 0.998217i \(-0.519008\pi\)
−0.0596812 + 0.998217i \(0.519008\pi\)
\(192\) 0 0
\(193\) 14.3957 + 14.3957i 1.03623 + 1.03623i 0.999319 + 0.0369067i \(0.0117504\pi\)
0.0369067 + 0.999319i \(0.488250\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.51856 + 3.51856i −0.250687 + 0.250687i −0.821252 0.570565i \(-0.806724\pi\)
0.570565 + 0.821252i \(0.306724\pi\)
\(198\) 0 0
\(199\) −13.3332 −0.945166 −0.472583 0.881286i \(-0.656678\pi\)
−0.472583 + 0.881286i \(0.656678\pi\)
\(200\) 0 0
\(201\) 6.06089i 0.427502i
\(202\) 0 0
\(203\) −0.257872 13.7411i −0.0180991 0.964436i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.73709 4.73709i 0.329251 0.329251i
\(208\) 0 0
\(209\) −12.6011 −0.871636
\(210\) 0 0
\(211\) −13.0953 −0.901515 −0.450757 0.892646i \(-0.648846\pi\)
−0.450757 + 0.892646i \(0.648846\pi\)
\(212\) 0 0
\(213\) 3.45859 3.45859i 0.236979 0.236979i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.331845 + 17.6828i 0.0225271 + 1.20039i
\(218\) 0 0
\(219\) 9.92385i 0.670592i
\(220\) 0 0
\(221\) −12.3430 −0.830279
\(222\) 0 0
\(223\) 3.29822 3.29822i 0.220865 0.220865i −0.587997 0.808863i \(-0.700083\pi\)
0.808863 + 0.587997i \(0.200083\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.320738 + 0.320738i 0.0212882 + 0.0212882i 0.717671 0.696383i \(-0.245208\pi\)
−0.696383 + 0.717671i \(0.745208\pi\)
\(228\) 0 0
\(229\) −20.6219 −1.36273 −0.681365 0.731943i \(-0.738614\pi\)
−0.681365 + 0.731943i \(0.738614\pi\)
\(230\) 0 0
\(231\) −21.0953 + 21.9022i −1.38797 + 1.44106i
\(232\) 0 0
\(233\) −12.0752 12.0752i −0.791076 0.791076i 0.190593 0.981669i \(-0.438959\pi\)
−0.981669 + 0.190593i \(0.938959\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.63616 1.63616i −0.106280 0.106280i
\(238\) 0 0
\(239\) 6.59501i 0.426595i 0.976987 + 0.213298i \(0.0684204\pi\)
−0.976987 + 0.213298i \(0.931580\pi\)
\(240\) 0 0
\(241\) 8.34354i 0.537455i −0.963216 0.268727i \(-0.913397\pi\)
0.963216 0.268727i \(-0.0866031\pi\)
\(242\) 0 0
\(243\) −6.98734 + 6.98734i −0.448238 + 0.448238i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.33456 6.33456i 0.403058 0.403058i
\(248\) 0 0
\(249\) 31.4990i 1.99617i
\(250\) 0 0
\(251\) 17.0870i 1.07852i −0.842139 0.539260i \(-0.818704\pi\)
0.842139 0.539260i \(-0.181296\pi\)
\(252\) 0 0
\(253\) −27.6197 27.6197i −1.73643 1.73643i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.97415 8.97415i −0.559792 0.559792i 0.369456 0.929248i \(-0.379544\pi\)
−0.929248 + 0.369456i \(0.879544\pi\)
\(258\) 0 0
\(259\) −16.8876 + 17.5336i −1.04934 + 1.08948i
\(260\) 0 0
\(261\) 5.12816 0.317425
\(262\) 0 0
\(263\) −7.06106 7.06106i −0.435404 0.435404i 0.455058 0.890462i \(-0.349618\pi\)
−0.890462 + 0.455058i \(0.849618\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −7.86626 + 7.86626i −0.481407 + 0.481407i
\(268\) 0 0
\(269\) −21.2159 −1.29356 −0.646779 0.762677i \(-0.723884\pi\)
−0.646779 + 0.762677i \(0.723884\pi\)
\(270\) 0 0
\(271\) 24.7526i 1.50361i −0.659383 0.751807i \(-0.729182\pi\)
0.659383 0.751807i \(-0.270818\pi\)
\(272\) 0 0
\(273\) −0.405634 21.6148i −0.0245501 1.30819i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −6.78756 + 6.78756i −0.407825 + 0.407825i −0.880980 0.473154i \(-0.843115\pi\)
0.473154 + 0.880980i \(0.343115\pi\)
\(278\) 0 0
\(279\) −6.59921 −0.395084
\(280\) 0 0
\(281\) −3.02185 −0.180269 −0.0901343 0.995930i \(-0.528730\pi\)
−0.0901343 + 0.995930i \(0.528730\pi\)
\(282\) 0 0
\(283\) 1.64288 1.64288i 0.0976592 0.0976592i −0.656589 0.754248i \(-0.728001\pi\)
0.754248 + 0.656589i \(0.228001\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.0419995 + 2.23800i 0.00247915 + 0.132105i
\(288\) 0 0
\(289\) 7.90183i 0.464814i
\(290\) 0 0
\(291\) 15.9981 0.937827
\(292\) 0 0
\(293\) −18.8850 + 18.8850i −1.10327 + 1.10327i −0.109260 + 0.994013i \(0.534848\pi\)
−0.994013 + 0.109260i \(0.965152\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 16.3582 + 16.3582i 0.949202 + 0.949202i
\(298\) 0 0
\(299\) 27.7688 1.60591
\(300\) 0 0
\(301\) 7.22819 + 6.96189i 0.416626 + 0.401277i
\(302\) 0 0
\(303\) 24.4911 + 24.4911i 1.40698 + 1.40698i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −13.4992 13.4992i −0.770442 0.770442i 0.207742 0.978184i \(-0.433389\pi\)
−0.978184 + 0.207742i \(0.933389\pi\)
\(308\) 0 0
\(309\) 2.66056i 0.151354i
\(310\) 0 0
\(311\) 24.8641i 1.40992i 0.709250 + 0.704958i \(0.249034\pi\)
−0.709250 + 0.704958i \(0.750966\pi\)
\(312\) 0 0
\(313\) −0.561667 + 0.561667i −0.0317473 + 0.0317473i −0.722802 0.691055i \(-0.757146\pi\)
0.691055 + 0.722802i \(0.257146\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.5043 15.5043i 0.870808 0.870808i −0.121753 0.992560i \(-0.538851\pi\)
0.992560 + 0.121753i \(0.0388515\pi\)
\(318\) 0 0
\(319\) 29.8998i 1.67407i
\(320\) 0 0
\(321\) 5.30692i 0.296203i
\(322\) 0 0
\(323\) −4.66928 4.66928i −0.259806 0.259806i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 16.9071 + 16.9071i 0.934965 + 0.934965i
\(328\) 0 0
\(329\) −12.2645 11.8126i −0.676161 0.651250i
\(330\) 0 0
\(331\) −6.54142 −0.359549 −0.179774 0.983708i \(-0.557537\pi\)
−0.179774 + 0.983708i \(0.557537\pi\)
\(332\) 0 0
\(333\) −6.42297 6.42297i −0.351977 0.351977i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.409971 0.409971i 0.0223325 0.0223325i −0.695852 0.718185i \(-0.744973\pi\)
0.718185 + 0.695852i \(0.244973\pi\)
\(338\) 0 0
\(339\) −32.2516 −1.75166
\(340\) 0 0
\(341\) 38.4768i 2.08363i
\(342\) 0 0
\(343\) −18.4909 + 1.04201i −0.998416 + 0.0562632i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.47700 1.47700i 0.0792894 0.0792894i −0.666350 0.745639i \(-0.732144\pi\)
0.745639 + 0.666350i \(0.232144\pi\)
\(348\) 0 0
\(349\) 4.11409 0.220222 0.110111 0.993919i \(-0.464879\pi\)
0.110111 + 0.993919i \(0.464879\pi\)
\(350\) 0 0
\(351\) −16.4466 −0.877852
\(352\) 0 0
\(353\) 3.54149 3.54149i 0.188495 0.188495i −0.606550 0.795045i \(-0.707447\pi\)
0.795045 + 0.606550i \(0.207447\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −15.9325 + 0.298998i −0.843238 + 0.0158246i
\(358\) 0 0
\(359\) 2.10171i 0.110924i 0.998461 + 0.0554620i \(0.0176632\pi\)
−0.998461 + 0.0554620i \(0.982337\pi\)
\(360\) 0 0
\(361\) −14.2073 −0.747755
\(362\) 0 0
\(363\) −31.2485 + 31.2485i −1.64012 + 1.64012i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −9.14816 9.14816i −0.477530 0.477530i 0.426811 0.904341i \(-0.359637\pi\)
−0.904341 + 0.426811i \(0.859637\pi\)
\(368\) 0 0
\(369\) −0.835220 −0.0434798
\(370\) 0 0
\(371\) −2.02158 1.94710i −0.104955 0.101089i
\(372\) 0 0
\(373\) 19.6238 + 19.6238i 1.01608 + 1.01608i 0.999869 + 0.0162153i \(0.00516172\pi\)
0.0162153 + 0.999869i \(0.494838\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.0306 + 15.0306i 0.774116 + 0.774116i
\(378\) 0 0
\(379\) 10.9778i 0.563893i −0.959430 0.281946i \(-0.909020\pi\)
0.959430 0.281946i \(-0.0909800\pi\)
\(380\) 0 0
\(381\) 16.2418i 0.832094i
\(382\) 0 0
\(383\) 7.07844 7.07844i 0.361691 0.361691i −0.502744 0.864435i \(-0.667676\pi\)
0.864435 + 0.502744i \(0.167676\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.64786 + 2.64786i −0.134598 + 0.134598i
\(388\) 0 0
\(389\) 23.4863i 1.19080i −0.803429 0.595400i \(-0.796994\pi\)
0.803429 0.595400i \(-0.203006\pi\)
\(390\) 0 0
\(391\) 20.4687i 1.03515i
\(392\) 0 0
\(393\) −4.07793 4.07793i −0.205704 0.205704i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.35063 + 4.35063i 0.218352 + 0.218352i 0.807804 0.589452i \(-0.200656\pi\)
−0.589452 + 0.807804i \(0.700656\pi\)
\(398\) 0 0
\(399\) 8.02330 8.33020i 0.401668 0.417032i
\(400\) 0 0
\(401\) 26.3132 1.31402 0.657009 0.753883i \(-0.271821\pi\)
0.657009 + 0.753883i \(0.271821\pi\)
\(402\) 0 0
\(403\) −19.3422 19.3422i −0.963506 0.963506i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −37.4492 + 37.4492i −1.85629 + 1.85629i
\(408\) 0 0
\(409\) 37.3895 1.84879 0.924397 0.381432i \(-0.124569\pi\)
0.924397 + 0.381432i \(0.124569\pi\)
\(410\) 0 0
\(411\) 2.13484i 0.105304i
\(412\) 0 0
\(413\) −11.2551 + 0.211219i −0.553828 + 0.0103934i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −18.4698 + 18.4698i −0.904472 + 0.904472i
\(418\) 0 0
\(419\) 36.6112 1.78858 0.894288 0.447492i \(-0.147683\pi\)
0.894288 + 0.447492i \(0.147683\pi\)
\(420\) 0 0
\(421\) −7.86103 −0.383123 −0.191562 0.981481i \(-0.561355\pi\)
−0.191562 + 0.981481i \(0.561355\pi\)
\(422\) 0 0
\(423\) 4.49277 4.49277i 0.218446 0.218446i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.378335 20.1601i −0.0183089 0.975617i
\(428\) 0 0
\(429\) 47.0325i 2.27075i
\(430\) 0 0
\(431\) 13.1182 0.631880 0.315940 0.948779i \(-0.397680\pi\)
0.315940 + 0.948779i \(0.397680\pi\)
\(432\) 0 0
\(433\) −18.9505 + 18.9505i −0.910705 + 0.910705i −0.996328 0.0856227i \(-0.972712\pi\)
0.0856227 + 0.996328i \(0.472712\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.5048 + 10.5048i 0.502511 + 0.502511i
\(438\) 0 0
\(439\) −11.7996 −0.563162 −0.281581 0.959537i \(-0.590859\pi\)
−0.281581 + 0.959537i \(0.590859\pi\)
\(440\) 0 0
\(441\) −0.259282 6.90566i −0.0123467 0.328841i
\(442\) 0 0
\(443\) 21.4990 + 21.4990i 1.02145 + 1.02145i 0.999765 + 0.0216811i \(0.00690184\pi\)
0.0216811 + 0.999765i \(0.493098\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 15.6822 + 15.6822i 0.741741 + 0.741741i
\(448\) 0 0
\(449\) 41.3757i 1.95264i 0.216336 + 0.976319i \(0.430589\pi\)
−0.216336 + 0.976319i \(0.569411\pi\)
\(450\) 0 0
\(451\) 4.86976i 0.229308i
\(452\) 0 0
\(453\) −19.7151 + 19.7151i −0.926294 + 0.926294i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 24.8225 24.8225i 1.16115 1.16115i 0.176921 0.984225i \(-0.443386\pi\)
0.984225 0.176921i \(-0.0566136\pi\)
\(458\) 0 0
\(459\) 12.1230i 0.565851i
\(460\) 0 0
\(461\) 17.6084i 0.820103i 0.912062 + 0.410051i \(0.134489\pi\)
−0.912062 + 0.410051i \(0.865511\pi\)
\(462\) 0 0
\(463\) 6.93785 + 6.93785i 0.322429 + 0.322429i 0.849698 0.527269i \(-0.176784\pi\)
−0.527269 + 0.849698i \(0.676784\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.7206 19.7206i −0.912559 0.912559i 0.0839138 0.996473i \(-0.473258\pi\)
−0.996473 + 0.0839138i \(0.973258\pi\)
\(468\) 0 0
\(469\) −5.57098 + 5.78407i −0.257244 + 0.267084i
\(470\) 0 0
\(471\) 37.8376 1.74346
\(472\) 0 0
\(473\) 15.4384 + 15.4384i 0.709859 + 0.709859i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.740555 0.740555i 0.0339077 0.0339077i
\(478\) 0 0
\(479\) 13.7850 0.629854 0.314927 0.949116i \(-0.398020\pi\)
0.314927 + 0.949116i \(0.398020\pi\)
\(480\) 0 0
\(481\) 37.6514i 1.71676i
\(482\) 0 0
\(483\) 35.8444 0.672674i 1.63098 0.0306077i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 29.4914 29.4914i 1.33638 1.33638i 0.436847 0.899536i \(-0.356095\pi\)
0.899536 0.436847i \(-0.143905\pi\)
\(488\) 0 0
\(489\) 21.3918 0.967371
\(490\) 0 0
\(491\) 3.24344 0.146374 0.0731872 0.997318i \(-0.476683\pi\)
0.0731872 + 0.997318i \(0.476683\pi\)
\(492\) 0 0
\(493\) 11.0793 11.0793i 0.498985 0.498985i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.47966 0.121601i 0.290652 0.00545453i
\(498\) 0 0
\(499\) 21.9000i 0.980378i −0.871616 0.490189i \(-0.836928\pi\)
0.871616 0.490189i \(-0.163072\pi\)
\(500\) 0 0
\(501\) −30.1214 −1.34573
\(502\) 0 0
\(503\) 20.8581 20.8581i 0.930015 0.930015i −0.0676912 0.997706i \(-0.521563\pi\)
0.997706 + 0.0676912i \(0.0215633\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5.28783 + 5.28783i 0.234841 + 0.234841i
\(508\) 0 0
\(509\) 32.7888 1.45334 0.726669 0.686988i \(-0.241067\pi\)
0.726669 + 0.686988i \(0.241067\pi\)
\(510\) 0 0
\(511\) 9.12169 9.47060i 0.403520 0.418955i
\(512\) 0 0
\(513\) −6.22164 6.22164i −0.274692 0.274692i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −26.1952 26.1952i −1.15206 1.15206i
\(518\) 0 0
\(519\) 10.0570i 0.441455i
\(520\) 0 0
\(521\) 40.2275i 1.76240i 0.472746 + 0.881199i \(0.343263\pi\)
−0.472746 + 0.881199i \(0.656737\pi\)
\(522\) 0 0
\(523\) −16.0560 + 16.0560i −0.702082 + 0.702082i −0.964857 0.262775i \(-0.915362\pi\)
0.262775 + 0.964857i \(0.415362\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −14.2574 + 14.2574i −0.621063 + 0.621063i
\(528\) 0 0
\(529\) 23.0497i 1.00216i
\(530\) 0 0
\(531\) 4.20040i 0.182282i
\(532\) 0 0
\(533\) −2.44803 2.44803i −0.106036 0.106036i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 21.1119 + 21.1119i 0.911044 + 0.911044i
\(538\) 0 0
\(539\) −40.2636 + 1.51175i −1.73427 + 0.0651155i
\(540\) 0 0
\(541\) 43.0574 1.85118 0.925590 0.378527i \(-0.123569\pi\)
0.925590 + 0.378527i \(0.123569\pi\)
\(542\) 0 0
\(543\) 6.12889 + 6.12889i 0.263016 + 0.263016i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 30.9251 30.9251i 1.32226 1.32226i 0.410322 0.911941i \(-0.365416\pi\)
0.911941 0.410322i \(-0.134584\pi\)
\(548\) 0 0
\(549\) 7.52374 0.321105
\(550\) 0 0
\(551\) 11.3720i 0.484464i
\(552\) 0 0
\(553\) −0.0575256 3.06533i −0.00244624 0.130351i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.1524 + 18.1524i −0.769142 + 0.769142i −0.977955 0.208814i \(-0.933040\pi\)
0.208814 + 0.977955i \(0.433040\pi\)
\(558\) 0 0
\(559\) −15.5218 −0.656500
\(560\) 0 0
\(561\) −34.6682 −1.46369
\(562\) 0 0
\(563\) 28.1810 28.1810i 1.18769 1.18769i 0.209984 0.977705i \(-0.432659\pi\)
0.977705 0.209984i \(-0.0673411\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −29.0639 + 0.545428i −1.22057 + 0.0229058i
\(568\) 0 0
\(569\) 6.85477i 0.287367i 0.989624 + 0.143683i \(0.0458947\pi\)
−0.989624 + 0.143683i \(0.954105\pi\)
\(570\) 0 0
\(571\) 10.9061 0.456407 0.228203 0.973613i \(-0.426715\pi\)
0.228203 + 0.973613i \(0.426715\pi\)
\(572\) 0 0
\(573\) 2.32919 2.32919i 0.0973032 0.0973032i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 20.8631 + 20.8631i 0.868543 + 0.868543i 0.992311 0.123768i \(-0.0394980\pi\)
−0.123768 + 0.992311i \(0.539498\pi\)
\(578\) 0 0
\(579\) −40.6521 −1.68944
\(580\) 0 0
\(581\) −28.9529 + 30.0604i −1.20117 + 1.24711i
\(582\) 0 0
\(583\) −4.31782 4.31782i −0.178826 0.178826i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.18377 + 5.18377i 0.213957 + 0.213957i 0.805946 0.591989i \(-0.201657\pi\)
−0.591989 + 0.805946i \(0.701657\pi\)
\(588\) 0 0
\(589\) 14.6341i 0.602989i
\(590\) 0 0
\(591\) 9.93608i 0.408716i
\(592\) 0 0
\(593\) 0.930542 0.930542i 0.0382128 0.0382128i −0.687742 0.725955i \(-0.741398\pi\)
0.725955 + 0.687742i \(0.241398\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 18.8259 18.8259i 0.770491 0.770491i
\(598\) 0 0
\(599\) 19.0106i 0.776753i 0.921501 + 0.388376i \(0.126964\pi\)
−0.921501 + 0.388376i \(0.873036\pi\)
\(600\) 0 0
\(601\) 2.50399i 0.102140i −0.998695 0.0510699i \(-0.983737\pi\)
0.998695 0.0510699i \(-0.0162631\pi\)
\(602\) 0 0
\(603\) −2.11885 2.11885i −0.0862861 0.0862861i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −32.0088 32.0088i −1.29920 1.29920i −0.928921 0.370278i \(-0.879263\pi\)
−0.370278 0.928921i \(-0.620737\pi\)
\(608\) 0 0
\(609\) 19.7659 + 19.0377i 0.800954 + 0.771445i
\(610\) 0 0
\(611\) 26.3366 1.06546
\(612\) 0 0
\(613\) −7.06328 7.06328i −0.285283 0.285283i 0.549929 0.835212i \(-0.314655\pi\)
−0.835212 + 0.549929i \(0.814655\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.5163 + 10.5163i −0.423372 + 0.423372i −0.886363 0.462991i \(-0.846776\pi\)
0.462991 + 0.886363i \(0.346776\pi\)
\(618\) 0 0
\(619\) −36.7114 −1.47556 −0.737778 0.675043i \(-0.764125\pi\)
−0.737778 + 0.675043i \(0.764125\pi\)
\(620\) 0 0
\(621\) 27.2738i 1.09446i
\(622\) 0 0
\(623\) −14.7374 + 0.276569i −0.590441 + 0.0110805i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 17.7921 17.7921i 0.710550 0.710550i
\(628\) 0 0
\(629\) −27.7533 −1.10660
\(630\) 0 0
\(631\) −12.9845 −0.516905 −0.258453 0.966024i \(-0.583213\pi\)
−0.258453 + 0.966024i \(0.583213\pi\)
\(632\) 0 0
\(633\) 18.4899 18.4899i 0.734907 0.734907i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 19.4805 21.0004i 0.771846 0.832067i
\(638\) 0 0
\(639\) 2.41820i 0.0956627i
\(640\) 0 0
\(641\) 2.81307 0.111110 0.0555548 0.998456i \(-0.482307\pi\)
0.0555548 + 0.998456i \(0.482307\pi\)
\(642\) 0 0
\(643\) −1.00819 + 1.00819i −0.0397592 + 0.0397592i −0.726707 0.686948i \(-0.758950\pi\)
0.686948 + 0.726707i \(0.258950\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.810020 0.810020i −0.0318452 0.0318452i 0.691005 0.722850i \(-0.257168\pi\)
−0.722850 + 0.691005i \(0.757168\pi\)
\(648\) 0 0
\(649\) −24.4905 −0.961336
\(650\) 0 0
\(651\) −25.4358 24.4987i −0.996909 0.960181i
\(652\) 0 0
\(653\) −8.40887 8.40887i −0.329064 0.329064i 0.523166 0.852231i \(-0.324751\pi\)
−0.852231 + 0.523166i \(0.824751\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.46931 + 3.46931i 0.135351 + 0.135351i
\(658\) 0 0
\(659\) 37.6355i 1.46607i 0.680191 + 0.733035i \(0.261897\pi\)
−0.680191 + 0.733035i \(0.738103\pi\)
\(660\) 0 0
\(661\) 19.5181i 0.759167i −0.925158 0.379583i \(-0.876067\pi\)
0.925158 0.379583i \(-0.123933\pi\)
\(662\) 0 0
\(663\) 17.4277 17.4277i 0.676836 0.676836i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −24.9257 + 24.9257i −0.965127 + 0.965127i
\(668\) 0 0
\(669\) 9.31387i 0.360095i
\(670\) 0 0
\(671\) 43.8673i 1.69348i
\(672\) 0 0
\(673\) −8.41284 8.41284i −0.324291 0.324291i 0.526119 0.850411i \(-0.323646\pi\)
−0.850411 + 0.526119i \(0.823646\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −32.7720 32.7720i −1.25953 1.25953i −0.951318 0.308212i \(-0.900269\pi\)
−0.308212 0.951318i \(-0.599731\pi\)
\(678\) 0 0
\(679\) 15.2674 + 14.7050i 0.585911 + 0.564325i
\(680\) 0 0
\(681\) −0.905735 −0.0347078
\(682\) 0 0
\(683\) 14.8873 + 14.8873i 0.569645 + 0.569645i 0.932029 0.362384i \(-0.118037\pi\)
−0.362384 + 0.932029i \(0.618037\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 29.1171 29.1171i 1.11089 1.11089i
\(688\) 0 0
\(689\) 4.34113 0.165384
\(690\) 0 0
\(691\) 7.73539i 0.294268i −0.989117 0.147134i \(-0.952995\pi\)
0.989117 0.147134i \(-0.0470049\pi\)
\(692\) 0 0
\(693\) −0.282091 15.0316i −0.0107158 0.571004i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.80447 + 1.80447i −0.0683492 + 0.0683492i
\(698\) 0 0
\(699\) 34.0993 1.28976
\(700\) 0 0
\(701\) −9.03502 −0.341248 −0.170624 0.985336i \(-0.554578\pi\)
−0.170624 + 0.985336i \(0.554578\pi\)
\(702\) 0 0
\(703\) 14.2433 14.2433i 0.537197 0.537197i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.861083 + 45.8840i 0.0323843 + 1.72565i
\(708\) 0 0
\(709\) 45.0946i 1.69356i 0.531940 + 0.846782i \(0.321463\pi\)
−0.531940 + 0.846782i \(0.678537\pi\)
\(710\) 0 0
\(711\) 1.14398 0.0429026
\(712\) 0 0
\(713\) 32.0758 32.0758i 1.20125 1.20125i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.31183 9.31183i −0.347757 0.347757i
\(718\) 0 0
\(719\) 6.81054 0.253990 0.126995 0.991903i \(-0.459467\pi\)
0.126995 + 0.991903i \(0.459467\pi\)
\(720\) 0 0
\(721\) 2.44551 2.53905i 0.0910754 0.0945591i
\(722\) 0 0
\(723\) 11.7807 + 11.7807i 0.438128 + 0.438128i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.49077 + 2.49077i 0.0923777 + 0.0923777i 0.751785 0.659408i \(-0.229193\pi\)
−0.659408 + 0.751785i \(0.729193\pi\)
\(728\) 0 0
\(729\) 13.2296i 0.489984i
\(730\) 0 0
\(731\) 11.4413i 0.423171i
\(732\) 0 0
\(733\) −10.6856 + 10.6856i −0.394683 + 0.394683i −0.876353 0.481670i \(-0.840030\pi\)
0.481670 + 0.876353i \(0.340030\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.3540 + 12.3540i −0.455064 + 0.455064i
\(738\) 0 0
\(739\) 32.6044i 1.19937i −0.800235 0.599687i \(-0.795292\pi\)
0.800235 0.599687i \(-0.204708\pi\)
\(740\) 0 0
\(741\) 17.8882i 0.657139i
\(742\) 0 0
\(743\) −6.50673 6.50673i −0.238709 0.238709i 0.577607 0.816315i \(-0.303987\pi\)
−0.816315 + 0.577607i \(0.803987\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −11.0119 11.0119i −0.402903 0.402903i
\(748\) 0 0
\(749\) 4.87795 5.06453i 0.178236 0.185054i
\(750\) 0 0
\(751\) 14.7404 0.537886 0.268943 0.963156i \(-0.413326\pi\)
0.268943 + 0.963156i \(0.413326\pi\)
\(752\) 0 0
\(753\) 24.1260 + 24.1260i 0.879200 + 0.879200i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −11.4224 + 11.4224i −0.415154 + 0.415154i −0.883530 0.468375i \(-0.844839\pi\)
0.468375 + 0.883530i \(0.344839\pi\)
\(758\) 0 0
\(759\) 77.9953 2.83105
\(760\) 0 0
\(761\) 28.2230i 1.02308i −0.859258 0.511542i \(-0.829074\pi\)
0.859258 0.511542i \(-0.170926\pi\)
\(762\) 0 0
\(763\) 0.594436 + 31.6754i 0.0215200 + 1.14673i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.3114 12.3114i 0.444537 0.444537i
\(768\) 0 0
\(769\) 36.1420 1.30331 0.651657 0.758514i \(-0.274074\pi\)
0.651657 + 0.758514i \(0.274074\pi\)
\(770\) 0 0
\(771\) 25.3421 0.912675
\(772\) 0 0
\(773\) −5.37362 + 5.37362i −0.193276 + 0.193276i −0.797110 0.603834i \(-0.793639\pi\)
0.603834 + 0.797110i \(0.293639\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.912072 48.6010i −0.0327204 1.74355i
\(778\) 0 0
\(779\) 1.85215i 0.0663602i
\(780\) 0 0
\(781\) 14.0994 0.504515
\(782\) 0 0
\(783\) 14.7627 14.7627i 0.527575 0.527575i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 22.1977 + 22.1977i 0.791262 + 0.791262i 0.981699 0.190437i \(-0.0609905\pi\)
−0.190437 + 0.981699i \(0.560990\pi\)
\(788\) 0 0
\(789\) 19.9398 0.709874
\(790\) 0 0
\(791\) −30.7785 29.6446i −1.09436 1.05404i
\(792\) 0 0
\(793\) 22.0520 + 22.0520i 0.783091 + 0.783091i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.63224 + 6.63224i 0.234926 + 0.234926i 0.814745 0.579819i \(-0.196877\pi\)
−0.579819 + 0.814745i \(0.696877\pi\)
\(798\) 0 0
\(799\) 19.4130i 0.686783i
\(800\) 0 0
\(801\) 5.49998i 0.194332i
\(802\) 0 0
\(803\) 20.2279 20.2279i 0.713826 0.713826i
\(804\) 0