Properties

Label 1400.2.q.h.401.2
Level $1400$
Weight $2$
Character 1400.401
Analytic conductor $11.179$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 401.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1400.401
Dual form 1400.2.q.h.1201.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.207107 + 0.358719i) q^{3} +(-1.62132 + 2.09077i) q^{7} +(1.41421 - 2.44949i) q^{9} +O(q^{10})\) \(q+(0.207107 + 0.358719i) q^{3} +(-1.62132 + 2.09077i) q^{7} +(1.41421 - 2.44949i) q^{9} +(-0.414214 - 0.717439i) q^{11} -2.00000 q^{13} +(-3.82843 - 6.63103i) q^{17} +(2.82843 - 4.89898i) q^{19} +(-1.08579 - 0.148586i) q^{21} +(-2.79289 + 4.83743i) q^{23} +2.41421 q^{27} -7.82843 q^{29} +(-0.414214 - 0.717439i) q^{31} +(0.171573 - 0.297173i) q^{33} +(2.82843 - 4.89898i) q^{37} +(-0.414214 - 0.717439i) q^{39} +5.82843 q^{41} +6.89949 q^{43} +(5.82843 - 10.0951i) q^{47} +(-1.74264 - 6.77962i) q^{49} +(1.58579 - 2.74666i) q^{51} +(-2.82843 - 4.89898i) q^{53} +2.34315 q^{57} +(2.00000 + 3.46410i) q^{59} +(-3.32843 + 5.76500i) q^{61} +(2.82843 + 6.92820i) q^{63} +(-6.44975 - 11.1713i) q^{67} -2.31371 q^{69} -12.0000 q^{71} +(1.82843 + 3.16693i) q^{73} +(2.17157 + 0.297173i) q^{77} +(2.00000 - 3.46410i) q^{79} +(-3.74264 - 6.48244i) q^{81} +4.75736 q^{83} +(-1.62132 - 2.80821i) q^{87} +(2.67157 - 4.62730i) q^{89} +(3.24264 - 4.18154i) q^{91} +(0.171573 - 0.297173i) q^{93} -6.00000 q^{97} -2.34315 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{3} + 2q^{7} + O(q^{10}) \) \( 4q - 2q^{3} + 2q^{7} + 4q^{11} - 8q^{13} - 4q^{17} - 10q^{21} - 14q^{23} + 4q^{27} - 20q^{29} + 4q^{31} + 12q^{33} + 4q^{39} + 12q^{41} - 12q^{43} + 12q^{47} + 10q^{49} + 12q^{51} + 32q^{57} + 8q^{59} - 2q^{61} - 6q^{67} + 36q^{69} - 48q^{71} - 4q^{73} + 20q^{77} + 8q^{79} + 2q^{81} + 36q^{83} + 2q^{87} + 22q^{89} - 4q^{91} + 12q^{93} - 24q^{97} - 32q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.207107 + 0.358719i 0.119573 + 0.207107i 0.919599 0.392859i \(-0.128514\pi\)
−0.800025 + 0.599966i \(0.795181\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.62132 + 2.09077i −0.612801 + 0.790237i
\(8\) 0 0
\(9\) 1.41421 2.44949i 0.471405 0.816497i
\(10\) 0 0
\(11\) −0.414214 0.717439i −0.124890 0.216316i 0.796800 0.604243i \(-0.206524\pi\)
−0.921690 + 0.387927i \(0.873191\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.82843 6.63103i −0.928530 1.60826i −0.785783 0.618502i \(-0.787740\pi\)
−0.142747 0.989759i \(-0.545593\pi\)
\(18\) 0 0
\(19\) 2.82843 4.89898i 0.648886 1.12390i −0.334504 0.942394i \(-0.608569\pi\)
0.983389 0.181509i \(-0.0580980\pi\)
\(20\) 0 0
\(21\) −1.08579 0.148586i −0.236938 0.0324242i
\(22\) 0 0
\(23\) −2.79289 + 4.83743i −0.582358 + 1.00867i 0.412841 + 0.910803i \(0.364537\pi\)
−0.995199 + 0.0978712i \(0.968797\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.41421 0.464616
\(28\) 0 0
\(29\) −7.82843 −1.45370 −0.726851 0.686795i \(-0.759017\pi\)
−0.726851 + 0.686795i \(0.759017\pi\)
\(30\) 0 0
\(31\) −0.414214 0.717439i −0.0743950 0.128856i 0.826428 0.563042i \(-0.190369\pi\)
−0.900823 + 0.434187i \(0.857036\pi\)
\(32\) 0 0
\(33\) 0.171573 0.297173i 0.0298670 0.0517312i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.82843 4.89898i 0.464991 0.805387i −0.534211 0.845351i \(-0.679391\pi\)
0.999201 + 0.0399642i \(0.0127244\pi\)
\(38\) 0 0
\(39\) −0.414214 0.717439i −0.0663273 0.114882i
\(40\) 0 0
\(41\) 5.82843 0.910247 0.455124 0.890428i \(-0.349595\pi\)
0.455124 + 0.890428i \(0.349595\pi\)
\(42\) 0 0
\(43\) 6.89949 1.05216 0.526082 0.850434i \(-0.323661\pi\)
0.526082 + 0.850434i \(0.323661\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.82843 10.0951i 0.850163 1.47253i −0.0308969 0.999523i \(-0.509836\pi\)
0.881060 0.473004i \(-0.156830\pi\)
\(48\) 0 0
\(49\) −1.74264 6.77962i −0.248949 0.968517i
\(50\) 0 0
\(51\) 1.58579 2.74666i 0.222055 0.384610i
\(52\) 0 0
\(53\) −2.82843 4.89898i −0.388514 0.672927i 0.603736 0.797185i \(-0.293678\pi\)
−0.992250 + 0.124258i \(0.960345\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.34315 0.310357
\(58\) 0 0
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) −3.32843 + 5.76500i −0.426161 + 0.738133i −0.996528 0.0832569i \(-0.973468\pi\)
0.570367 + 0.821390i \(0.306801\pi\)
\(62\) 0 0
\(63\) 2.82843 + 6.92820i 0.356348 + 0.872872i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.44975 11.1713i −0.787962 1.36479i −0.927213 0.374533i \(-0.877803\pi\)
0.139251 0.990257i \(-0.455530\pi\)
\(68\) 0 0
\(69\) −2.31371 −0.278538
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 1.82843 + 3.16693i 0.214001 + 0.370661i 0.952963 0.303086i \(-0.0980170\pi\)
−0.738962 + 0.673747i \(0.764684\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.17157 + 0.297173i 0.247474 + 0.0338660i
\(78\) 0 0
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 0 0
\(81\) −3.74264 6.48244i −0.415849 0.720272i
\(82\) 0 0
\(83\) 4.75736 0.522188 0.261094 0.965313i \(-0.415917\pi\)
0.261094 + 0.965313i \(0.415917\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.62132 2.80821i −0.173824 0.301072i
\(88\) 0 0
\(89\) 2.67157 4.62730i 0.283186 0.490493i −0.688982 0.724779i \(-0.741942\pi\)
0.972168 + 0.234286i \(0.0752752\pi\)
\(90\) 0 0
\(91\) 3.24264 4.18154i 0.339921 0.438345i
\(92\) 0 0
\(93\) 0.171573 0.297173i 0.0177913 0.0308154i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) −2.34315 −0.235495
\(100\) 0 0
\(101\) 5.74264 + 9.94655i 0.571414 + 0.989718i 0.996421 + 0.0845282i \(0.0269383\pi\)
−0.425007 + 0.905190i \(0.639728\pi\)
\(102\) 0 0
\(103\) 3.79289 6.56948i 0.373725 0.647310i −0.616410 0.787425i \(-0.711414\pi\)
0.990135 + 0.140115i \(0.0447471\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.79289 + 4.83743i −0.269999 + 0.467652i −0.968861 0.247604i \(-0.920357\pi\)
0.698862 + 0.715256i \(0.253690\pi\)
\(108\) 0 0
\(109\) −9.15685 15.8601i −0.877068 1.51913i −0.854544 0.519379i \(-0.826163\pi\)
−0.0225237 0.999746i \(-0.507170\pi\)
\(110\) 0 0
\(111\) 2.34315 0.222402
\(112\) 0 0
\(113\) −11.3137 −1.06430 −0.532152 0.846649i \(-0.678617\pi\)
−0.532152 + 0.846649i \(0.678617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.82843 + 4.89898i −0.261488 + 0.452911i
\(118\) 0 0
\(119\) 20.0711 + 2.74666i 1.83991 + 0.251786i
\(120\) 0 0
\(121\) 5.15685 8.93193i 0.468805 0.811994i
\(122\) 0 0
\(123\) 1.20711 + 2.09077i 0.108841 + 0.188518i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.34315 0.385392 0.192696 0.981259i \(-0.438277\pi\)
0.192696 + 0.981259i \(0.438277\pi\)
\(128\) 0 0
\(129\) 1.42893 + 2.47498i 0.125810 + 0.217910i
\(130\) 0 0
\(131\) −6.82843 + 11.8272i −0.596602 + 1.03335i 0.396716 + 0.917941i \(0.370150\pi\)
−0.993319 + 0.115404i \(0.963184\pi\)
\(132\) 0 0
\(133\) 5.65685 + 13.8564i 0.490511 + 1.20150i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.00000 3.46410i −0.170872 0.295958i 0.767853 0.640626i \(-0.221325\pi\)
−0.938725 + 0.344668i \(0.887992\pi\)
\(138\) 0 0
\(139\) 2.48528 0.210799 0.105399 0.994430i \(-0.466388\pi\)
0.105399 + 0.994430i \(0.466388\pi\)
\(140\) 0 0
\(141\) 4.82843 0.406627
\(142\) 0 0
\(143\) 0.828427 + 1.43488i 0.0692766 + 0.119991i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.07107 2.02922i 0.170819 0.167368i
\(148\) 0 0
\(149\) −2.32843 + 4.03295i −0.190752 + 0.330392i −0.945500 0.325623i \(-0.894426\pi\)
0.754748 + 0.656015i \(0.227759\pi\)
\(150\) 0 0
\(151\) 5.58579 + 9.67487i 0.454565 + 0.787329i 0.998663 0.0516921i \(-0.0164614\pi\)
−0.544098 + 0.839022i \(0.683128\pi\)
\(152\) 0 0
\(153\) −21.6569 −1.75085
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.656854 + 1.13770i 0.0524227 + 0.0907987i 0.891046 0.453913i \(-0.149972\pi\)
−0.838623 + 0.544712i \(0.816639\pi\)
\(158\) 0 0
\(159\) 1.17157 2.02922i 0.0929118 0.160928i
\(160\) 0 0
\(161\) −5.58579 13.6823i −0.440222 1.07832i
\(162\) 0 0
\(163\) −7.82843 + 13.5592i −0.613170 + 1.06204i 0.377533 + 0.925996i \(0.376773\pi\)
−0.990703 + 0.136045i \(0.956561\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.07107 −0.160264 −0.0801320 0.996784i \(-0.525534\pi\)
−0.0801320 + 0.996784i \(0.525534\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −8.00000 13.8564i −0.611775 1.05963i
\(172\) 0 0
\(173\) 5.17157 8.95743i 0.393187 0.681021i −0.599681 0.800239i \(-0.704706\pi\)
0.992868 + 0.119219i \(0.0380390\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.828427 + 1.43488i −0.0622684 + 0.107852i
\(178\) 0 0
\(179\) 3.24264 + 5.61642i 0.242366 + 0.419791i 0.961388 0.275197i \(-0.0887431\pi\)
−0.719022 + 0.694988i \(0.755410\pi\)
\(180\) 0 0
\(181\) −4.17157 −0.310071 −0.155035 0.987909i \(-0.549549\pi\)
−0.155035 + 0.987909i \(0.549549\pi\)
\(182\) 0 0
\(183\) −2.75736 −0.203830
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.17157 + 5.49333i −0.231928 + 0.401712i
\(188\) 0 0
\(189\) −3.91421 + 5.04757i −0.284717 + 0.367156i
\(190\) 0 0
\(191\) 2.75736 4.77589i 0.199516 0.345571i −0.748856 0.662733i \(-0.769397\pi\)
0.948371 + 0.317162i \(0.102730\pi\)
\(192\) 0 0
\(193\) −2.65685 4.60181i −0.191245 0.331245i 0.754418 0.656394i \(-0.227919\pi\)
−0.945663 + 0.325149i \(0.894586\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.343146 −0.0244481 −0.0122241 0.999925i \(-0.503891\pi\)
−0.0122241 + 0.999925i \(0.503891\pi\)
\(198\) 0 0
\(199\) 11.6569 + 20.1903i 0.826332 + 1.43125i 0.900897 + 0.434034i \(0.142910\pi\)
−0.0745642 + 0.997216i \(0.523757\pi\)
\(200\) 0 0
\(201\) 2.67157 4.62730i 0.188438 0.326385i
\(202\) 0 0
\(203\) 12.6924 16.3674i 0.890831 1.14877i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 7.89949 + 13.6823i 0.549053 + 0.950987i
\(208\) 0 0
\(209\) −4.68629 −0.324158
\(210\) 0 0
\(211\) 26.6274 1.83311 0.916553 0.399912i \(-0.130959\pi\)
0.916553 + 0.399912i \(0.130959\pi\)
\(212\) 0 0
\(213\) −2.48528 4.30463i −0.170289 0.294949i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.17157 + 0.297173i 0.147416 + 0.0201734i
\(218\) 0 0
\(219\) −0.757359 + 1.31178i −0.0511776 + 0.0886422i
\(220\) 0 0
\(221\) 7.65685 + 13.2621i 0.515056 + 0.892103i
\(222\) 0 0
\(223\) 14.9706 1.00250 0.501252 0.865302i \(-0.332873\pi\)
0.501252 + 0.865302i \(0.332873\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.00000 + 12.1244i 0.464606 + 0.804722i 0.999184 0.0403978i \(-0.0128625\pi\)
−0.534577 + 0.845120i \(0.679529\pi\)
\(228\) 0 0
\(229\) 7.00000 12.1244i 0.462573 0.801200i −0.536515 0.843891i \(-0.680260\pi\)
0.999088 + 0.0426906i \(0.0135930\pi\)
\(230\) 0 0
\(231\) 0.343146 + 0.840532i 0.0225773 + 0.0553029i
\(232\) 0 0
\(233\) 5.82843 10.0951i 0.381833 0.661354i −0.609491 0.792793i \(-0.708626\pi\)
0.991324 + 0.131439i \(0.0419596\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.65685 0.107624
\(238\) 0 0
\(239\) −30.4853 −1.97193 −0.985964 0.166955i \(-0.946606\pi\)
−0.985964 + 0.166955i \(0.946606\pi\)
\(240\) 0 0
\(241\) 5.00000 + 8.66025i 0.322078 + 0.557856i 0.980917 0.194429i \(-0.0622852\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(242\) 0 0
\(243\) 5.17157 8.95743i 0.331757 0.574619i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.65685 + 9.79796i −0.359937 + 0.623429i
\(248\) 0 0
\(249\) 0.985281 + 1.70656i 0.0624397 + 0.108149i
\(250\) 0 0
\(251\) −27.4558 −1.73300 −0.866499 0.499179i \(-0.833635\pi\)
−0.866499 + 0.499179i \(0.833635\pi\)
\(252\) 0 0
\(253\) 4.62742 0.290923
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.65685 13.2621i 0.477621 0.827265i −0.522050 0.852915i \(-0.674832\pi\)
0.999671 + 0.0256506i \(0.00816572\pi\)
\(258\) 0 0
\(259\) 5.65685 + 13.8564i 0.351500 + 0.860995i
\(260\) 0 0
\(261\) −11.0711 + 19.1757i −0.685282 + 1.18694i
\(262\) 0 0
\(263\) −7.86396 13.6208i −0.484913 0.839893i 0.514937 0.857228i \(-0.327815\pi\)
−0.999850 + 0.0173347i \(0.994482\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.21320 0.135446
\(268\) 0 0
\(269\) 3.32843 + 5.76500i 0.202938 + 0.351499i 0.949474 0.313847i \(-0.101618\pi\)
−0.746536 + 0.665345i \(0.768284\pi\)
\(270\) 0 0
\(271\) 1.65685 2.86976i 0.100647 0.174325i −0.811305 0.584624i \(-0.801242\pi\)
0.911951 + 0.410298i \(0.134575\pi\)
\(272\) 0 0
\(273\) 2.17157 + 0.297173i 0.131430 + 0.0179857i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 14.3137 + 24.7921i 0.860027 + 1.48961i 0.871901 + 0.489682i \(0.162887\pi\)
−0.0118739 + 0.999930i \(0.503780\pi\)
\(278\) 0 0
\(279\) −2.34315 −0.140280
\(280\) 0 0
\(281\) 2.68629 0.160251 0.0801254 0.996785i \(-0.474468\pi\)
0.0801254 + 0.996785i \(0.474468\pi\)
\(282\) 0 0
\(283\) 9.00000 + 15.5885i 0.534994 + 0.926638i 0.999164 + 0.0408910i \(0.0130196\pi\)
−0.464169 + 0.885747i \(0.653647\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.44975 + 12.1859i −0.557801 + 0.719311i
\(288\) 0 0
\(289\) −20.8137 + 36.0504i −1.22434 + 2.12061i
\(290\) 0 0
\(291\) −1.24264 2.15232i −0.0728449 0.126171i
\(292\) 0 0
\(293\) −16.9706 −0.991431 −0.495715 0.868485i \(-0.665094\pi\)
−0.495715 + 0.868485i \(0.665094\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 1.73205i −0.0580259 0.100504i
\(298\) 0 0
\(299\) 5.58579 9.67487i 0.323034 0.559512i
\(300\) 0 0
\(301\) −11.1863 + 14.4253i −0.644767 + 0.831458i
\(302\) 0 0
\(303\) −2.37868 + 4.11999i −0.136652 + 0.236687i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4.75736 −0.271517 −0.135758 0.990742i \(-0.543347\pi\)
−0.135758 + 0.990742i \(0.543347\pi\)
\(308\) 0 0
\(309\) 3.14214 0.178750
\(310\) 0 0
\(311\) −10.8284 18.7554i −0.614024 1.06352i −0.990555 0.137116i \(-0.956217\pi\)
0.376531 0.926404i \(-0.377117\pi\)
\(312\) 0 0
\(313\) 10.4853 18.1610i 0.592663 1.02652i −0.401209 0.915987i \(-0.631410\pi\)
0.993872 0.110536i \(-0.0352568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.0000 + 19.0526i −0.617822 + 1.07010i 0.372061 + 0.928208i \(0.378651\pi\)
−0.989882 + 0.141890i \(0.954682\pi\)
\(318\) 0 0
\(319\) 3.24264 + 5.61642i 0.181553 + 0.314459i
\(320\) 0 0
\(321\) −2.31371 −0.129139
\(322\) 0 0
\(323\) −43.3137 −2.41004
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.79289 6.56948i 0.209747 0.363293i
\(328\) 0 0
\(329\) 11.6569 + 28.5533i 0.642663 + 1.57420i
\(330\) 0 0
\(331\) −13.2426 + 22.9369i −0.727881 + 1.26073i 0.229896 + 0.973215i \(0.426162\pi\)
−0.957777 + 0.287512i \(0.907172\pi\)
\(332\) 0 0
\(333\) −8.00000 13.8564i −0.438397 0.759326i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −24.9706 −1.36023 −0.680117 0.733104i \(-0.738071\pi\)
−0.680117 + 0.733104i \(0.738071\pi\)
\(338\) 0 0
\(339\) −2.34315 4.05845i −0.127262 0.220425i
\(340\) 0 0
\(341\) −0.343146 + 0.594346i −0.0185824 + 0.0321856i
\(342\) 0 0
\(343\) 17.0000 + 7.34847i 0.917914 + 0.396780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.69239 + 9.85951i 0.305583 + 0.529286i 0.977391 0.211440i \(-0.0678152\pi\)
−0.671808 + 0.740726i \(0.734482\pi\)
\(348\) 0 0
\(349\) 9.82843 0.526104 0.263052 0.964782i \(-0.415271\pi\)
0.263052 + 0.964782i \(0.415271\pi\)
\(350\) 0 0
\(351\) −4.82843 −0.257722
\(352\) 0 0
\(353\) 16.8284 + 29.1477i 0.895687 + 1.55138i 0.832952 + 0.553345i \(0.186649\pi\)
0.0627345 + 0.998030i \(0.480018\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.17157 + 7.76874i 0.167857 + 0.411165i
\(358\) 0 0
\(359\) 3.24264 5.61642i 0.171140 0.296423i −0.767679 0.640835i \(-0.778588\pi\)
0.938819 + 0.344412i \(0.111922\pi\)
\(360\) 0 0
\(361\) −6.50000 11.2583i −0.342105 0.592544i
\(362\) 0 0
\(363\) 4.27208 0.224226
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.7929 + 18.6938i 0.563384 + 0.975810i 0.997198 + 0.0748078i \(0.0238343\pi\)
−0.433814 + 0.901003i \(0.642832\pi\)
\(368\) 0 0
\(369\) 8.24264 14.2767i 0.429095 0.743214i
\(370\) 0 0
\(371\) 14.8284 + 2.02922i 0.769854 + 0.105352i
\(372\) 0 0
\(373\) 6.00000 10.3923i 0.310668 0.538093i −0.667839 0.744306i \(-0.732781\pi\)
0.978507 + 0.206213i \(0.0661139\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.6569 0.806369
\(378\) 0 0
\(379\) 4.68629 0.240719 0.120359 0.992730i \(-0.461595\pi\)
0.120359 + 0.992730i \(0.461595\pi\)
\(380\) 0 0
\(381\) 0.899495 + 1.55797i 0.0460825 + 0.0798173i
\(382\) 0 0
\(383\) −0.449747 + 0.778985i −0.0229810 + 0.0398043i −0.877287 0.479966i \(-0.840649\pi\)
0.854306 + 0.519770i \(0.173982\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.75736 16.9002i 0.495994 0.859088i
\(388\) 0 0
\(389\) −2.65685 4.60181i −0.134708 0.233321i 0.790778 0.612103i \(-0.209676\pi\)
−0.925486 + 0.378782i \(0.876343\pi\)
\(390\) 0 0
\(391\) 42.7696 2.16295
\(392\) 0 0
\(393\) −5.65685 −0.285351
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12.3137 + 21.3280i −0.618007 + 1.07042i 0.371842 + 0.928296i \(0.378726\pi\)
−0.989849 + 0.142124i \(0.954607\pi\)
\(398\) 0 0
\(399\) −3.79899 + 4.89898i −0.190187 + 0.245256i
\(400\) 0 0
\(401\) 16.1569 27.9845i 0.806835 1.39748i −0.108211 0.994128i \(-0.534512\pi\)
0.915045 0.403351i \(-0.132155\pi\)
\(402\) 0 0
\(403\) 0.828427 + 1.43488i 0.0412669 + 0.0714764i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.68629 −0.232291
\(408\) 0 0
\(409\) 12.5711 + 21.7737i 0.621599 + 1.07664i 0.989188 + 0.146653i \(0.0468501\pi\)
−0.367589 + 0.929988i \(0.619817\pi\)
\(410\) 0 0
\(411\) 0.828427 1.43488i 0.0408633 0.0707773i
\(412\) 0 0
\(413\) −10.4853 1.43488i −0.515947 0.0706057i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.514719 + 0.891519i 0.0252059 + 0.0436579i
\(418\) 0 0
\(419\) −15.3137 −0.748124 −0.374062 0.927404i \(-0.622035\pi\)
−0.374062 + 0.927404i \(0.622035\pi\)
\(420\) 0 0
\(421\) 27.3431 1.33262 0.666312 0.745673i \(-0.267872\pi\)
0.666312 + 0.745673i \(0.267872\pi\)
\(422\) 0 0
\(423\) −16.4853 28.5533i −0.801542 1.38831i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.65685 16.3059i −0.322148 0.789098i
\(428\) 0 0
\(429\) −0.343146 + 0.594346i −0.0165672 + 0.0286953i
\(430\) 0 0
\(431\) 0.414214 + 0.717439i 0.0199520 + 0.0345578i 0.875829 0.482622i \(-0.160315\pi\)
−0.855877 + 0.517179i \(0.826982\pi\)
\(432\) 0 0
\(433\) 19.3137 0.928158 0.464079 0.885794i \(-0.346385\pi\)
0.464079 + 0.885794i \(0.346385\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.7990 + 27.3647i 0.755768 + 1.30903i
\(438\) 0 0
\(439\) 9.17157 15.8856i 0.437735 0.758180i −0.559779 0.828642i \(-0.689114\pi\)
0.997514 + 0.0704621i \(0.0224474\pi\)
\(440\) 0 0
\(441\) −19.0711 5.31925i −0.908146 0.253297i
\(442\) 0 0
\(443\) −7.79289 + 13.4977i −0.370252 + 0.641294i −0.989604 0.143819i \(-0.954062\pi\)
0.619353 + 0.785113i \(0.287395\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.92893 −0.0912354
\(448\) 0 0
\(449\) −7.48528 −0.353252 −0.176626 0.984278i \(-0.556518\pi\)
−0.176626 + 0.984278i \(0.556518\pi\)
\(450\) 0 0
\(451\) −2.41421 4.18154i −0.113681 0.196901i
\(452\) 0 0
\(453\) −2.31371 + 4.00746i −0.108708 + 0.188287i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.4853 25.0892i 0.677593 1.17363i −0.298111 0.954531i \(-0.596357\pi\)
0.975704 0.219094i \(-0.0703102\pi\)
\(458\) 0 0
\(459\) −9.24264 16.0087i −0.431410 0.747223i
\(460\) 0 0
\(461\) 1.31371 0.0611855 0.0305928 0.999532i \(-0.490261\pi\)
0.0305928 + 0.999532i \(0.490261\pi\)
\(462\) 0 0
\(463\) −14.8995 −0.692438 −0.346219 0.938154i \(-0.612535\pi\)
−0.346219 + 0.938154i \(0.612535\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.9350 + 32.7964i −0.876209 + 1.51764i −0.0207390 + 0.999785i \(0.506602\pi\)
−0.855470 + 0.517853i \(0.826731\pi\)
\(468\) 0 0
\(469\) 33.8137 + 4.62730i 1.56137 + 0.213669i
\(470\) 0 0
\(471\) −0.272078 + 0.471253i −0.0125367 + 0.0217142i
\(472\) 0 0
\(473\) −2.85786 4.94997i −0.131405 0.227600i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −16.0000 −0.732590
\(478\) 0 0
\(479\) 0.757359 + 1.31178i 0.0346046 + 0.0599370i 0.882809 0.469732i \(-0.155649\pi\)
−0.848204 + 0.529669i \(0.822316\pi\)
\(480\) 0 0
\(481\) −5.65685 + 9.79796i −0.257930 + 0.446748i
\(482\) 0 0
\(483\) 3.75126 4.83743i 0.170688 0.220111i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −19.1421 33.1552i −0.867413 1.50240i −0.864631 0.502407i \(-0.832448\pi\)
−0.00278182 0.999996i \(-0.500885\pi\)
\(488\) 0 0
\(489\) −6.48528 −0.293275
\(490\) 0 0
\(491\) 1.51472 0.0683583 0.0341791 0.999416i \(-0.489118\pi\)
0.0341791 + 0.999416i \(0.489118\pi\)
\(492\) 0 0
\(493\) 29.9706 + 51.9105i 1.34981 + 2.33793i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 19.4558 25.0892i 0.872714 1.12541i
\(498\) 0 0
\(499\) −22.0711 + 38.2282i −0.988037 + 1.71133i −0.360461 + 0.932774i \(0.617381\pi\)
−0.627576 + 0.778555i \(0.715953\pi\)
\(500\) 0 0
\(501\) −0.428932 0.742932i −0.0191633 0.0331918i
\(502\) 0 0
\(503\) 3.92893 0.175182 0.0875912 0.996157i \(-0.472083\pi\)
0.0875912 + 0.996157i \(0.472083\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.86396 3.22848i −0.0827814 0.143382i
\(508\) 0 0
\(509\) 16.7426 28.9991i 0.742105 1.28536i −0.209431 0.977823i \(-0.567161\pi\)
0.951535 0.307539i \(-0.0995055\pi\)
\(510\) 0 0
\(511\) −9.58579 1.31178i −0.424050 0.0580299i
\(512\) 0 0
\(513\) 6.82843 11.8272i 0.301482 0.522183i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.65685 −0.424708
\(518\) 0 0
\(519\) 4.28427 0.188059
\(520\) 0 0
\(521\) −18.3137 31.7203i −0.802338 1.38969i −0.918073 0.396410i \(-0.870256\pi\)
0.115735 0.993280i \(-0.463078\pi\)
\(522\) 0 0
\(523\) 13.9706 24.1977i 0.610890 1.05809i −0.380201 0.924904i \(-0.624145\pi\)
0.991091 0.133189i \(-0.0425216\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.17157 + 5.49333i −0.138156 + 0.239293i
\(528\) 0 0
\(529\) −4.10051 7.10228i −0.178283 0.308795i
\(530\) 0 0
\(531\) 11.3137 0.490973
\(532\) 0 0
\(533\) −11.6569 −0.504914
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.34315 + 2.32640i −0.0579610 + 0.100391i
\(538\) 0 0
\(539\) −4.14214 + 4.05845i −0.178414 + 0.174810i
\(540\) 0 0
\(541\) 11.7426 20.3389i 0.504856 0.874435i −0.495129 0.868820i \(-0.664879\pi\)
0.999984 0.00561582i \(-0.00178758\pi\)
\(542\) 0 0
\(543\) −0.863961 1.49642i −0.0370761 0.0642177i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.27208 0.0971470 0.0485735 0.998820i \(-0.484532\pi\)
0.0485735 + 0.998820i \(0.484532\pi\)
\(548\) 0 0
\(549\) 9.41421 + 16.3059i 0.401789 + 0.695919i
\(550\) 0 0
\(551\) −22.1421 + 38.3513i −0.943287 + 1.63382i
\(552\) 0 0
\(553\) 4.00000 + 9.79796i 0.170097 + 0.416652i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.65685 14.9941i −0.366803 0.635321i 0.622261 0.782810i \(-0.286214\pi\)
−0.989064 + 0.147489i \(0.952881\pi\)
\(558\) 0 0
\(559\) −13.7990 −0.583635
\(560\) 0 0
\(561\) −2.62742 −0.110930
\(562\) 0 0
\(563\) −2.03553 3.52565i −0.0857875 0.148588i 0.819939 0.572451i \(-0.194007\pi\)
−0.905727 + 0.423863i \(0.860674\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 19.6213 + 2.68512i 0.824018 + 0.112764i
\(568\) 0 0
\(569\) 18.3137 31.7203i 0.767751 1.32978i −0.171029 0.985266i \(-0.554709\pi\)
0.938780 0.344517i \(-0.111957\pi\)
\(570\) 0 0
\(571\) 10.4853 + 18.1610i 0.438795 + 0.760016i 0.997597 0.0692856i \(-0.0220720\pi\)
−0.558801 + 0.829301i \(0.688739\pi\)
\(572\) 0 0
\(573\) 2.28427 0.0954268
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.1421 19.2987i −0.463853 0.803417i 0.535296 0.844665i \(-0.320200\pi\)
−0.999149 + 0.0412474i \(0.986867\pi\)
\(578\) 0 0
\(579\) 1.10051 1.90613i 0.0457354 0.0792161i
\(580\) 0 0
\(581\) −7.71320 + 9.94655i −0.319998 + 0.412652i
\(582\) 0 0
\(583\) −2.34315 + 4.05845i −0.0970432 + 0.168084i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.6863 0.936363 0.468182 0.883632i \(-0.344909\pi\)
0.468182 + 0.883632i \(0.344909\pi\)
\(588\) 0 0
\(589\) −4.68629 −0.193095
\(590\) 0 0
\(591\) −0.0710678 0.123093i −0.00292334 0.00506337i
\(592\) 0 0
\(593\) 14.9706 25.9298i 0.614767 1.06481i −0.375658 0.926758i \(-0.622583\pi\)
0.990425 0.138050i \(-0.0440834\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.82843 + 8.36308i −0.197614 + 0.342278i
\(598\) 0 0
\(599\) −21.3137 36.9164i −0.870855 1.50836i −0.861114 0.508412i \(-0.830233\pi\)
−0.00974040 0.999953i \(-0.503101\pi\)
\(600\) 0 0
\(601\) −34.0000 −1.38689 −0.693444 0.720510i \(-0.743908\pi\)
−0.693444 + 0.720510i \(0.743908\pi\)
\(602\) 0 0
\(603\) −36.4853 −1.48580
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13.6213 23.5928i 0.552872 0.957603i −0.445193 0.895434i \(-0.646865\pi\)
0.998066 0.0621685i \(-0.0198016\pi\)
\(608\) 0 0
\(609\) 8.50000 + 1.16320i 0.344437 + 0.0471352i
\(610\) 0 0
\(611\) −11.6569 + 20.1903i −0.471586 + 0.816811i
\(612\) 0 0
\(613\) 19.4853 + 33.7495i 0.787003 + 1.36313i 0.927795 + 0.373090i \(0.121702\pi\)
−0.140792 + 0.990039i \(0.544965\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.6863 0.510731 0.255365 0.966845i \(-0.417804\pi\)
0.255365 + 0.966845i \(0.417804\pi\)
\(618\) 0 0
\(619\) −19.7279 34.1698i −0.792932 1.37340i −0.924144 0.382044i \(-0.875220\pi\)
0.131212 0.991354i \(-0.458113\pi\)
\(620\) 0 0
\(621\) −6.74264 + 11.6786i −0.270573 + 0.468646i
\(622\) 0 0
\(623\) 5.34315 + 13.0880i 0.214069 + 0.524359i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.970563 1.68106i −0.0387605 0.0671352i
\(628\) 0 0
\(629\) −43.3137 −1.72703
\(630\) 0 0
\(631\) −1.51472 −0.0603000 −0.0301500 0.999545i \(-0.509598\pi\)
−0.0301500 + 0.999545i \(0.509598\pi\)
\(632\) 0 0
\(633\) 5.51472 + 9.55177i 0.219190 + 0.379649i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.48528 + 13.5592i 0.138092 + 0.537236i
\(638\) 0 0
\(639\) −16.9706 + 29.3939i −0.671345 + 1.16280i
\(640\) 0 0
\(641\) −7.05635 12.2220i −0.278709 0.482738i 0.692355 0.721557i \(-0.256573\pi\)
−0.971064 + 0.238819i \(0.923240\pi\)
\(642\) 0 0
\(643\) −26.0000 −1.02534 −0.512670 0.858586i \(-0.671344\pi\)
−0.512670 + 0.858586i \(0.671344\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.3787 17.9764i −0.408028 0.706725i 0.586641 0.809847i \(-0.300450\pi\)
−0.994669 + 0.103122i \(0.967117\pi\)
\(648\) 0 0
\(649\) 1.65685 2.86976i 0.0650372 0.112648i
\(650\) 0 0
\(651\) 0.343146 + 0.840532i 0.0134489 + 0.0329430i
\(652\) 0 0
\(653\) −7.82843 + 13.5592i −0.306350 + 0.530614i −0.977561 0.210653i \(-0.932441\pi\)
0.671211 + 0.741266i \(0.265774\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.3431 0.403525
\(658\) 0 0
\(659\) 12.6863 0.494188 0.247094 0.968992i \(-0.420524\pi\)
0.247094 + 0.968992i \(0.420524\pi\)
\(660\) 0 0
\(661\) 25.1569 + 43.5729i 0.978488 + 1.69479i 0.667907 + 0.744244i \(0.267190\pi\)
0.310581 + 0.950547i \(0.399476\pi\)
\(662\) 0 0
\(663\) −3.17157 + 5.49333i −0.123174 + 0.213343i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 21.8640 37.8695i 0.846576 1.46631i
\(668\) 0 0
\(669\) 3.10051 + 5.37023i 0.119872 + 0.207625i
\(670\) 0 0
\(671\) 5.51472 0.212893
\(672\) 0 0
\(673\) 5.65685 0.218056 0.109028 0.994039i \(-0.465226\pi\)
0.109028 + 0.994039i \(0.465226\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.4853 19.8931i 0.441415 0.764554i −0.556380 0.830928i \(-0.687810\pi\)
0.997795 + 0.0663747i \(0.0211433\pi\)
\(678\) 0 0
\(679\) 9.72792 12.5446i 0.373323 0.481418i
\(680\) 0 0
\(681\) −2.89949 + 5.02207i −0.111109 + 0.192446i
\(682\) 0 0
\(683\) −0.964466 1.67050i −0.0369043 0.0639201i 0.846983 0.531619i \(-0.178416\pi\)
−0.883888 + 0.467699i \(0.845083\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.79899 0.221245
\(688\) 0 0
\(689\) 5.65685 + 9.79796i 0.215509 + 0.373273i
\(690\) 0 0
\(691\) 21.3848 37.0395i 0.813515 1.40905i −0.0968739 0.995297i \(-0.530884\pi\)
0.910389 0.413753i \(-0.135782\pi\)
\(692\) 0 0
\(693\) 3.79899 4.89898i 0.144312 0.186097i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −22.3137 38.6485i −0.845192 1.46392i
\(698\) 0 0
\(699\) 4.82843 0.182628
\(700\) 0 0
\(701\) −11.0000 −0.415464 −0.207732 0.978186i \(-0.566608\pi\)
−0.207732 + 0.978186i \(0.566608\pi\)
\(702\) 0 0
\(703\) −16.0000 27.7128i −0.603451 1.04521i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −30.1066 4.11999i −1.13228 0.154948i
\(708\) 0 0
\(709\) 17.7132 30.6802i 0.665233 1.15222i −0.313989 0.949427i \(-0.601665\pi\)
0.979222 0.202791i \(-0.0650013\pi\)
\(710\) 0 0
\(711\) −5.65685 9.79796i −0.212149 0.367452i
\(712\) 0 0
\(713\) 4.62742 0.173298
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.31371 10.9357i −0.235790 0.408400i
\(718\) 0 0
\(719\) 12.8995 22.3426i 0.481070 0.833238i −0.518694 0.854960i \(-0.673582\pi\)
0.999764 + 0.0217223i \(0.00691496\pi\)
\(720\) 0 0
\(721\) 7.58579 + 18.5813i 0.282509 + 0.692004i
\(722\) 0 0
\(723\) −2.07107 + 3.58719i −0.0770238 + 0.133409i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −38.0711 −1.41198 −0.705989 0.708223i \(-0.749497\pi\)
−0.705989 + 0.708223i \(0.749497\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) −26.4142 45.7508i −0.976965 1.69215i
\(732\) 0 0
\(733\) 3.82843 6.63103i 0.141406 0.244923i −0.786620 0.617437i \(-0.788171\pi\)
0.928026 + 0.372514i \(0.121504\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.34315 + 9.25460i −0.196817 + 0.340898i
\(738\) 0 0
\(739\) −8.41421 14.5738i −0.309522 0.536108i 0.668736 0.743500i \(-0.266836\pi\)
−0.978258 + 0.207392i \(0.933502\pi\)
\(740\) 0 0
\(741\) −4.68629 −0.172155
\(742\) 0 0
\(743\) 10.7574 0.394649 0.197325 0.980338i \(-0.436775\pi\)
0.197325 + 0.980338i \(0.436775\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.72792 11.6531i 0.246162 0.426365i
\(748\) 0 0
\(749\) −5.58579 13.6823i −0.204100 0.499941i
\(750\) 0 0
\(751\) 6.00000 10.3923i 0.218943 0.379221i −0.735542 0.677479i \(-0.763072\pi\)
0.954485 + 0.298259i \(0.0964058\pi\)
\(752\) 0 0
\(753\) −5.68629 9.84895i −0.207220 0.358916i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6.00000 −0.218074 −0.109037 0.994038i \(-0.534777\pi\)
−0.109037 + 0.994038i \(0.534777\pi\)
\(758\) 0 0
\(759\) 0.958369 + 1.65994i 0.0347866 + 0.0602522i
\(760\) 0 0
\(761\) 21.9706 38.0541i 0.796432 1.37946i −0.125493 0.992094i \(-0.540051\pi\)
0.921926 0.387367i \(-0.126615\pi\)
\(762\) 0 0
\(763\) 48.0061 + 6.56948i 1.73794 + 0.237831i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.00000 6.92820i −0.144432 0.250163i
\(768\) 0 0
\(769\) 43.2548 1.55981 0.779905 0.625898i \(-0.215268\pi\)
0.779905 + 0.625898i \(0.215268\pi\)
\(770\) 0 0
\(771\) 6.34315 0.228443
\(772\) 0 0
\(773\) 12.1716 + 21.0818i 0.437781 + 0.758259i 0.997518 0.0704113i \(-0.0224312\pi\)
−0.559737 + 0.828670i \(0.689098\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −3.79899 + 4.89898i −0.136288 + 0.175750i
\(778\) 0 0
\(779\) 16.4853 28.5533i 0.590647 1.02303i
\(780\) 0 0
\(781\) 4.97056 + 8.60927i 0.177861 + 0.308064i
\(782\) 0 0
\(783\) −18.8995 −0.675413
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −0.792893 1.37333i −0.0282636 0.0489540i 0.851548 0.524277i \(-0.175664\pi\)
−0.879811 + 0.475323i \(0.842331\pi\)
\(788\) 0 0
\(789\) 3.25736 5.64191i 0.115965 0.200857i
\(790\) 0 0
\(791\) 18.3431 23.6544i 0.652207 0.841052i
\(792\) 0 0
\(793\) 6.65685 11.5300i 0.236392 0.409443i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 35.3137 1.25088 0.625438 0.780274i \(-0.284920\pi\)
0.625438 + 0.780274i \(0.284920\pi\)
\(798\) 0 0
\(799\) −89.2548 −3.15761
\(800\) 0