# Properties

 Label 1400.2.q.f.1201.1 Level $1400$ Weight $2$ Character 1400.1201 Analytic conductor $11.179$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1400 = 2^{3} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1400.q (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.1790562830$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 1201.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 1400.1201 Dual form 1400.2.q.f.401.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.00000 - 1.73205i) q^{3} +(-0.500000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(1.00000 - 1.73205i) q^{3} +(-0.500000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-2.00000 + 3.46410i) q^{11} +2.00000 q^{13} +(-1.50000 + 2.59808i) q^{17} +(4.00000 + 3.46410i) q^{21} +(1.50000 + 2.59808i) q^{23} +4.00000 q^{27} -6.00000 q^{29} +(-4.50000 + 7.79423i) q^{31} +(4.00000 + 6.92820i) q^{33} +(2.00000 - 3.46410i) q^{39} +5.00000 q^{41} +6.00000 q^{43} +(4.50000 + 7.79423i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(3.00000 + 5.19615i) q^{51} +(-3.00000 + 5.19615i) q^{53} +(-4.00000 + 6.92820i) q^{59} +(-4.00000 - 6.92820i) q^{61} +(2.50000 - 0.866025i) q^{63} +(7.00000 - 12.1244i) q^{67} +6.00000 q^{69} +11.0000 q^{71} +(-1.00000 + 1.73205i) q^{73} +(-8.00000 - 6.92820i) q^{77} +(-4.50000 - 7.79423i) q^{79} +(5.50000 - 9.52628i) q^{81} +6.00000 q^{83} +(-6.00000 + 10.3923i) q^{87} +(-5.50000 - 9.52628i) q^{89} +(-1.00000 + 5.19615i) q^{91} +(9.00000 + 15.5885i) q^{93} +11.0000 q^{97} +4.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{3} - q^{7} - q^{9}+O(q^{10})$$ 2 * q + 2 * q^3 - q^7 - q^9 $$2 q + 2 q^{3} - q^{7} - q^{9} - 4 q^{11} + 4 q^{13} - 3 q^{17} + 8 q^{21} + 3 q^{23} + 8 q^{27} - 12 q^{29} - 9 q^{31} + 8 q^{33} + 4 q^{39} + 10 q^{41} + 12 q^{43} + 9 q^{47} - 13 q^{49} + 6 q^{51} - 6 q^{53} - 8 q^{59} - 8 q^{61} + 5 q^{63} + 14 q^{67} + 12 q^{69} + 22 q^{71} - 2 q^{73} - 16 q^{77} - 9 q^{79} + 11 q^{81} + 12 q^{83} - 12 q^{87} - 11 q^{89} - 2 q^{91} + 18 q^{93} + 22 q^{97} + 8 q^{99}+O(q^{100})$$ 2 * q + 2 * q^3 - q^7 - q^9 - 4 * q^11 + 4 * q^13 - 3 * q^17 + 8 * q^21 + 3 * q^23 + 8 * q^27 - 12 * q^29 - 9 * q^31 + 8 * q^33 + 4 * q^39 + 10 * q^41 + 12 * q^43 + 9 * q^47 - 13 * q^49 + 6 * q^51 - 6 * q^53 - 8 * q^59 - 8 * q^61 + 5 * q^63 + 14 * q^67 + 12 * q^69 + 22 * q^71 - 2 * q^73 - 16 * q^77 - 9 * q^79 + 11 * q^81 + 12 * q^83 - 12 * q^87 - 11 * q^89 - 2 * q^91 + 18 * q^93 + 22 * q^97 + 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times$$.

 $$n$$ $$351$$ $$701$$ $$801$$ $$1177$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000 1.73205i 0.577350 1.00000i −0.418432 0.908248i $$-0.637420\pi$$
0.995782 0.0917517i $$-0.0292466\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ −0.500000 + 2.59808i −0.188982 + 0.981981i
$$8$$ 0 0
$$9$$ −0.500000 0.866025i −0.166667 0.288675i
$$10$$ 0 0
$$11$$ −2.00000 + 3.46410i −0.603023 + 1.04447i 0.389338 + 0.921095i $$0.372704\pi$$
−0.992361 + 0.123371i $$0.960630\pi$$
$$12$$ 0 0
$$13$$ 2.00000 0.554700 0.277350 0.960769i $$-0.410544\pi$$
0.277350 + 0.960769i $$0.410544\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i $$-0.951855\pi$$
0.624780 + 0.780801i $$0.285189\pi$$
$$18$$ 0 0
$$19$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$20$$ 0 0
$$21$$ 4.00000 + 3.46410i 0.872872 + 0.755929i
$$22$$ 0 0
$$23$$ 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i $$-0.0654092\pi$$
−0.666190 + 0.745782i $$0.732076\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 4.00000 0.769800
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −4.50000 + 7.79423i −0.808224 + 1.39988i 0.105869 + 0.994380i $$0.466238\pi$$
−0.914093 + 0.405505i $$0.867096\pi$$
$$32$$ 0 0
$$33$$ 4.00000 + 6.92820i 0.696311 + 1.20605i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$38$$ 0 0
$$39$$ 2.00000 3.46410i 0.320256 0.554700i
$$40$$ 0 0
$$41$$ 5.00000 0.780869 0.390434 0.920631i $$-0.372325\pi$$
0.390434 + 0.920631i $$0.372325\pi$$
$$42$$ 0 0
$$43$$ 6.00000 0.914991 0.457496 0.889212i $$-0.348747\pi$$
0.457496 + 0.889212i $$0.348747\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 4.50000 + 7.79423i 0.656392 + 1.13691i 0.981543 + 0.191243i $$0.0612518\pi$$
−0.325150 + 0.945662i $$0.605415\pi$$
$$48$$ 0 0
$$49$$ −6.50000 2.59808i −0.928571 0.371154i
$$50$$ 0 0
$$51$$ 3.00000 + 5.19615i 0.420084 + 0.727607i
$$52$$ 0 0
$$53$$ −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i $$-0.968532\pi$$
0.583036 + 0.812447i $$0.301865\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −4.00000 + 6.92820i −0.520756 + 0.901975i 0.478953 + 0.877841i $$0.341016\pi$$
−0.999709 + 0.0241347i $$0.992317\pi$$
$$60$$ 0 0
$$61$$ −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i $$-0.995517\pi$$
0.487753 0.872982i $$-0.337817\pi$$
$$62$$ 0 0
$$63$$ 2.50000 0.866025i 0.314970 0.109109i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 7.00000 12.1244i 0.855186 1.48123i −0.0212861 0.999773i $$-0.506776\pi$$
0.876472 0.481452i $$-0.159891\pi$$
$$68$$ 0 0
$$69$$ 6.00000 0.722315
$$70$$ 0 0
$$71$$ 11.0000 1.30546 0.652730 0.757591i $$-0.273624\pi$$
0.652730 + 0.757591i $$0.273624\pi$$
$$72$$ 0 0
$$73$$ −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i $$-0.870674\pi$$
0.801553 + 0.597924i $$0.204008\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −8.00000 6.92820i −0.911685 0.789542i
$$78$$ 0 0
$$79$$ −4.50000 7.79423i −0.506290 0.876919i −0.999974 0.00727784i $$-0.997683\pi$$
0.493684 0.869641i $$-0.335650\pi$$
$$80$$ 0 0
$$81$$ 5.50000 9.52628i 0.611111 1.05848i
$$82$$ 0 0
$$83$$ 6.00000 0.658586 0.329293 0.944228i $$-0.393190\pi$$
0.329293 + 0.944228i $$0.393190\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ −6.00000 + 10.3923i −0.643268 + 1.11417i
$$88$$ 0 0
$$89$$ −5.50000 9.52628i −0.582999 1.00978i −0.995122 0.0986553i $$-0.968546\pi$$
0.412123 0.911128i $$-0.364787\pi$$
$$90$$ 0 0
$$91$$ −1.00000 + 5.19615i −0.104828 + 0.544705i
$$92$$ 0 0
$$93$$ 9.00000 + 15.5885i 0.933257 + 1.61645i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 11.0000 1.11688 0.558440 0.829545i $$-0.311400\pi$$
0.558440 + 0.829545i $$0.311400\pi$$
$$98$$ 0 0
$$99$$ 4.00000 0.402015
$$100$$ 0 0
$$101$$ 4.00000 6.92820i 0.398015 0.689382i −0.595466 0.803380i $$-0.703033\pi$$
0.993481 + 0.113998i $$0.0363659\pi$$
$$102$$ 0 0
$$103$$ 7.50000 + 12.9904i 0.738997 + 1.27998i 0.952947 + 0.303136i $$0.0980336\pi$$
−0.213950 + 0.976845i $$0.568633\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 4.00000 + 6.92820i 0.386695 + 0.669775i 0.992003 0.126217i $$-0.0402834\pi$$
−0.605308 + 0.795991i $$0.706950\pi$$
$$108$$ 0 0
$$109$$ 7.00000 12.1244i 0.670478 1.16130i −0.307290 0.951616i $$-0.599422\pi$$
0.977769 0.209687i $$-0.0672444\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −15.0000 −1.41108 −0.705541 0.708669i $$-0.749296\pi$$
−0.705541 + 0.708669i $$0.749296\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ −1.00000 1.73205i −0.0924500 0.160128i
$$118$$ 0 0
$$119$$ −6.00000 5.19615i −0.550019 0.476331i
$$120$$ 0 0
$$121$$ −2.50000 4.33013i −0.227273 0.393648i
$$122$$ 0 0
$$123$$ 5.00000 8.66025i 0.450835 0.780869i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 6.00000 10.3923i 0.528271 0.914991i
$$130$$ 0 0
$$131$$ −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i $$-0.991023\pi$$
0.475380 0.879781i $$-0.342311\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 8.50000 14.7224i 0.726204 1.25782i −0.232273 0.972651i $$-0.574616\pi$$
0.958477 0.285171i $$-0.0920506\pi$$
$$138$$ 0 0
$$139$$ −6.00000 −0.508913 −0.254457 0.967084i $$-0.581897\pi$$
−0.254457 + 0.967084i $$0.581897\pi$$
$$140$$ 0 0
$$141$$ 18.0000 1.51587
$$142$$ 0 0
$$143$$ −4.00000 + 6.92820i −0.334497 + 0.579365i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −11.0000 + 8.66025i −0.907265 + 0.714286i
$$148$$ 0 0
$$149$$ 10.0000 + 17.3205i 0.819232 + 1.41895i 0.906249 + 0.422744i $$0.138933\pi$$
−0.0870170 + 0.996207i $$0.527733\pi$$
$$150$$ 0 0
$$151$$ −10.0000 + 17.3205i −0.813788 + 1.40952i 0.0964061 + 0.995342i $$0.469265\pi$$
−0.910195 + 0.414181i $$0.864068\pi$$
$$152$$ 0 0
$$153$$ 3.00000 0.242536
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 5.00000 8.66025i 0.399043 0.691164i −0.594565 0.804048i $$-0.702676\pi$$
0.993608 + 0.112884i $$0.0360089\pi$$
$$158$$ 0 0
$$159$$ 6.00000 + 10.3923i 0.475831 + 0.824163i
$$160$$ 0 0
$$161$$ −7.50000 + 2.59808i −0.591083 + 0.204757i
$$162$$ 0 0
$$163$$ −12.0000 20.7846i −0.939913 1.62798i −0.765631 0.643280i $$-0.777573\pi$$
−0.174282 0.984696i $$-0.555760\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 8.00000 + 13.8564i 0.608229 + 1.05348i 0.991532 + 0.129861i $$0.0414530\pi$$
−0.383304 + 0.923622i $$0.625214\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 8.00000 + 13.8564i 0.601317 + 1.04151i
$$178$$ 0 0
$$179$$ −2.00000 + 3.46410i −0.149487 + 0.258919i −0.931038 0.364922i $$-0.881096\pi$$
0.781551 + 0.623841i $$0.214429\pi$$
$$180$$ 0 0
$$181$$ −8.00000 −0.594635 −0.297318 0.954779i $$-0.596092\pi$$
−0.297318 + 0.954779i $$0.596092\pi$$
$$182$$ 0 0
$$183$$ −16.0000 −1.18275
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ −6.00000 10.3923i −0.438763 0.759961i
$$188$$ 0 0
$$189$$ −2.00000 + 10.3923i −0.145479 + 0.755929i
$$190$$ 0 0
$$191$$ 6.50000 + 11.2583i 0.470323 + 0.814624i 0.999424 0.0339349i $$-0.0108039\pi$$
−0.529101 + 0.848559i $$0.677471\pi$$
$$192$$ 0 0
$$193$$ 2.50000 4.33013i 0.179954 0.311689i −0.761911 0.647682i $$-0.775738\pi$$
0.941865 + 0.335993i $$0.109072\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 18.0000 1.28245 0.641223 0.767354i $$-0.278427\pi$$
0.641223 + 0.767354i $$0.278427\pi$$
$$198$$ 0 0
$$199$$ −10.5000 + 18.1865i −0.744325 + 1.28921i 0.206184 + 0.978513i $$0.433895\pi$$
−0.950509 + 0.310696i $$0.899438\pi$$
$$200$$ 0 0
$$201$$ −14.0000 24.2487i −0.987484 1.71037i
$$202$$ 0 0
$$203$$ 3.00000 15.5885i 0.210559 1.09410i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 1.50000 2.59808i 0.104257 0.180579i
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 22.0000 1.51454 0.757271 0.653101i $$-0.226532\pi$$
0.757271 + 0.653101i $$0.226532\pi$$
$$212$$ 0 0
$$213$$ 11.0000 19.0526i 0.753708 1.30546i
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ −18.0000 15.5885i −1.22192 1.05821i
$$218$$ 0 0
$$219$$ 2.00000 + 3.46410i 0.135147 + 0.234082i
$$220$$ 0 0
$$221$$ −3.00000 + 5.19615i −0.201802 + 0.349531i
$$222$$ 0 0
$$223$$ −11.0000 −0.736614 −0.368307 0.929704i $$-0.620063\pi$$
−0.368307 + 0.929704i $$0.620063\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −11.0000 + 19.0526i −0.730096 + 1.26456i 0.226746 + 0.973954i $$0.427191\pi$$
−0.956842 + 0.290609i $$0.906142\pi$$
$$228$$ 0 0
$$229$$ 4.00000 + 6.92820i 0.264327 + 0.457829i 0.967387 0.253302i $$-0.0815167\pi$$
−0.703060 + 0.711131i $$0.748183\pi$$
$$230$$ 0 0
$$231$$ −20.0000 + 6.92820i −1.31590 + 0.455842i
$$232$$ 0 0
$$233$$ −11.0000 19.0526i −0.720634 1.24817i −0.960746 0.277429i $$-0.910518\pi$$
0.240112 0.970745i $$-0.422816\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ −18.0000 −1.16923
$$238$$ 0 0
$$239$$ 11.0000 0.711531 0.355765 0.934575i $$-0.384220\pi$$
0.355765 + 0.934575i $$0.384220\pi$$
$$240$$ 0 0
$$241$$ −9.00000 + 15.5885i −0.579741 + 1.00414i 0.415768 + 0.909471i $$0.363513\pi$$
−0.995509 + 0.0946700i $$0.969820\pi$$
$$242$$ 0 0
$$243$$ −5.00000 8.66025i −0.320750 0.555556i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 6.00000 10.3923i 0.380235 0.658586i
$$250$$ 0 0
$$251$$ −16.0000 −1.00991 −0.504956 0.863145i $$-0.668491\pi$$
−0.504956 + 0.863145i $$0.668491\pi$$
$$252$$ 0 0
$$253$$ −12.0000 −0.754434
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 9.00000 + 15.5885i 0.561405 + 0.972381i 0.997374 + 0.0724199i $$0.0230722\pi$$
−0.435970 + 0.899961i $$0.643595\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 3.00000 + 5.19615i 0.185695 + 0.321634i
$$262$$ 0 0
$$263$$ −1.50000 + 2.59808i −0.0924940 + 0.160204i −0.908560 0.417755i $$-0.862817\pi$$
0.816066 + 0.577959i $$0.196151\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ −22.0000 −1.34638
$$268$$ 0 0
$$269$$ 1.00000 1.73205i 0.0609711 0.105605i −0.833929 0.551872i $$-0.813914\pi$$
0.894900 + 0.446267i $$0.147247\pi$$
$$270$$ 0 0
$$271$$ −3.50000 6.06218i −0.212610 0.368251i 0.739921 0.672694i $$-0.234863\pi$$
−0.952531 + 0.304443i $$0.901530\pi$$
$$272$$ 0 0
$$273$$ 8.00000 + 6.92820i 0.484182 + 0.419314i
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 4.00000 6.92820i 0.240337 0.416275i −0.720473 0.693482i $$-0.756075\pi$$
0.960810 + 0.277207i $$0.0894088\pi$$
$$278$$ 0 0
$$279$$ 9.00000 0.538816
$$280$$ 0 0
$$281$$ −13.0000 −0.775515 −0.387757 0.921761i $$-0.626750\pi$$
−0.387757 + 0.921761i $$0.626750\pi$$
$$282$$ 0 0
$$283$$ 1.00000 1.73205i 0.0594438 0.102960i −0.834772 0.550596i $$-0.814401\pi$$
0.894216 + 0.447636i $$0.147734\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −2.50000 + 12.9904i −0.147570 + 0.766798i
$$288$$ 0 0
$$289$$ 4.00000 + 6.92820i 0.235294 + 0.407541i
$$290$$ 0 0
$$291$$ 11.0000 19.0526i 0.644831 1.11688i
$$292$$ 0 0
$$293$$ −14.0000 −0.817889 −0.408944 0.912559i $$-0.634103\pi$$
−0.408944 + 0.912559i $$0.634103\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ −8.00000 + 13.8564i −0.464207 + 0.804030i
$$298$$ 0 0
$$299$$ 3.00000 + 5.19615i 0.173494 + 0.300501i
$$300$$ 0 0
$$301$$ −3.00000 + 15.5885i −0.172917 + 0.898504i
$$302$$ 0 0
$$303$$ −8.00000 13.8564i −0.459588 0.796030i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 24.0000 1.36975 0.684876 0.728659i $$-0.259856\pi$$
0.684876 + 0.728659i $$0.259856\pi$$
$$308$$ 0 0
$$309$$ 30.0000 1.70664
$$310$$ 0 0
$$311$$ −0.500000 + 0.866025i −0.0283524 + 0.0491078i −0.879853 0.475245i $$-0.842359\pi$$
0.851501 + 0.524353i $$0.175693\pi$$
$$312$$ 0 0
$$313$$ −15.5000 26.8468i −0.876112 1.51747i −0.855574 0.517681i $$-0.826795\pi$$
−0.0205381 0.999789i $$-0.506538\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −6.00000 10.3923i −0.336994 0.583690i 0.646872 0.762598i $$-0.276077\pi$$
−0.983866 + 0.178908i $$0.942743\pi$$
$$318$$ 0 0
$$319$$ 12.0000 20.7846i 0.671871 1.16371i
$$320$$ 0 0
$$321$$ 16.0000 0.893033
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ −14.0000 24.2487i −0.774202 1.34096i
$$328$$ 0 0
$$329$$ −22.5000 + 7.79423i −1.24047 + 0.429710i
$$330$$ 0 0
$$331$$ 1.00000 + 1.73205i 0.0549650 + 0.0952021i 0.892199 0.451643i $$-0.149162\pi$$
−0.837234 + 0.546845i $$0.815829\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 29.0000 1.57973 0.789865 0.613280i $$-0.210150\pi$$
0.789865 + 0.613280i $$0.210150\pi$$
$$338$$ 0 0
$$339$$ −15.0000 + 25.9808i −0.814688 + 1.41108i
$$340$$ 0 0
$$341$$ −18.0000 31.1769i −0.974755 1.68832i
$$342$$ 0 0
$$343$$ 10.0000 15.5885i 0.539949 0.841698i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 1.00000 1.73205i 0.0536828 0.0929814i −0.837935 0.545770i $$-0.816237\pi$$
0.891618 + 0.452788i $$0.149571\pi$$
$$348$$ 0 0
$$349$$ 14.0000 0.749403 0.374701 0.927146i $$-0.377745\pi$$
0.374701 + 0.927146i $$0.377745\pi$$
$$350$$ 0 0
$$351$$ 8.00000 0.427008
$$352$$ 0 0
$$353$$ 7.50000 12.9904i 0.399185 0.691408i −0.594441 0.804139i $$-0.702627\pi$$
0.993626 + 0.112731i $$0.0359599\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ −15.0000 + 5.19615i −0.793884 + 0.275010i
$$358$$ 0 0
$$359$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$360$$ 0 0
$$361$$ 9.50000 16.4545i 0.500000 0.866025i
$$362$$ 0 0
$$363$$ −10.0000 −0.524864
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 8.00000 13.8564i 0.417597 0.723299i −0.578101 0.815966i $$-0.696206\pi$$
0.995697 + 0.0926670i $$0.0295392\pi$$
$$368$$ 0 0
$$369$$ −2.50000 4.33013i −0.130145 0.225417i
$$370$$ 0 0
$$371$$ −12.0000 10.3923i −0.623009 0.539542i
$$372$$ 0 0
$$373$$ 3.00000 + 5.19615i 0.155334 + 0.269047i 0.933181 0.359408i $$-0.117021\pi$$
−0.777847 + 0.628454i $$0.783688\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −12.0000 −0.618031
$$378$$ 0 0
$$379$$ 4.00000 0.205466 0.102733 0.994709i $$-0.467241\pi$$
0.102733 + 0.994709i $$0.467241\pi$$
$$380$$ 0 0
$$381$$ −8.00000 + 13.8564i −0.409852 + 0.709885i
$$382$$ 0 0
$$383$$ 10.5000 + 18.1865i 0.536525 + 0.929288i 0.999088 + 0.0427020i $$0.0135966\pi$$
−0.462563 + 0.886586i $$0.653070\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −3.00000 5.19615i −0.152499 0.264135i
$$388$$ 0 0
$$389$$ −17.0000 + 29.4449i −0.861934 + 1.49291i 0.00812520 + 0.999967i $$0.497414\pi$$
−0.870059 + 0.492947i $$0.835920\pi$$
$$390$$ 0 0
$$391$$ −9.00000 −0.455150
$$392$$ 0 0
$$393$$ −24.0000 −1.21064
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −19.0000 32.9090i −0.953583 1.65165i −0.737579 0.675261i $$-0.764031\pi$$
−0.216004 0.976392i $$-0.569302\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i $$-0.315043\pi$$
−0.998350 + 0.0574304i $$0.981709\pi$$
$$402$$ 0 0
$$403$$ −9.00000 + 15.5885i −0.448322 + 0.776516i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 15.5000 26.8468i 0.766426 1.32749i −0.173064 0.984911i $$-0.555367\pi$$
0.939490 0.342578i $$-0.111300\pi$$
$$410$$ 0 0
$$411$$ −17.0000 29.4449i −0.838548 1.45241i
$$412$$ 0 0
$$413$$ −16.0000 13.8564i −0.787309 0.681829i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −6.00000 + 10.3923i −0.293821 + 0.508913i
$$418$$ 0 0
$$419$$ 30.0000 1.46560 0.732798 0.680446i $$-0.238214\pi$$
0.732798 + 0.680446i $$0.238214\pi$$
$$420$$ 0 0
$$421$$ 20.0000 0.974740 0.487370 0.873195i $$-0.337956\pi$$
0.487370 + 0.873195i $$0.337956\pi$$
$$422$$ 0 0
$$423$$ 4.50000 7.79423i 0.218797 0.378968i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 20.0000 6.92820i 0.967868 0.335279i
$$428$$ 0 0
$$429$$ 8.00000 + 13.8564i 0.386244 + 0.668994i
$$430$$ 0 0
$$431$$ 15.5000 26.8468i 0.746609 1.29316i −0.202831 0.979214i $$-0.565014\pi$$
0.949439 0.313950i $$-0.101653\pi$$
$$432$$ 0 0
$$433$$ −21.0000 −1.00920 −0.504598 0.863355i $$-0.668359\pi$$
−0.504598 + 0.863355i $$0.668359\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ −17.5000 30.3109i −0.835229 1.44666i −0.893843 0.448379i $$-0.852001\pi$$
0.0586141 0.998281i $$-0.481332\pi$$
$$440$$ 0 0
$$441$$ 1.00000 + 6.92820i 0.0476190 + 0.329914i
$$442$$ 0 0
$$443$$ 6.00000 + 10.3923i 0.285069 + 0.493753i 0.972626 0.232377i $$-0.0746503\pi$$
−0.687557 + 0.726130i $$0.741317\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 40.0000 1.89194
$$448$$ 0 0
$$449$$ −27.0000 −1.27421 −0.637104 0.770778i $$-0.719868\pi$$
−0.637104 + 0.770778i $$0.719868\pi$$
$$450$$ 0 0
$$451$$ −10.0000 + 17.3205i −0.470882 + 0.815591i
$$452$$ 0 0
$$453$$ 20.0000 + 34.6410i 0.939682 + 1.62758i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 1.00000 + 1.73205i 0.0467780 + 0.0810219i 0.888466 0.458942i $$-0.151771\pi$$
−0.841688 + 0.539964i $$0.818438\pi$$
$$458$$ 0 0
$$459$$ −6.00000 + 10.3923i −0.280056 + 0.485071i
$$460$$ 0 0
$$461$$ 24.0000 1.11779 0.558896 0.829238i $$-0.311225\pi$$
0.558896 + 0.829238i $$0.311225\pi$$
$$462$$ 0 0
$$463$$ −11.0000 −0.511213 −0.255607 0.966781i $$-0.582275\pi$$
−0.255607 + 0.966781i $$0.582275\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −15.0000 25.9808i −0.694117 1.20225i −0.970477 0.241192i $$-0.922462\pi$$
0.276360 0.961054i $$-0.410872\pi$$
$$468$$ 0 0
$$469$$ 28.0000 + 24.2487i 1.29292 + 1.11970i
$$470$$ 0 0
$$471$$ −10.0000 17.3205i −0.460776 0.798087i
$$472$$ 0 0
$$473$$ −12.0000 + 20.7846i −0.551761 + 0.955677i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 6.00000 0.274721
$$478$$ 0 0
$$479$$ −4.50000 + 7.79423i −0.205610 + 0.356127i −0.950327 0.311253i $$-0.899251\pi$$
0.744717 + 0.667381i $$0.232585\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ −3.00000 + 15.5885i −0.136505 + 0.709299i
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 11.5000 19.9186i 0.521115 0.902597i −0.478584 0.878042i $$-0.658850\pi$$
0.999698 0.0245553i $$-0.00781698\pi$$
$$488$$ 0 0
$$489$$ −48.0000 −2.17064
$$490$$ 0 0
$$491$$ 30.0000 1.35388 0.676941 0.736038i $$-0.263305\pi$$
0.676941 + 0.736038i $$0.263305\pi$$
$$492$$ 0 0
$$493$$ 9.00000 15.5885i 0.405340 0.702069i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −5.50000 + 28.5788i −0.246709 + 1.28194i
$$498$$ 0 0
$$499$$ −19.0000 32.9090i −0.850557 1.47321i −0.880707 0.473662i $$-0.842932\pi$$
0.0301498 0.999545i $$-0.490402\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 16.0000 0.713405 0.356702 0.934218i $$-0.383901\pi$$
0.356702 + 0.934218i $$0.383901\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ −9.00000 + 15.5885i −0.399704 + 0.692308i
$$508$$ 0 0
$$509$$ −6.00000 10.3923i −0.265945 0.460631i 0.701866 0.712309i $$-0.252351\pi$$
−0.967811 + 0.251679i $$0.919017\pi$$
$$510$$ 0 0
$$511$$ −4.00000 3.46410i −0.176950 0.153243i
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ −36.0000 −1.58328
$$518$$ 0 0
$$519$$ 32.0000 1.40464
$$520$$ 0 0
$$521$$ −22.5000 + 38.9711i −0.985743 + 1.70736i −0.347155 + 0.937808i $$0.612852\pi$$
−0.638588 + 0.769549i $$0.720481\pi$$
$$522$$ 0 0
$$523$$ 11.0000 + 19.0526i 0.480996 + 0.833110i 0.999762 0.0218062i $$-0.00694167\pi$$
−0.518766 + 0.854916i $$0.673608\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −13.5000 23.3827i −0.588069 1.01857i
$$528$$ 0 0
$$529$$ 7.00000 12.1244i 0.304348 0.527146i
$$530$$ 0 0
$$531$$ 8.00000 0.347170
$$532$$ 0 0
$$533$$ 10.0000 0.433148
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 4.00000 + 6.92820i 0.172613 + 0.298974i
$$538$$ 0 0
$$539$$ 22.0000 17.3205i 0.947607 0.746047i
$$540$$ 0 0
$$541$$ 15.0000 + 25.9808i 0.644900 + 1.11700i 0.984325 + 0.176367i $$0.0564345\pi$$
−0.339424 + 0.940633i $$0.610232\pi$$
$$542$$ 0 0
$$543$$ −8.00000 + 13.8564i −0.343313 + 0.594635i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 40.0000 1.71028 0.855138 0.518400i $$-0.173472\pi$$
0.855138 + 0.518400i $$0.173472\pi$$
$$548$$ 0 0
$$549$$ −4.00000 + 6.92820i −0.170716 + 0.295689i
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 22.5000 7.79423i 0.956797 0.331444i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −18.0000 + 31.1769i −0.762684 + 1.32101i 0.178778 + 0.983890i $$0.442786\pi$$
−0.941462 + 0.337119i $$0.890548\pi$$
$$558$$ 0 0
$$559$$ 12.0000 0.507546
$$560$$ 0 0
$$561$$ −24.0000 −1.01328
$$562$$ 0 0
$$563$$ −13.0000 + 22.5167i −0.547885 + 0.948964i 0.450535 + 0.892759i $$0.351233\pi$$
−0.998419 + 0.0562051i $$0.982100\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 22.0000 + 19.0526i 0.923913 + 0.800132i
$$568$$ 0 0
$$569$$ 5.50000 + 9.52628i 0.230572 + 0.399362i 0.957977 0.286846i $$-0.0926069\pi$$
−0.727405 + 0.686209i $$0.759274\pi$$
$$570$$ 0 0
$$571$$ 6.00000 10.3923i 0.251092 0.434904i −0.712735 0.701434i $$-0.752544\pi$$
0.963827 + 0.266529i $$0.0858769\pi$$
$$572$$ 0 0
$$573$$ 26.0000 1.08617
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 7.00000 12.1244i 0.291414 0.504744i −0.682730 0.730670i $$-0.739208\pi$$
0.974144 + 0.225927i $$0.0725410\pi$$
$$578$$ 0 0
$$579$$ −5.00000 8.66025i −0.207793 0.359908i
$$580$$ 0 0
$$581$$ −3.00000 + 15.5885i −0.124461 + 0.646718i
$$582$$ 0 0
$$583$$ −12.0000 20.7846i −0.496989 0.860811i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −8.00000 −0.330195 −0.165098 0.986277i $$-0.552794\pi$$
−0.165098 + 0.986277i $$0.552794\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 18.0000 31.1769i 0.740421 1.28245i
$$592$$ 0 0
$$593$$ −6.50000 11.2583i −0.266923 0.462324i 0.701143 0.713021i $$-0.252674\pi$$
−0.968066 + 0.250697i $$0.919340\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 21.0000 + 36.3731i 0.859473 + 1.48865i
$$598$$ 0 0
$$599$$ −4.50000 + 7.79423i −0.183865 + 0.318464i −0.943193 0.332244i $$-0.892194\pi$$
0.759328 + 0.650708i $$0.225528\pi$$
$$600$$ 0 0
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ 0 0
$$603$$ −14.0000 −0.570124
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ −6.50000 11.2583i −0.263827 0.456962i 0.703429 0.710766i $$-0.251651\pi$$
−0.967256 + 0.253804i $$0.918318\pi$$
$$608$$ 0 0
$$609$$ −24.0000 20.7846i −0.972529 0.842235i
$$610$$ 0 0
$$611$$ 9.00000 + 15.5885i 0.364101 + 0.630641i
$$612$$ 0 0
$$613$$ 13.0000 22.5167i 0.525065 0.909439i −0.474509 0.880251i $$-0.657374\pi$$
0.999574 0.0291886i $$-0.00929235\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 17.0000 0.684394 0.342197 0.939628i $$-0.388829\pi$$
0.342197 + 0.939628i $$0.388829\pi$$
$$618$$ 0 0
$$619$$ 5.00000 8.66025i 0.200967 0.348085i −0.747873 0.663842i $$-0.768925\pi$$
0.948840 + 0.315757i $$0.102258\pi$$
$$620$$ 0 0
$$621$$ 6.00000 + 10.3923i 0.240772 + 0.417029i
$$622$$ 0 0
$$623$$ 27.5000 9.52628i 1.10176 0.381662i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −15.0000 −0.597141 −0.298570 0.954388i $$-0.596510\pi$$
−0.298570 + 0.954388i $$0.596510\pi$$
$$632$$ 0 0
$$633$$ 22.0000 38.1051i 0.874421 1.51454i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −13.0000 5.19615i −0.515079 0.205879i
$$638$$ 0 0
$$639$$ −5.50000 9.52628i −0.217577 0.376854i
$$640$$ 0 0
$$641$$ 17.5000 30.3109i 0.691208 1.19721i −0.280234 0.959932i $$-0.590412\pi$$
0.971442 0.237276i $$-0.0762547\pi$$
$$642$$ 0 0
$$643$$ 16.0000 0.630978 0.315489 0.948929i $$-0.397831\pi$$
0.315489 + 0.948929i $$0.397831\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −24.0000 + 41.5692i −0.943537 + 1.63425i −0.184884 + 0.982760i $$0.559191\pi$$
−0.758654 + 0.651494i $$0.774142\pi$$
$$648$$ 0 0
$$649$$ −16.0000 27.7128i −0.628055 1.08782i
$$650$$ 0 0
$$651$$ −45.0000 + 15.5885i −1.76369 + 0.610960i
$$652$$ 0 0
$$653$$ 15.0000 + 25.9808i 0.586995 + 1.01671i 0.994623 + 0.103558i $$0.0330227\pi$$
−0.407628 + 0.913148i $$0.633644\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 2.00000 0.0780274
$$658$$ 0 0
$$659$$ 14.0000 0.545363 0.272681 0.962104i $$-0.412090\pi$$
0.272681 + 0.962104i $$0.412090\pi$$
$$660$$ 0 0
$$661$$ −22.0000 + 38.1051i −0.855701 + 1.48212i 0.0202925 + 0.999794i $$0.493540\pi$$
−0.875993 + 0.482323i $$0.839793\pi$$
$$662$$ 0 0
$$663$$ 6.00000 + 10.3923i 0.233021 + 0.403604i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −9.00000 15.5885i −0.348481 0.603587i
$$668$$ 0 0
$$669$$ −11.0000 + 19.0526i −0.425285 + 0.736614i
$$670$$ 0 0
$$671$$ 32.0000 1.23535
$$672$$ 0 0
$$673$$ 43.0000 1.65753 0.828764 0.559598i $$-0.189045\pi$$
0.828764 + 0.559598i $$0.189045\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −3.00000 5.19615i −0.115299 0.199704i 0.802600 0.596518i $$-0.203449\pi$$
−0.917899 + 0.396813i $$0.870116\pi$$
$$678$$ 0 0
$$679$$ −5.50000 + 28.5788i −0.211071 + 1.09676i
$$680$$ 0 0
$$681$$ 22.0000 + 38.1051i 0.843042 + 1.46019i
$$682$$ 0 0
$$683$$ −7.00000 + 12.1244i −0.267848 + 0.463926i −0.968306 0.249768i $$-0.919646\pi$$
0.700458 + 0.713693i $$0.252979\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 16.0000 0.610438
$$688$$ 0 0
$$689$$ −6.00000 + 10.3923i −0.228582 + 0.395915i
$$690$$ 0 0
$$691$$ 11.0000 + 19.0526i 0.418460 + 0.724793i 0.995785 0.0917209i $$-0.0292368\pi$$
−0.577325 + 0.816514i $$0.695903\pi$$
$$692$$ 0 0
$$693$$ −2.00000 + 10.3923i −0.0759737 + 0.394771i
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −7.50000 + 12.9904i −0.284083 + 0.492046i
$$698$$ 0 0
$$699$$ −44.0000 −1.66423
$$700$$ 0 0
$$701$$ 12.0000 0.453234 0.226617 0.973984i $$-0.427233\pi$$
0.226617 + 0.973984i $$0.427233\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 16.0000 + 13.8564i 0.601742 + 0.521124i
$$708$$ 0 0
$$709$$ 4.00000 + 6.92820i 0.150223 + 0.260194i 0.931309 0.364229i $$-0.118667\pi$$
−0.781086 + 0.624423i $$0.785334\pi$$
$$710$$ 0 0
$$711$$ −4.50000 + 7.79423i −0.168763 + 0.292306i
$$712$$ 0 0
$$713$$ −27.0000 −1.01116
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 11.0000 19.0526i 0.410803 0.711531i
$$718$$ 0 0
$$719$$ −14.5000 25.1147i −0.540759 0.936622i −0.998861 0.0477220i $$-0.984804\pi$$
0.458102 0.888900i $$-0.348529\pi$$
$$720$$ 0 0
$$721$$ −37.5000 + 12.9904i −1.39657 + 0.483787i
$$722$$ 0 0
$$723$$ 18.0000 + 31.1769i 0.669427 + 1.15948i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −29.0000 −1.07555 −0.537775 0.843088i $$-0.680735\pi$$
−0.537775 + 0.843088i $$0.680735\pi$$
$$728$$ 0 0
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ −9.00000 + 15.5885i −0.332877 + 0.576560i
$$732$$ 0 0
$$733$$ 7.00000 + 12.1244i 0.258551 + 0.447823i 0.965854 0.259087i $$-0.0834217\pi$$
−0.707303 + 0.706910i $$0.750088\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 28.0000 + 48.4974i 1.03139 + 1.78643i
$$738$$ 0 0
$$739$$ 8.00000 13.8564i 0.294285 0.509716i −0.680534 0.732717i $$-0.738252\pi$$
0.974818 + 0.223001i $$0.0715853\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 27.0000 0.990534 0.495267 0.868741i $$-0.335070\pi$$
0.495267 + 0.868741i $$0.335070\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ −3.00000 5.19615i −0.109764 0.190117i
$$748$$ 0 0
$$749$$ −20.0000 + 6.92820i −0.730784 + 0.253151i
$$750$$ 0 0
$$751$$ 16.0000 + 27.7128i 0.583848 + 1.01125i 0.995018 + 0.0996961i $$0.0317870\pi$$
−0.411170 + 0.911559i $$0.634880\pi$$
$$752$$ 0 0
$$753$$ −16.0000 + 27.7128i −0.583072 + 1.00991i
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 34.0000 1.23575 0.617876 0.786276i $$-0.287994\pi$$
0.617876 + 0.786276i $$0.287994\pi$$
$$758$$ 0 0
$$759$$ −12.0000 + 20.7846i −0.435572 + 0.754434i
$$760$$ 0 0
$$761$$ 21.5000 + 37.2391i 0.779374 + 1.34992i 0.932303 + 0.361679i $$0.117796\pi$$
−0.152928 + 0.988237i $$0.548870\pi$$
$$762$$ 0 0
$$763$$ 28.0000 + 24.2487i 1.01367 + 0.877862i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −8.00000 + 13.8564i −0.288863 + 0.500326i
$$768$$ 0 0
$$769$$ 14.0000 0.504853 0.252426 0.967616i $$-0.418771\pi$$
0.252426 + 0.967616i $$0.418771\pi$$
$$770$$ 0 0
$$771$$ 36.0000 1.29651
$$772$$ 0 0
$$773$$ −10.0000 + 17.3205i −0.359675 + 0.622975i −0.987906 0.155051i $$-0.950446\pi$$
0.628231 + 0.778027i $$0.283779\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ −22.0000 + 38.1051i −0.787222 + 1.36351i
$$782$$ 0 0
$$783$$ −24.0000 −0.857690
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 4.00000 6.92820i 0.142585 0.246964i −0.785885 0.618373i $$-0.787792\pi$$
0.928469 + 0.371409i $$0.121125\pi$$
$$788$$ 0 0
$$789$$ 3.00000 + 5.19615i 0.106803 + 0.184988i
$$790$$ 0 0
$$791$$ 7.50000 38.9711i 0.266669 1.38565i
$$792$$ 0 0
$$793$$ −8.00000 13.8564i −0.284088 0.492055i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −8.00000 −0.283375 −0.141687 0.989911i $$-0.545253\pi$$
−0.141687 + 0.989911i $$0.545253\pi$$
$$798$$ 0 0
$$799$$ −27.0000 −0.955191
$$800$$ 0 0