Properties

Label 1400.2.q.c
Level $1400$
Weight $2$
Character orbit 1400.q
Analytic conductor $11.179$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} + ( - 3 \zeta_{6} + 1) q^{7} + 2 \zeta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{3} + ( - 3 \zeta_{6} + 1) q^{7} + 2 \zeta_{6} q^{9} + ( - 2 \zeta_{6} + 2) q^{11} - 4 q^{13} - 6 \zeta_{6} q^{19} + (\zeta_{6} + 2) q^{21} + 3 \zeta_{6} q^{23} - 5 q^{27} - 3 q^{29} + 2 \zeta_{6} q^{33} - 12 \zeta_{6} q^{37} + ( - 4 \zeta_{6} + 4) q^{39} - 7 q^{41} + 9 q^{43} + (3 \zeta_{6} - 8) q^{49} + (6 \zeta_{6} - 6) q^{53} + 6 q^{57} + ( - 10 \zeta_{6} + 10) q^{59} - 5 \zeta_{6} q^{61} + ( - 4 \zeta_{6} + 6) q^{63} + ( - 11 \zeta_{6} + 11) q^{67} - 3 q^{69} - 10 q^{71} + (8 \zeta_{6} - 8) q^{73} + ( - 2 \zeta_{6} - 4) q^{77} - 6 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{81} + 3 q^{83} + ( - 3 \zeta_{6} + 3) q^{87} - 17 \zeta_{6} q^{89} + (12 \zeta_{6} - 4) q^{91} + 2 q^{97} + 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - q^{7} + 2 q^{9} + 2 q^{11} - 8 q^{13} - 6 q^{19} + 5 q^{21} + 3 q^{23} - 10 q^{27} - 6 q^{29} + 2 q^{33} - 12 q^{37} + 4 q^{39} - 14 q^{41} + 18 q^{43} - 13 q^{49} - 6 q^{53} + 12 q^{57} + 10 q^{59} - 5 q^{61} + 8 q^{63} + 11 q^{67} - 6 q^{69} - 20 q^{71} - 8 q^{73} - 10 q^{77} - 6 q^{79} - q^{81} + 6 q^{83} + 3 q^{87} - 17 q^{89} + 4 q^{91} + 4 q^{97} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 0 0 0 −0.500000 + 2.59808i 0 1.00000 1.73205i 0
1201.1 0 −0.500000 + 0.866025i 0 0 0 −0.500000 2.59808i 0 1.00000 + 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1400.2.q.c 2
5.b even 2 1 280.2.q.b 2
5.c odd 4 2 1400.2.bh.c 4
7.c even 3 1 inner 1400.2.q.c 2
7.c even 3 1 9800.2.a.z 1
7.d odd 6 1 9800.2.a.o 1
15.d odd 2 1 2520.2.bi.d 2
20.d odd 2 1 560.2.q.e 2
35.c odd 2 1 1960.2.q.d 2
35.i odd 6 1 1960.2.a.l 1
35.i odd 6 1 1960.2.q.d 2
35.j even 6 1 280.2.q.b 2
35.j even 6 1 1960.2.a.c 1
35.l odd 12 2 1400.2.bh.c 4
105.o odd 6 1 2520.2.bi.d 2
140.p odd 6 1 560.2.q.e 2
140.p odd 6 1 3920.2.a.v 1
140.s even 6 1 3920.2.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.b 2 5.b even 2 1
280.2.q.b 2 35.j even 6 1
560.2.q.e 2 20.d odd 2 1
560.2.q.e 2 140.p odd 6 1
1400.2.q.c 2 1.a even 1 1 trivial
1400.2.q.c 2 7.c even 3 1 inner
1400.2.bh.c 4 5.c odd 4 2
1400.2.bh.c 4 35.l odd 12 2
1960.2.a.c 1 35.j even 6 1
1960.2.a.l 1 35.i odd 6 1
1960.2.q.d 2 35.c odd 2 1
1960.2.q.d 2 35.i odd 6 1
2520.2.bi.d 2 15.d odd 2 1
2520.2.bi.d 2 105.o odd 6 1
3920.2.a.q 1 140.s even 6 1
3920.2.a.v 1 140.p odd 6 1
9800.2.a.o 1 7.d odd 6 1
9800.2.a.z 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1400, [\chi])\):

\( T_{3}^{2} + T_{3} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$29$ \( (T + 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$41$ \( (T + 7)^{2} \) Copy content Toggle raw display
$43$ \( (T - 9)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$61$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$67$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$71$ \( (T + 10)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$79$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$83$ \( (T - 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 17T + 289 \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less