# Properties

 Label 1400.2.q.b.401.1 Level $1400$ Weight $2$ Character 1400.401 Analytic conductor $11.179$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1400 = 2^{3} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1400.q (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.1790562830$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 401.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 1400.401 Dual form 1400.2.q.b.1201.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.00000 - 1.73205i) q^{3} +(0.500000 + 2.59808i) q^{7} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(-1.00000 - 1.73205i) q^{3} +(0.500000 + 2.59808i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-2.00000 - 3.46410i) q^{11} -2.00000 q^{13} +(1.50000 + 2.59808i) q^{17} +(4.00000 - 3.46410i) q^{21} +(-1.50000 + 2.59808i) q^{23} -4.00000 q^{27} -6.00000 q^{29} +(-4.50000 - 7.79423i) q^{31} +(-4.00000 + 6.92820i) q^{33} +(2.00000 + 3.46410i) q^{39} +5.00000 q^{41} -6.00000 q^{43} +(-4.50000 + 7.79423i) q^{47} +(-6.50000 + 2.59808i) q^{49} +(3.00000 - 5.19615i) q^{51} +(3.00000 + 5.19615i) q^{53} +(-4.00000 - 6.92820i) q^{59} +(-4.00000 + 6.92820i) q^{61} +(-2.50000 - 0.866025i) q^{63} +(-7.00000 - 12.1244i) q^{67} +6.00000 q^{69} +11.0000 q^{71} +(1.00000 + 1.73205i) q^{73} +(8.00000 - 6.92820i) q^{77} +(-4.50000 + 7.79423i) q^{79} +(5.50000 + 9.52628i) q^{81} -6.00000 q^{83} +(6.00000 + 10.3923i) q^{87} +(-5.50000 + 9.52628i) q^{89} +(-1.00000 - 5.19615i) q^{91} +(-9.00000 + 15.5885i) q^{93} -11.0000 q^{97} +4.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} + q^{7} - q^{9}+O(q^{10})$$ 2 * q - 2 * q^3 + q^7 - q^9 $$2 q - 2 q^{3} + q^{7} - q^{9} - 4 q^{11} - 4 q^{13} + 3 q^{17} + 8 q^{21} - 3 q^{23} - 8 q^{27} - 12 q^{29} - 9 q^{31} - 8 q^{33} + 4 q^{39} + 10 q^{41} - 12 q^{43} - 9 q^{47} - 13 q^{49} + 6 q^{51} + 6 q^{53} - 8 q^{59} - 8 q^{61} - 5 q^{63} - 14 q^{67} + 12 q^{69} + 22 q^{71} + 2 q^{73} + 16 q^{77} - 9 q^{79} + 11 q^{81} - 12 q^{83} + 12 q^{87} - 11 q^{89} - 2 q^{91} - 18 q^{93} - 22 q^{97} + 8 q^{99}+O(q^{100})$$ 2 * q - 2 * q^3 + q^7 - q^9 - 4 * q^11 - 4 * q^13 + 3 * q^17 + 8 * q^21 - 3 * q^23 - 8 * q^27 - 12 * q^29 - 9 * q^31 - 8 * q^33 + 4 * q^39 + 10 * q^41 - 12 * q^43 - 9 * q^47 - 13 * q^49 + 6 * q^51 + 6 * q^53 - 8 * q^59 - 8 * q^61 - 5 * q^63 - 14 * q^67 + 12 * q^69 + 22 * q^71 + 2 * q^73 + 16 * q^77 - 9 * q^79 + 11 * q^81 - 12 * q^83 + 12 * q^87 - 11 * q^89 - 2 * q^91 - 18 * q^93 - 22 * q^97 + 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times$$.

 $$n$$ $$351$$ $$701$$ $$801$$ $$1177$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −1.00000 1.73205i −0.577350 1.00000i −0.995782 0.0917517i $$-0.970753\pi$$
0.418432 0.908248i $$-0.362580\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 0.500000 + 2.59808i 0.188982 + 0.981981i
$$8$$ 0 0
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ 0 0
$$11$$ −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i $$-0.960630\pi$$
0.389338 0.921095i $$-0.372704\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i $$-0.0481447\pi$$
−0.624780 + 0.780801i $$0.714811\pi$$
$$18$$ 0 0
$$19$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$20$$ 0 0
$$21$$ 4.00000 3.46410i 0.872872 0.755929i
$$22$$ 0 0
$$23$$ −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i $$-0.934591\pi$$
0.666190 + 0.745782i $$0.267924\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ −4.00000 −0.769800
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −4.50000 7.79423i −0.808224 1.39988i −0.914093 0.405505i $$-0.867096\pi$$
0.105869 0.994380i $$-0.466238\pi$$
$$32$$ 0 0
$$33$$ −4.00000 + 6.92820i −0.696311 + 1.20605i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$38$$ 0 0
$$39$$ 2.00000 + 3.46410i 0.320256 + 0.554700i
$$40$$ 0 0
$$41$$ 5.00000 0.780869 0.390434 0.920631i $$-0.372325\pi$$
0.390434 + 0.920631i $$0.372325\pi$$
$$42$$ 0 0
$$43$$ −6.00000 −0.914991 −0.457496 0.889212i $$-0.651253\pi$$
−0.457496 + 0.889212i $$0.651253\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −4.50000 + 7.79423i −0.656392 + 1.13691i 0.325150 + 0.945662i $$0.394585\pi$$
−0.981543 + 0.191243i $$0.938748\pi$$
$$48$$ 0 0
$$49$$ −6.50000 + 2.59808i −0.928571 + 0.371154i
$$50$$ 0 0
$$51$$ 3.00000 5.19615i 0.420084 0.727607i
$$52$$ 0 0
$$53$$ 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i $$-0.0314685\pi$$
−0.583036 + 0.812447i $$0.698135\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −4.00000 6.92820i −0.520756 0.901975i −0.999709 0.0241347i $$-0.992317\pi$$
0.478953 0.877841i $$-0.341016\pi$$
$$60$$ 0 0
$$61$$ −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i $$0.337817\pi$$
−0.999901 + 0.0140840i $$0.995517\pi$$
$$62$$ 0 0
$$63$$ −2.50000 0.866025i −0.314970 0.109109i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −7.00000 12.1244i −0.855186 1.48123i −0.876472 0.481452i $$-0.840109\pi$$
0.0212861 0.999773i $$-0.493224\pi$$
$$68$$ 0 0
$$69$$ 6.00000 0.722315
$$70$$ 0 0
$$71$$ 11.0000 1.30546 0.652730 0.757591i $$-0.273624\pi$$
0.652730 + 0.757591i $$0.273624\pi$$
$$72$$ 0 0
$$73$$ 1.00000 + 1.73205i 0.117041 + 0.202721i 0.918594 0.395203i $$-0.129326\pi$$
−0.801553 + 0.597924i $$0.795992\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 8.00000 6.92820i 0.911685 0.789542i
$$78$$ 0 0
$$79$$ −4.50000 + 7.79423i −0.506290 + 0.876919i 0.493684 + 0.869641i $$0.335650\pi$$
−0.999974 + 0.00727784i $$0.997683\pi$$
$$80$$ 0 0
$$81$$ 5.50000 + 9.52628i 0.611111 + 1.05848i
$$82$$ 0 0
$$83$$ −6.00000 −0.658586 −0.329293 0.944228i $$-0.606810\pi$$
−0.329293 + 0.944228i $$0.606810\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 6.00000 + 10.3923i 0.643268 + 1.11417i
$$88$$ 0 0
$$89$$ −5.50000 + 9.52628i −0.582999 + 1.00978i 0.412123 + 0.911128i $$0.364787\pi$$
−0.995122 + 0.0986553i $$0.968546\pi$$
$$90$$ 0 0
$$91$$ −1.00000 5.19615i −0.104828 0.544705i
$$92$$ 0 0
$$93$$ −9.00000 + 15.5885i −0.933257 + 1.61645i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −11.0000 −1.11688 −0.558440 0.829545i $$-0.688600\pi$$
−0.558440 + 0.829545i $$0.688600\pi$$
$$98$$ 0 0
$$99$$ 4.00000 0.402015
$$100$$ 0 0
$$101$$ 4.00000 + 6.92820i 0.398015 + 0.689382i 0.993481 0.113998i $$-0.0363659\pi$$
−0.595466 + 0.803380i $$0.703033\pi$$
$$102$$ 0 0
$$103$$ −7.50000 + 12.9904i −0.738997 + 1.27998i 0.213950 + 0.976845i $$0.431367\pi$$
−0.952947 + 0.303136i $$0.901966\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −4.00000 + 6.92820i −0.386695 + 0.669775i −0.992003 0.126217i $$-0.959717\pi$$
0.605308 + 0.795991i $$0.293050\pi$$
$$108$$ 0 0
$$109$$ 7.00000 + 12.1244i 0.670478 + 1.16130i 0.977769 + 0.209687i $$0.0672444\pi$$
−0.307290 + 0.951616i $$0.599422\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 15.0000 1.41108 0.705541 0.708669i $$-0.250704\pi$$
0.705541 + 0.708669i $$0.250704\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 1.00000 1.73205i 0.0924500 0.160128i
$$118$$ 0 0
$$119$$ −6.00000 + 5.19615i −0.550019 + 0.476331i
$$120$$ 0 0
$$121$$ −2.50000 + 4.33013i −0.227273 + 0.393648i
$$122$$ 0 0
$$123$$ −5.00000 8.66025i −0.450835 0.780869i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 8.00000 0.709885 0.354943 0.934888i $$-0.384500\pi$$
0.354943 + 0.934888i $$0.384500\pi$$
$$128$$ 0 0
$$129$$ 6.00000 + 10.3923i 0.528271 + 0.914991i
$$130$$ 0 0
$$131$$ −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i $$0.342311\pi$$
−0.999602 + 0.0281993i $$0.991023\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −8.50000 14.7224i −0.726204 1.25782i −0.958477 0.285171i $$-0.907949\pi$$
0.232273 0.972651i $$-0.425384\pi$$
$$138$$ 0 0
$$139$$ −6.00000 −0.508913 −0.254457 0.967084i $$-0.581897\pi$$
−0.254457 + 0.967084i $$0.581897\pi$$
$$140$$ 0 0
$$141$$ 18.0000 1.51587
$$142$$ 0 0
$$143$$ 4.00000 + 6.92820i 0.334497 + 0.579365i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 11.0000 + 8.66025i 0.907265 + 0.714286i
$$148$$ 0 0
$$149$$ 10.0000 17.3205i 0.819232 1.41895i −0.0870170 0.996207i $$-0.527733\pi$$
0.906249 0.422744i $$-0.138933\pi$$
$$150$$ 0 0
$$151$$ −10.0000 17.3205i −0.813788 1.40952i −0.910195 0.414181i $$-0.864068\pi$$
0.0964061 0.995342i $$-0.469265\pi$$
$$152$$ 0 0
$$153$$ −3.00000 −0.242536
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −5.00000 8.66025i −0.399043 0.691164i 0.594565 0.804048i $$-0.297324\pi$$
−0.993608 + 0.112884i $$0.963991\pi$$
$$158$$ 0 0
$$159$$ 6.00000 10.3923i 0.475831 0.824163i
$$160$$ 0 0
$$161$$ −7.50000 2.59808i −0.591083 0.204757i
$$162$$ 0 0
$$163$$ 12.0000 20.7846i 0.939913 1.62798i 0.174282 0.984696i $$-0.444240\pi$$
0.765631 0.643280i $$-0.222427\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −8.00000 + 13.8564i −0.608229 + 1.05348i 0.383304 + 0.923622i $$0.374786\pi$$
−0.991532 + 0.129861i $$0.958547\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −8.00000 + 13.8564i −0.601317 + 1.04151i
$$178$$ 0 0
$$179$$ −2.00000 3.46410i −0.149487 0.258919i 0.781551 0.623841i $$-0.214429\pi$$
−0.931038 + 0.364922i $$0.881096\pi$$
$$180$$ 0 0
$$181$$ −8.00000 −0.594635 −0.297318 0.954779i $$-0.596092\pi$$
−0.297318 + 0.954779i $$0.596092\pi$$
$$182$$ 0 0
$$183$$ 16.0000 1.18275
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 6.00000 10.3923i 0.438763 0.759961i
$$188$$ 0 0
$$189$$ −2.00000 10.3923i −0.145479 0.755929i
$$190$$ 0 0
$$191$$ 6.50000 11.2583i 0.470323 0.814624i −0.529101 0.848559i $$-0.677471\pi$$
0.999424 + 0.0339349i $$0.0108039\pi$$
$$192$$ 0 0
$$193$$ −2.50000 4.33013i −0.179954 0.311689i 0.761911 0.647682i $$-0.224262\pi$$
−0.941865 + 0.335993i $$0.890928\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −18.0000 −1.28245 −0.641223 0.767354i $$-0.721573\pi$$
−0.641223 + 0.767354i $$0.721573\pi$$
$$198$$ 0 0
$$199$$ −10.5000 18.1865i −0.744325 1.28921i −0.950509 0.310696i $$-0.899438\pi$$
0.206184 0.978513i $$-0.433895\pi$$
$$200$$ 0 0
$$201$$ −14.0000 + 24.2487i −0.987484 + 1.71037i
$$202$$ 0 0
$$203$$ −3.00000 15.5885i −0.210559 1.09410i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ −1.50000 2.59808i −0.104257 0.180579i
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 22.0000 1.51454 0.757271 0.653101i $$-0.226532\pi$$
0.757271 + 0.653101i $$0.226532\pi$$
$$212$$ 0 0
$$213$$ −11.0000 19.0526i −0.753708 1.30546i
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 18.0000 15.5885i 1.22192 1.05821i
$$218$$ 0 0
$$219$$ 2.00000 3.46410i 0.135147 0.234082i
$$220$$ 0 0
$$221$$ −3.00000 5.19615i −0.201802 0.349531i
$$222$$ 0 0
$$223$$ 11.0000 0.736614 0.368307 0.929704i $$-0.379937\pi$$
0.368307 + 0.929704i $$0.379937\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 11.0000 + 19.0526i 0.730096 + 1.26456i 0.956842 + 0.290609i $$0.0938578\pi$$
−0.226746 + 0.973954i $$0.572809\pi$$
$$228$$ 0 0
$$229$$ 4.00000 6.92820i 0.264327 0.457829i −0.703060 0.711131i $$-0.748183\pi$$
0.967387 + 0.253302i $$0.0815167\pi$$
$$230$$ 0 0
$$231$$ −20.0000 6.92820i −1.31590 0.455842i
$$232$$ 0 0
$$233$$ 11.0000 19.0526i 0.720634 1.24817i −0.240112 0.970745i $$-0.577184\pi$$
0.960746 0.277429i $$-0.0894825\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 18.0000 1.16923
$$238$$ 0 0
$$239$$ 11.0000 0.711531 0.355765 0.934575i $$-0.384220\pi$$
0.355765 + 0.934575i $$0.384220\pi$$
$$240$$ 0 0
$$241$$ −9.00000 15.5885i −0.579741 1.00414i −0.995509 0.0946700i $$-0.969820\pi$$
0.415768 0.909471i $$-0.363513\pi$$
$$242$$ 0 0
$$243$$ 5.00000 8.66025i 0.320750 0.555556i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 6.00000 + 10.3923i 0.380235 + 0.658586i
$$250$$ 0 0
$$251$$ −16.0000 −1.00991 −0.504956 0.863145i $$-0.668491\pi$$
−0.504956 + 0.863145i $$0.668491\pi$$
$$252$$ 0 0
$$253$$ 12.0000 0.754434
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i $$0.356405\pi$$
−0.997374 + 0.0724199i $$0.976928\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 3.00000 5.19615i 0.185695 0.321634i
$$262$$ 0 0
$$263$$ 1.50000 + 2.59808i 0.0924940 + 0.160204i 0.908560 0.417755i $$-0.137183\pi$$
−0.816066 + 0.577959i $$0.803849\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 22.0000 1.34638
$$268$$ 0 0
$$269$$ 1.00000 + 1.73205i 0.0609711 + 0.105605i 0.894900 0.446267i $$-0.147247\pi$$
−0.833929 + 0.551872i $$0.813914\pi$$
$$270$$ 0 0
$$271$$ −3.50000 + 6.06218i −0.212610 + 0.368251i −0.952531 0.304443i $$-0.901530\pi$$
0.739921 + 0.672694i $$0.234863\pi$$
$$272$$ 0 0
$$273$$ −8.00000 + 6.92820i −0.484182 + 0.419314i
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ −4.00000 6.92820i −0.240337 0.416275i 0.720473 0.693482i $$-0.243925\pi$$
−0.960810 + 0.277207i $$0.910591\pi$$
$$278$$ 0 0
$$279$$ 9.00000 0.538816
$$280$$ 0 0
$$281$$ −13.0000 −0.775515 −0.387757 0.921761i $$-0.626750\pi$$
−0.387757 + 0.921761i $$0.626750\pi$$
$$282$$ 0 0
$$283$$ −1.00000 1.73205i −0.0594438 0.102960i 0.834772 0.550596i $$-0.185599\pi$$
−0.894216 + 0.447636i $$0.852266\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 2.50000 + 12.9904i 0.147570 + 0.766798i
$$288$$ 0 0
$$289$$ 4.00000 6.92820i 0.235294 0.407541i
$$290$$ 0 0
$$291$$ 11.0000 + 19.0526i 0.644831 + 1.11688i
$$292$$ 0 0
$$293$$ 14.0000 0.817889 0.408944 0.912559i $$-0.365897\pi$$
0.408944 + 0.912559i $$0.365897\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 8.00000 + 13.8564i 0.464207 + 0.804030i
$$298$$ 0 0
$$299$$ 3.00000 5.19615i 0.173494 0.300501i
$$300$$ 0 0
$$301$$ −3.00000 15.5885i −0.172917 0.898504i
$$302$$ 0 0
$$303$$ 8.00000 13.8564i 0.459588 0.796030i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −24.0000 −1.36975 −0.684876 0.728659i $$-0.740144\pi$$
−0.684876 + 0.728659i $$0.740144\pi$$
$$308$$ 0 0
$$309$$ 30.0000 1.70664
$$310$$ 0 0
$$311$$ −0.500000 0.866025i −0.0283524 0.0491078i 0.851501 0.524353i $$-0.175693\pi$$
−0.879853 + 0.475245i $$0.842359\pi$$
$$312$$ 0 0
$$313$$ 15.5000 26.8468i 0.876112 1.51747i 0.0205381 0.999789i $$-0.493462\pi$$
0.855574 0.517681i $$-0.173205\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 6.00000 10.3923i 0.336994 0.583690i −0.646872 0.762598i $$-0.723923\pi$$
0.983866 + 0.178908i $$0.0572566\pi$$
$$318$$ 0 0
$$319$$ 12.0000 + 20.7846i 0.671871 + 1.16371i
$$320$$ 0 0
$$321$$ 16.0000 0.893033
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 14.0000 24.2487i 0.774202 1.34096i
$$328$$ 0 0
$$329$$ −22.5000 7.79423i −1.24047 0.429710i
$$330$$ 0 0
$$331$$ 1.00000 1.73205i 0.0549650 0.0952021i −0.837234 0.546845i $$-0.815829\pi$$
0.892199 + 0.451643i $$0.149162\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −29.0000 −1.57973 −0.789865 0.613280i $$-0.789850\pi$$
−0.789865 + 0.613280i $$0.789850\pi$$
$$338$$ 0 0
$$339$$ −15.0000 25.9808i −0.814688 1.41108i
$$340$$ 0 0
$$341$$ −18.0000 + 31.1769i −0.974755 + 1.68832i
$$342$$ 0 0
$$343$$ −10.0000 15.5885i −0.539949 0.841698i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −1.00000 1.73205i −0.0536828 0.0929814i 0.837935 0.545770i $$-0.183763\pi$$
−0.891618 + 0.452788i $$0.850429\pi$$
$$348$$ 0 0
$$349$$ 14.0000 0.749403 0.374701 0.927146i $$-0.377745\pi$$
0.374701 + 0.927146i $$0.377745\pi$$
$$350$$ 0 0
$$351$$ 8.00000 0.427008
$$352$$ 0 0
$$353$$ −7.50000 12.9904i −0.399185 0.691408i 0.594441 0.804139i $$-0.297373\pi$$
−0.993626 + 0.112731i $$0.964040\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 15.0000 + 5.19615i 0.793884 + 0.275010i
$$358$$ 0 0
$$359$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$360$$ 0 0
$$361$$ 9.50000 + 16.4545i 0.500000 + 0.866025i
$$362$$ 0 0
$$363$$ 10.0000 0.524864
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −8.00000 13.8564i −0.417597 0.723299i 0.578101 0.815966i $$-0.303794\pi$$
−0.995697 + 0.0926670i $$0.970461\pi$$
$$368$$ 0 0
$$369$$ −2.50000 + 4.33013i −0.130145 + 0.225417i
$$370$$ 0 0
$$371$$ −12.0000 + 10.3923i −0.623009 + 0.539542i
$$372$$ 0 0
$$373$$ −3.00000 + 5.19615i −0.155334 + 0.269047i −0.933181 0.359408i $$-0.882979\pi$$
0.777847 + 0.628454i $$0.216312\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 12.0000 0.618031
$$378$$ 0 0
$$379$$ 4.00000 0.205466 0.102733 0.994709i $$-0.467241\pi$$
0.102733 + 0.994709i $$0.467241\pi$$
$$380$$ 0 0
$$381$$ −8.00000 13.8564i −0.409852 0.709885i
$$382$$ 0 0
$$383$$ −10.5000 + 18.1865i −0.536525 + 0.929288i 0.462563 + 0.886586i $$0.346930\pi$$
−0.999088 + 0.0427020i $$0.986403\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 3.00000 5.19615i 0.152499 0.264135i
$$388$$ 0 0
$$389$$ −17.0000 29.4449i −0.861934 1.49291i −0.870059 0.492947i $$-0.835920\pi$$
0.00812520 0.999967i $$-0.497414\pi$$
$$390$$ 0 0
$$391$$ −9.00000 −0.455150
$$392$$ 0 0
$$393$$ 24.0000 1.21064
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 19.0000 32.9090i 0.953583 1.65165i 0.216004 0.976392i $$-0.430698\pi$$
0.737579 0.675261i $$-0.235969\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i $$-0.981709\pi$$
0.548911 + 0.835881i $$0.315043\pi$$
$$402$$ 0 0
$$403$$ 9.00000 + 15.5885i 0.448322 + 0.776516i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 15.5000 + 26.8468i 0.766426 + 1.32749i 0.939490 + 0.342578i $$0.111300\pi$$
−0.173064 + 0.984911i $$0.555367\pi$$
$$410$$ 0 0
$$411$$ −17.0000 + 29.4449i −0.838548 + 1.45241i
$$412$$ 0 0
$$413$$ 16.0000 13.8564i 0.787309 0.681829i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 6.00000 + 10.3923i 0.293821 + 0.508913i
$$418$$ 0 0
$$419$$ 30.0000 1.46560 0.732798 0.680446i $$-0.238214\pi$$
0.732798 + 0.680446i $$0.238214\pi$$
$$420$$ 0 0
$$421$$ 20.0000 0.974740 0.487370 0.873195i $$-0.337956\pi$$
0.487370 + 0.873195i $$0.337956\pi$$
$$422$$ 0 0
$$423$$ −4.50000 7.79423i −0.218797 0.378968i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −20.0000 6.92820i −0.967868 0.335279i
$$428$$ 0 0
$$429$$ 8.00000 13.8564i 0.386244 0.668994i
$$430$$ 0 0
$$431$$ 15.5000 + 26.8468i 0.746609 + 1.29316i 0.949439 + 0.313950i $$0.101653\pi$$
−0.202831 + 0.979214i $$0.565014\pi$$
$$432$$ 0 0
$$433$$ 21.0000 1.00920 0.504598 0.863355i $$-0.331641\pi$$
0.504598 + 0.863355i $$0.331641\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ −17.5000 + 30.3109i −0.835229 + 1.44666i 0.0586141 + 0.998281i $$0.481332\pi$$
−0.893843 + 0.448379i $$0.852001\pi$$
$$440$$ 0 0
$$441$$ 1.00000 6.92820i 0.0476190 0.329914i
$$442$$ 0 0
$$443$$ −6.00000 + 10.3923i −0.285069 + 0.493753i −0.972626 0.232377i $$-0.925350\pi$$
0.687557 + 0.726130i $$0.258683\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ −40.0000 −1.89194
$$448$$ 0 0
$$449$$ −27.0000 −1.27421 −0.637104 0.770778i $$-0.719868\pi$$
−0.637104 + 0.770778i $$0.719868\pi$$
$$450$$ 0 0
$$451$$ −10.0000 17.3205i −0.470882 0.815591i
$$452$$ 0 0
$$453$$ −20.0000 + 34.6410i −0.939682 + 1.62758i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −1.00000 + 1.73205i −0.0467780 + 0.0810219i −0.888466 0.458942i $$-0.848229\pi$$
0.841688 + 0.539964i $$0.181562\pi$$
$$458$$ 0 0
$$459$$ −6.00000 10.3923i −0.280056 0.485071i
$$460$$ 0 0
$$461$$ 24.0000 1.11779 0.558896 0.829238i $$-0.311225\pi$$
0.558896 + 0.829238i $$0.311225\pi$$
$$462$$ 0 0
$$463$$ 11.0000 0.511213 0.255607 0.966781i $$-0.417725\pi$$
0.255607 + 0.966781i $$0.417725\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 15.0000 25.9808i 0.694117 1.20225i −0.276360 0.961054i $$-0.589128\pi$$
0.970477 0.241192i $$-0.0775384\pi$$
$$468$$ 0 0
$$469$$ 28.0000 24.2487i 1.29292 1.11970i
$$470$$ 0 0
$$471$$ −10.0000 + 17.3205i −0.460776 + 0.798087i
$$472$$ 0 0
$$473$$ 12.0000 + 20.7846i 0.551761 + 0.955677i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ −6.00000 −0.274721
$$478$$ 0 0
$$479$$ −4.50000 7.79423i −0.205610 0.356127i 0.744717 0.667381i $$-0.232585\pi$$
−0.950327 + 0.311253i $$0.899251\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 3.00000 + 15.5885i 0.136505 + 0.709299i
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ −11.5000 19.9186i −0.521115 0.902597i −0.999698 0.0245553i $$-0.992183\pi$$
0.478584 0.878042i $$-0.341150\pi$$
$$488$$ 0 0
$$489$$ −48.0000 −2.17064
$$490$$ 0 0
$$491$$ 30.0000 1.35388 0.676941 0.736038i $$-0.263305\pi$$
0.676941 + 0.736038i $$0.263305\pi$$
$$492$$ 0 0
$$493$$ −9.00000 15.5885i −0.405340 0.702069i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 5.50000 + 28.5788i 0.246709 + 1.28194i
$$498$$ 0 0
$$499$$ −19.0000 + 32.9090i −0.850557 + 1.47321i 0.0301498 + 0.999545i $$0.490402\pi$$
−0.880707 + 0.473662i $$0.842932\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −16.0000 −0.713405 −0.356702 0.934218i $$-0.616099\pi$$
−0.356702 + 0.934218i $$0.616099\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 9.00000 + 15.5885i 0.399704 + 0.692308i
$$508$$ 0 0
$$509$$ −6.00000 + 10.3923i −0.265945 + 0.460631i −0.967811 0.251679i $$-0.919017\pi$$
0.701866 + 0.712309i $$0.252351\pi$$
$$510$$ 0 0
$$511$$ −4.00000 + 3.46410i −0.176950 + 0.153243i
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 36.0000 1.58328
$$518$$ 0 0
$$519$$ 32.0000 1.40464
$$520$$ 0 0
$$521$$ −22.5000 38.9711i −0.985743 1.70736i −0.638588 0.769549i $$-0.720481\pi$$
−0.347155 0.937808i $$-0.612852\pi$$
$$522$$ 0 0
$$523$$ −11.0000 + 19.0526i −0.480996 + 0.833110i −0.999762 0.0218062i $$-0.993058\pi$$
0.518766 + 0.854916i $$0.326392\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 13.5000 23.3827i 0.588069 1.01857i
$$528$$ 0 0
$$529$$ 7.00000 + 12.1244i 0.304348 + 0.527146i
$$530$$ 0 0
$$531$$ 8.00000 0.347170
$$532$$ 0 0
$$533$$ −10.0000 −0.433148
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ −4.00000 + 6.92820i −0.172613 + 0.298974i
$$538$$ 0 0
$$539$$ 22.0000 + 17.3205i 0.947607 + 0.746047i
$$540$$ 0 0
$$541$$ 15.0000 25.9808i 0.644900 1.11700i −0.339424 0.940633i $$-0.610232\pi$$
0.984325 0.176367i $$-0.0564345\pi$$
$$542$$ 0 0
$$543$$ 8.00000 + 13.8564i 0.343313 + 0.594635i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −40.0000 −1.71028 −0.855138 0.518400i $$-0.826528\pi$$
−0.855138 + 0.518400i $$0.826528\pi$$
$$548$$ 0 0
$$549$$ −4.00000 6.92820i −0.170716 0.295689i
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ −22.5000 7.79423i −0.956797 0.331444i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 18.0000 + 31.1769i 0.762684 + 1.32101i 0.941462 + 0.337119i $$0.109452\pi$$
−0.178778 + 0.983890i $$0.557214\pi$$
$$558$$ 0 0
$$559$$ 12.0000 0.507546
$$560$$ 0 0
$$561$$ −24.0000 −1.01328
$$562$$ 0 0
$$563$$ 13.0000 + 22.5167i 0.547885 + 0.948964i 0.998419 + 0.0562051i $$0.0179001\pi$$
−0.450535 + 0.892759i $$0.648767\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −22.0000 + 19.0526i −0.923913 + 0.800132i
$$568$$ 0 0
$$569$$ 5.50000 9.52628i 0.230572 0.399362i −0.727405 0.686209i $$-0.759274\pi$$
0.957977 + 0.286846i $$0.0926069\pi$$
$$570$$ 0 0
$$571$$ 6.00000 + 10.3923i 0.251092 + 0.434904i 0.963827 0.266529i $$-0.0858769\pi$$
−0.712735 + 0.701434i $$0.752544\pi$$
$$572$$ 0 0
$$573$$ −26.0000 −1.08617
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −7.00000 12.1244i −0.291414 0.504744i 0.682730 0.730670i $$-0.260792\pi$$
−0.974144 + 0.225927i $$0.927459\pi$$
$$578$$ 0 0
$$579$$ −5.00000 + 8.66025i −0.207793 + 0.359908i
$$580$$ 0 0
$$581$$ −3.00000 15.5885i −0.124461 0.646718i
$$582$$ 0 0
$$583$$ 12.0000 20.7846i 0.496989 0.860811i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 8.00000 0.330195 0.165098 0.986277i $$-0.447206\pi$$
0.165098 + 0.986277i $$0.447206\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 18.0000 + 31.1769i 0.740421 + 1.28245i
$$592$$ 0 0
$$593$$ 6.50000 11.2583i 0.266923 0.462324i −0.701143 0.713021i $$-0.747326\pi$$
0.968066 + 0.250697i $$0.0806597\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −21.0000 + 36.3731i −0.859473 + 1.48865i
$$598$$ 0 0
$$599$$ −4.50000 7.79423i −0.183865 0.318464i 0.759328 0.650708i $$-0.225528\pi$$
−0.943193 + 0.332244i $$0.892194\pi$$
$$600$$ 0 0
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ 0 0
$$603$$ 14.0000 0.570124
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 6.50000 11.2583i 0.263827 0.456962i −0.703429 0.710766i $$-0.748349\pi$$
0.967256 + 0.253804i $$0.0816819\pi$$
$$608$$ 0 0
$$609$$ −24.0000 + 20.7846i −0.972529 + 0.842235i
$$610$$ 0 0
$$611$$ 9.00000 15.5885i 0.364101 0.630641i
$$612$$ 0 0
$$613$$ −13.0000 22.5167i −0.525065 0.909439i −0.999574 0.0291886i $$-0.990708\pi$$
0.474509 0.880251i $$-0.342626\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −17.0000 −0.684394 −0.342197 0.939628i $$-0.611171\pi$$
−0.342197 + 0.939628i $$0.611171\pi$$
$$618$$ 0 0
$$619$$ 5.00000 + 8.66025i 0.200967 + 0.348085i 0.948840 0.315757i $$-0.102258\pi$$
−0.747873 + 0.663842i $$0.768925\pi$$
$$620$$ 0 0
$$621$$ 6.00000 10.3923i 0.240772 0.417029i
$$622$$ 0 0
$$623$$ −27.5000 9.52628i −1.10176 0.381662i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −15.0000 −0.597141 −0.298570 0.954388i $$-0.596510\pi$$
−0.298570 + 0.954388i $$0.596510\pi$$
$$632$$ 0 0
$$633$$ −22.0000 38.1051i −0.874421 1.51454i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 13.0000 5.19615i 0.515079 0.205879i
$$638$$ 0 0
$$639$$ −5.50000 + 9.52628i −0.217577 + 0.376854i
$$640$$ 0 0
$$641$$ 17.5000 + 30.3109i 0.691208 + 1.19721i 0.971442 + 0.237276i $$0.0762547\pi$$
−0.280234 + 0.959932i $$0.590412\pi$$
$$642$$ 0 0
$$643$$ −16.0000 −0.630978 −0.315489 0.948929i $$-0.602169\pi$$
−0.315489 + 0.948929i $$0.602169\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 24.0000 + 41.5692i 0.943537 + 1.63425i 0.758654 + 0.651494i $$0.225858\pi$$
0.184884 + 0.982760i $$0.440809\pi$$
$$648$$ 0 0
$$649$$ −16.0000 + 27.7128i −0.628055 + 1.08782i
$$650$$ 0 0
$$651$$ −45.0000 15.5885i −1.76369 0.610960i
$$652$$ 0 0
$$653$$ −15.0000 + 25.9808i −0.586995 + 1.01671i 0.407628 + 0.913148i $$0.366356\pi$$
−0.994623 + 0.103558i $$0.966977\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ −2.00000 −0.0780274
$$658$$ 0 0
$$659$$ 14.0000 0.545363 0.272681 0.962104i $$-0.412090\pi$$
0.272681 + 0.962104i $$0.412090\pi$$
$$660$$ 0 0
$$661$$ −22.0000 38.1051i −0.855701 1.48212i −0.875993 0.482323i $$-0.839793\pi$$
0.0202925 0.999794i $$-0.493540\pi$$
$$662$$ 0 0
$$663$$ −6.00000 + 10.3923i −0.233021 + 0.403604i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 9.00000 15.5885i 0.348481 0.603587i
$$668$$ 0 0
$$669$$ −11.0000 19.0526i −0.425285 0.736614i
$$670$$ 0 0
$$671$$ 32.0000 1.23535
$$672$$ 0 0
$$673$$ −43.0000 −1.65753 −0.828764 0.559598i $$-0.810955\pi$$
−0.828764 + 0.559598i $$0.810955\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 3.00000 5.19615i 0.115299 0.199704i −0.802600 0.596518i $$-0.796551\pi$$
0.917899 + 0.396813i $$0.129884\pi$$
$$678$$ 0 0
$$679$$ −5.50000 28.5788i −0.211071 1.09676i
$$680$$ 0 0
$$681$$ 22.0000 38.1051i 0.843042 1.46019i
$$682$$ 0 0
$$683$$ 7.00000 + 12.1244i 0.267848 + 0.463926i 0.968306 0.249768i $$-0.0803543\pi$$
−0.700458 + 0.713693i $$0.747021\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ −16.0000 −0.610438
$$688$$ 0 0
$$689$$ −6.00000 10.3923i −0.228582 0.395915i
$$690$$ 0 0
$$691$$ 11.0000 19.0526i 0.418460 0.724793i −0.577325 0.816514i $$-0.695903\pi$$
0.995785 + 0.0917209i $$0.0292368\pi$$
$$692$$ 0 0
$$693$$ 2.00000 + 10.3923i 0.0759737 + 0.394771i
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 7.50000 + 12.9904i 0.284083 + 0.492046i
$$698$$ 0 0
$$699$$ −44.0000 −1.66423
$$700$$ 0 0
$$701$$ 12.0000 0.453234 0.226617 0.973984i $$-0.427233\pi$$
0.226617 + 0.973984i $$0.427233\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −16.0000 + 13.8564i −0.601742 + 0.521124i
$$708$$ 0 0
$$709$$ 4.00000 6.92820i 0.150223 0.260194i −0.781086 0.624423i $$-0.785334\pi$$
0.931309 + 0.364229i $$0.118667\pi$$
$$710$$ 0 0
$$711$$ −4.50000 7.79423i −0.168763 0.292306i
$$712$$ 0 0
$$713$$ 27.0000 1.01116
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ −11.0000 19.0526i −0.410803 0.711531i
$$718$$ 0 0
$$719$$ −14.5000 + 25.1147i −0.540759 + 0.936622i 0.458102 + 0.888900i $$0.348529\pi$$
−0.998861 + 0.0477220i $$0.984804\pi$$
$$720$$ 0 0
$$721$$ −37.5000 12.9904i −1.39657 0.483787i
$$722$$ 0 0
$$723$$ −18.0000 + 31.1769i −0.669427 + 1.15948i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 29.0000 1.07555 0.537775 0.843088i $$-0.319265\pi$$
0.537775 + 0.843088i $$0.319265\pi$$
$$728$$ 0 0
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ −9.00000 15.5885i −0.332877 0.576560i
$$732$$ 0 0
$$733$$ −7.00000 + 12.1244i −0.258551 + 0.447823i −0.965854 0.259087i $$-0.916578\pi$$
0.707303 + 0.706910i $$0.249912\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −28.0000 + 48.4974i −1.03139 + 1.78643i
$$738$$ 0 0
$$739$$ 8.00000 + 13.8564i 0.294285 + 0.509716i 0.974818 0.223001i $$-0.0715853\pi$$
−0.680534 + 0.732717i $$0.738252\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −27.0000 −0.990534 −0.495267 0.868741i $$-0.664930\pi$$
−0.495267 + 0.868741i $$0.664930\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 3.00000 5.19615i 0.109764 0.190117i
$$748$$ 0 0
$$749$$ −20.0000 6.92820i −0.730784 0.253151i
$$750$$ 0 0
$$751$$ 16.0000 27.7128i 0.583848 1.01125i −0.411170 0.911559i $$-0.634880\pi$$
0.995018 0.0996961i $$-0.0317870\pi$$
$$752$$ 0 0
$$753$$ 16.0000 + 27.7128i 0.583072 + 1.00991i
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −34.0000 −1.23575 −0.617876 0.786276i $$-0.712006\pi$$
−0.617876 + 0.786276i $$0.712006\pi$$
$$758$$ 0 0
$$759$$ −12.0000 20.7846i −0.435572 0.754434i
$$760$$ 0 0
$$761$$ 21.5000 37.2391i 0.779374 1.34992i −0.152928 0.988237i $$-0.548870\pi$$
0.932303 0.361679i $$-0.117796\pi$$
$$762$$ 0 0
$$763$$ −28.0000 + 24.2487i −1.01367 + 0.877862i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 8.00000 + 13.8564i 0.288863 + 0.500326i
$$768$$ 0 0
$$769$$ 14.0000 0.504853 0.252426 0.967616i $$-0.418771\pi$$
0.252426 + 0.967616i $$0.418771\pi$$
$$770$$ 0 0
$$771$$ 36.0000 1.29651
$$772$$ 0 0
$$773$$ 10.0000 + 17.3205i 0.359675 + 0.622975i 0.987906 0.155051i $$-0.0495542\pi$$
−0.628231 + 0.778027i $$0.716221\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ −22.0000 38.1051i −0.787222 1.36351i
$$782$$ 0 0
$$783$$ 24.0000 0.857690
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −4.00000 6.92820i −0.142585 0.246964i 0.785885 0.618373i $$-0.212208\pi$$
−0.928469 + 0.371409i $$0.878875\pi$$
$$788$$ 0 0
$$789$$ 3.00000 5.19615i 0.106803 0.184988i
$$790$$ 0 0
$$791$$ 7.50000 + 38.9711i 0.266669 + 1.38565i
$$792$$ 0 0
$$793$$ 8.00000 13.8564i 0.284088 0.492055i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 8.00000 0.283375 0.141687 0.989911i $$-0.454747\pi$$
0.141687 + 0.989911i $$0.454747\pi$$
$$798$$ 0 0
$$799$$ −27.0000 −0.955191