# Properties

 Label 1400.2.g.a Level $1400$ Weight $2$ Character orbit 1400.g Analytic conductor $11.179$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1400,2,Mod(449,1400)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1400, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1400.449");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1400 = 2^{3} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1400.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$11.1790562830$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 280) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 i q^{3} + i q^{7} - 6 q^{9}+O(q^{10})$$ q + 3*i * q^3 + i * q^7 - 6 * q^9 $$q + 3 i q^{3} + i q^{7} - 6 q^{9} - 5 q^{11} + 5 i q^{13} - 7 i q^{17} + 2 q^{19} - 3 q^{21} + 2 i q^{23} - 9 i q^{27} - 7 q^{29} + 4 q^{31} - 15 i q^{33} - 6 i q^{37} - 15 q^{39} - 12 q^{41} + 2 i q^{43} + i q^{47} - q^{49} + 21 q^{51} + 6 i q^{57} + 4 q^{59} + 4 q^{61} - 6 i q^{63} + 8 i q^{67} - 6 q^{69} - 6 i q^{73} - 5 i q^{77} + 3 q^{79} + 9 q^{81} + 4 i q^{83} - 21 i q^{87} - 5 q^{91} + 12 i q^{93} + 13 i q^{97} + 30 q^{99} +O(q^{100})$$ q + 3*i * q^3 + i * q^7 - 6 * q^9 - 5 * q^11 + 5*i * q^13 - 7*i * q^17 + 2 * q^19 - 3 * q^21 + 2*i * q^23 - 9*i * q^27 - 7 * q^29 + 4 * q^31 - 15*i * q^33 - 6*i * q^37 - 15 * q^39 - 12 * q^41 + 2*i * q^43 + i * q^47 - q^49 + 21 * q^51 + 6*i * q^57 + 4 * q^59 + 4 * q^61 - 6*i * q^63 + 8*i * q^67 - 6 * q^69 - 6*i * q^73 - 5*i * q^77 + 3 * q^79 + 9 * q^81 + 4*i * q^83 - 21*i * q^87 - 5 * q^91 + 12*i * q^93 + 13*i * q^97 + 30 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 12 q^{9}+O(q^{10})$$ 2 * q - 12 * q^9 $$2 q - 12 q^{9} - 10 q^{11} + 4 q^{19} - 6 q^{21} - 14 q^{29} + 8 q^{31} - 30 q^{39} - 24 q^{41} - 2 q^{49} + 42 q^{51} + 8 q^{59} + 8 q^{61} - 12 q^{69} + 6 q^{79} + 18 q^{81} - 10 q^{91} + 60 q^{99}+O(q^{100})$$ 2 * q - 12 * q^9 - 10 * q^11 + 4 * q^19 - 6 * q^21 - 14 * q^29 + 8 * q^31 - 30 * q^39 - 24 * q^41 - 2 * q^49 + 42 * q^51 + 8 * q^59 + 8 * q^61 - 12 * q^69 + 6 * q^79 + 18 * q^81 - 10 * q^91 + 60 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times$$.

 $$n$$ $$351$$ $$701$$ $$801$$ $$1177$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 1.00000i 1.00000i
0 3.00000i 0 0 0 1.00000i 0 −6.00000 0
449.2 0 3.00000i 0 0 0 1.00000i 0 −6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1400.2.g.a 2
4.b odd 2 1 2800.2.g.b 2
5.b even 2 1 inner 1400.2.g.a 2
5.c odd 4 1 280.2.a.a 1
5.c odd 4 1 1400.2.a.n 1
15.e even 4 1 2520.2.a.i 1
20.d odd 2 1 2800.2.g.b 2
20.e even 4 1 560.2.a.f 1
20.e even 4 1 2800.2.a.c 1
35.f even 4 1 1960.2.a.o 1
35.f even 4 1 9800.2.a.a 1
35.k even 12 2 1960.2.q.a 2
35.l odd 12 2 1960.2.q.o 2
40.i odd 4 1 2240.2.a.z 1
40.k even 4 1 2240.2.a.a 1
60.l odd 4 1 5040.2.a.a 1
140.j odd 4 1 3920.2.a.c 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.a.a 1 5.c odd 4 1
560.2.a.f 1 20.e even 4 1
1400.2.a.n 1 5.c odd 4 1
1400.2.g.a 2 1.a even 1 1 trivial
1400.2.g.a 2 5.b even 2 1 inner
1960.2.a.o 1 35.f even 4 1
1960.2.q.a 2 35.k even 12 2
1960.2.q.o 2 35.l odd 12 2
2240.2.a.a 1 40.k even 4 1
2240.2.a.z 1 40.i odd 4 1
2520.2.a.i 1 15.e even 4 1
2800.2.a.c 1 20.e even 4 1
2800.2.g.b 2 4.b odd 2 1
2800.2.g.b 2 20.d odd 2 1
3920.2.a.c 1 140.j odd 4 1
5040.2.a.a 1 60.l odd 4 1
9800.2.a.a 1 35.f even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1400, [\chi])$$:

 $$T_{3}^{2} + 9$$ T3^2 + 9 $$T_{11} + 5$$ T11 + 5

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 9$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 1$$
$11$ $$(T + 5)^{2}$$
$13$ $$T^{2} + 25$$
$17$ $$T^{2} + 49$$
$19$ $$(T - 2)^{2}$$
$23$ $$T^{2} + 4$$
$29$ $$(T + 7)^{2}$$
$31$ $$(T - 4)^{2}$$
$37$ $$T^{2} + 36$$
$41$ $$(T + 12)^{2}$$
$43$ $$T^{2} + 4$$
$47$ $$T^{2} + 1$$
$53$ $$T^{2}$$
$59$ $$(T - 4)^{2}$$
$61$ $$(T - 4)^{2}$$
$67$ $$T^{2} + 64$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 36$$
$79$ $$(T - 3)^{2}$$
$83$ $$T^{2} + 16$$
$89$ $$T^{2}$$
$97$ $$T^{2} + 169$$