Properties

Label 1400.2.bh.b
Level $1400$
Weight $2$
Character orbit 1400.bh
Analytic conductor $11.179$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.bh (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{3} + ( -\zeta_{12} - 2 \zeta_{12}^{3} ) q^{7} -2 \zeta_{12}^{2} q^{9} +O(q^{10})\) \( q + \zeta_{12} q^{3} + ( -\zeta_{12} - 2 \zeta_{12}^{3} ) q^{7} -2 \zeta_{12}^{2} q^{9} + ( -2 + 2 \zeta_{12}^{2} ) q^{11} -4 \zeta_{12} q^{17} -2 \zeta_{12}^{2} q^{19} + ( 2 - 3 \zeta_{12}^{2} ) q^{21} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{23} -5 \zeta_{12}^{3} q^{27} -9 q^{29} + ( -4 + 4 \zeta_{12}^{2} ) q^{31} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{33} + ( 4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{37} + q^{41} -9 \zeta_{12}^{3} q^{43} + ( -8 + 5 \zeta_{12}^{2} ) q^{49} -4 \zeta_{12}^{2} q^{51} -10 \zeta_{12} q^{53} -2 \zeta_{12}^{3} q^{57} + ( -10 + 10 \zeta_{12}^{2} ) q^{59} -9 \zeta_{12}^{2} q^{61} + ( -4 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{63} -5 \zeta_{12} q^{67} - q^{69} + 14 q^{71} + 12 \zeta_{12} q^{73} + ( 6 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{77} + 14 \zeta_{12}^{2} q^{79} + ( -1 + \zeta_{12}^{2} ) q^{81} -11 \zeta_{12}^{3} q^{83} -9 \zeta_{12} q^{87} -15 \zeta_{12}^{2} q^{89} + ( -4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{93} -18 \zeta_{12}^{3} q^{97} + 4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{9} + O(q^{10}) \) \( 4q - 4q^{9} - 4q^{11} - 4q^{19} + 2q^{21} - 36q^{29} - 8q^{31} + 4q^{41} - 22q^{49} - 8q^{51} - 20q^{59} - 18q^{61} - 4q^{69} + 56q^{71} + 28q^{79} - 2q^{81} - 30q^{89} + 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{12}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
249.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 −0.866025 0.500000i 0 0 0 0.866025 + 2.50000i 0 −1.00000 1.73205i 0
249.2 0 0.866025 + 0.500000i 0 0 0 −0.866025 2.50000i 0 −1.00000 1.73205i 0
849.1 0 −0.866025 + 0.500000i 0 0 0 0.866025 2.50000i 0 −1.00000 + 1.73205i 0
849.2 0 0.866025 0.500000i 0 0 0 −0.866025 + 2.50000i 0 −1.00000 + 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1400.2.bh.b 4
5.b even 2 1 inner 1400.2.bh.b 4
5.c odd 4 1 280.2.q.a 2
5.c odd 4 1 1400.2.q.e 2
7.c even 3 1 inner 1400.2.bh.b 4
15.e even 4 1 2520.2.bi.a 2
20.e even 4 1 560.2.q.h 2
35.f even 4 1 1960.2.q.k 2
35.j even 6 1 inner 1400.2.bh.b 4
35.k even 12 1 1960.2.a.e 1
35.k even 12 1 1960.2.q.k 2
35.k even 12 1 9800.2.a.bc 1
35.l odd 12 1 280.2.q.a 2
35.l odd 12 1 1400.2.q.e 2
35.l odd 12 1 1960.2.a.i 1
35.l odd 12 1 9800.2.a.r 1
105.x even 12 1 2520.2.bi.a 2
140.w even 12 1 560.2.q.h 2
140.w even 12 1 3920.2.a.m 1
140.x odd 12 1 3920.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.a 2 5.c odd 4 1
280.2.q.a 2 35.l odd 12 1
560.2.q.h 2 20.e even 4 1
560.2.q.h 2 140.w even 12 1
1400.2.q.e 2 5.c odd 4 1
1400.2.q.e 2 35.l odd 12 1
1400.2.bh.b 4 1.a even 1 1 trivial
1400.2.bh.b 4 5.b even 2 1 inner
1400.2.bh.b 4 7.c even 3 1 inner
1400.2.bh.b 4 35.j even 6 1 inner
1960.2.a.e 1 35.k even 12 1
1960.2.a.i 1 35.l odd 12 1
1960.2.q.k 2 35.f even 4 1
1960.2.q.k 2 35.k even 12 1
2520.2.bi.a 2 15.e even 4 1
2520.2.bi.a 2 105.x even 12 1
3920.2.a.m 1 140.w even 12 1
3920.2.a.y 1 140.x odd 12 1
9800.2.a.r 1 35.l odd 12 1
9800.2.a.bc 1 35.k even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1400, [\chi])\):

\( T_{3}^{4} - T_{3}^{2} + 1 \)
\( T_{11}^{2} + 2 T_{11} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 1 - T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( 49 + 11 T^{2} + T^{4} \)
$11$ \( ( 4 + 2 T + T^{2} )^{2} \)
$13$ \( T^{4} \)
$17$ \( 256 - 16 T^{2} + T^{4} \)
$19$ \( ( 4 + 2 T + T^{2} )^{2} \)
$23$ \( 1 - T^{2} + T^{4} \)
$29$ \( ( 9 + T )^{4} \)
$31$ \( ( 16 + 4 T + T^{2} )^{2} \)
$37$ \( 256 - 16 T^{2} + T^{4} \)
$41$ \( ( -1 + T )^{4} \)
$43$ \( ( 81 + T^{2} )^{2} \)
$47$ \( T^{4} \)
$53$ \( 10000 - 100 T^{2} + T^{4} \)
$59$ \( ( 100 + 10 T + T^{2} )^{2} \)
$61$ \( ( 81 + 9 T + T^{2} )^{2} \)
$67$ \( 625 - 25 T^{2} + T^{4} \)
$71$ \( ( -14 + T )^{4} \)
$73$ \( 20736 - 144 T^{2} + T^{4} \)
$79$ \( ( 196 - 14 T + T^{2} )^{2} \)
$83$ \( ( 121 + T^{2} )^{2} \)
$89$ \( ( 225 + 15 T + T^{2} )^{2} \)
$97$ \( ( 324 + T^{2} )^{2} \)
show more
show less