Properties

Label 1400.2.a.t.1.1
Level $1400$
Weight $2$
Character 1400.1
Self dual yes
Analytic conductor $11.179$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
Defining polynomial: \(x^{3} - x^{2} - 6 x - 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.76156\) of defining polynomial
Character \(\chi\) \(=\) 1400.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.76156 q^{3} -1.00000 q^{7} +0.103084 q^{9} +O(q^{10})\) \(q-1.76156 q^{3} -1.00000 q^{7} +0.103084 q^{9} -0.626198 q^{11} -5.49084 q^{13} -0.896916 q^{17} +6.38776 q^{19} +1.76156 q^{21} +3.72928 q^{23} +5.10308 q^{27} -7.87859 q^{29} +7.52311 q^{31} +1.10308 q^{33} -6.00000 q^{37} +9.67243 q^{39} +7.72928 q^{41} -1.72928 q^{43} -5.87859 q^{47} +1.00000 q^{49} +1.57997 q^{51} +6.77551 q^{53} -11.2524 q^{57} -0.593923 q^{59} +7.13536 q^{61} -0.103084 q^{63} +5.79383 q^{67} -6.56934 q^{69} +5.52311 q^{71} +3.72928 q^{73} +0.626198 q^{77} -5.67243 q^{79} -9.29862 q^{81} +17.4340 q^{83} +13.8786 q^{87} +14.2986 q^{89} +5.49084 q^{91} -13.2524 q^{93} +10.1493 q^{97} -0.0645508 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + q^{3} - 3q^{7} + 4q^{9} + O(q^{10}) \) \( 3q + q^{3} - 3q^{7} + 4q^{9} + 7q^{11} - 5q^{13} + q^{17} + 4q^{19} - q^{21} + 6q^{23} + 19q^{27} + 3q^{29} + 10q^{31} + 7q^{33} - 18q^{37} - 5q^{39} + 18q^{41} + 9q^{47} + 3q^{49} + 21q^{51} - 10q^{53} - 16q^{57} + 6q^{59} + 24q^{61} - 4q^{63} + 10q^{67} + 18q^{69} + 4q^{71} + 6q^{73} - 7q^{77} + 17q^{79} + 15q^{81} + 12q^{83} + 15q^{87} + 5q^{91} - 22q^{93} + 9q^{97} + 2q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.76156 −1.01704 −0.508518 0.861052i \(-0.669806\pi\)
−0.508518 + 0.861052i \(0.669806\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0.103084 0.0343612
\(10\) 0 0
\(11\) −0.626198 −0.188806 −0.0944029 0.995534i \(-0.530094\pi\)
−0.0944029 + 0.995534i \(0.530094\pi\)
\(12\) 0 0
\(13\) −5.49084 −1.52288 −0.761442 0.648233i \(-0.775508\pi\)
−0.761442 + 0.648233i \(0.775508\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.896916 −0.217534 −0.108767 0.994067i \(-0.534690\pi\)
−0.108767 + 0.994067i \(0.534690\pi\)
\(18\) 0 0
\(19\) 6.38776 1.46545 0.732726 0.680524i \(-0.238248\pi\)
0.732726 + 0.680524i \(0.238248\pi\)
\(20\) 0 0
\(21\) 1.76156 0.384403
\(22\) 0 0
\(23\) 3.72928 0.777609 0.388805 0.921320i \(-0.372888\pi\)
0.388805 + 0.921320i \(0.372888\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.10308 0.982089
\(28\) 0 0
\(29\) −7.87859 −1.46302 −0.731509 0.681832i \(-0.761184\pi\)
−0.731509 + 0.681832i \(0.761184\pi\)
\(30\) 0 0
\(31\) 7.52311 1.35119 0.675596 0.737272i \(-0.263887\pi\)
0.675596 + 0.737272i \(0.263887\pi\)
\(32\) 0 0
\(33\) 1.10308 0.192022
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 9.67243 1.54883
\(40\) 0 0
\(41\) 7.72928 1.20711 0.603556 0.797321i \(-0.293750\pi\)
0.603556 + 0.797321i \(0.293750\pi\)
\(42\) 0 0
\(43\) −1.72928 −0.263713 −0.131856 0.991269i \(-0.542094\pi\)
−0.131856 + 0.991269i \(0.542094\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.87859 −0.857481 −0.428741 0.903428i \(-0.641043\pi\)
−0.428741 + 0.903428i \(0.641043\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.57997 0.221240
\(52\) 0 0
\(53\) 6.77551 0.930688 0.465344 0.885130i \(-0.345931\pi\)
0.465344 + 0.885130i \(0.345931\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −11.2524 −1.49042
\(58\) 0 0
\(59\) −0.593923 −0.0773221 −0.0386611 0.999252i \(-0.512309\pi\)
−0.0386611 + 0.999252i \(0.512309\pi\)
\(60\) 0 0
\(61\) 7.13536 0.913589 0.456795 0.889572i \(-0.348997\pi\)
0.456795 + 0.889572i \(0.348997\pi\)
\(62\) 0 0
\(63\) −0.103084 −0.0129873
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.79383 0.707829 0.353915 0.935278i \(-0.384850\pi\)
0.353915 + 0.935278i \(0.384850\pi\)
\(68\) 0 0
\(69\) −6.56934 −0.790856
\(70\) 0 0
\(71\) 5.52311 0.655473 0.327737 0.944769i \(-0.393714\pi\)
0.327737 + 0.944769i \(0.393714\pi\)
\(72\) 0 0
\(73\) 3.72928 0.436479 0.218240 0.975895i \(-0.429969\pi\)
0.218240 + 0.975895i \(0.429969\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.626198 0.0713619
\(78\) 0 0
\(79\) −5.67243 −0.638198 −0.319099 0.947721i \(-0.603380\pi\)
−0.319099 + 0.947721i \(0.603380\pi\)
\(80\) 0 0
\(81\) −9.29862 −1.03318
\(82\) 0 0
\(83\) 17.4340 1.91363 0.956814 0.290700i \(-0.0938882\pi\)
0.956814 + 0.290700i \(0.0938882\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 13.8786 1.48794
\(88\) 0 0
\(89\) 14.2986 1.51565 0.757826 0.652457i \(-0.226262\pi\)
0.757826 + 0.652457i \(0.226262\pi\)
\(90\) 0 0
\(91\) 5.49084 0.575596
\(92\) 0 0
\(93\) −13.2524 −1.37421
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.1493 1.03051 0.515253 0.857038i \(-0.327698\pi\)
0.515253 + 0.857038i \(0.327698\pi\)
\(98\) 0 0
\(99\) −0.0645508 −0.00648760
\(100\) 0 0
\(101\) 9.64015 0.959231 0.479615 0.877479i \(-0.340776\pi\)
0.479615 + 0.877479i \(0.340776\pi\)
\(102\) 0 0
\(103\) 0.626198 0.0617011 0.0308506 0.999524i \(-0.490178\pi\)
0.0308506 + 0.999524i \(0.490178\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 18.9248 1.81267 0.906335 0.422561i \(-0.138869\pi\)
0.906335 + 0.422561i \(0.138869\pi\)
\(110\) 0 0
\(111\) 10.5693 1.00320
\(112\) 0 0
\(113\) 1.04623 0.0984209 0.0492105 0.998788i \(-0.484329\pi\)
0.0492105 + 0.998788i \(0.484329\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.566016 −0.0523282
\(118\) 0 0
\(119\) 0.896916 0.0822202
\(120\) 0 0
\(121\) −10.6079 −0.964352
\(122\) 0 0
\(123\) −13.6156 −1.22767
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 21.2803 1.88832 0.944161 0.329485i \(-0.106875\pi\)
0.944161 + 0.329485i \(0.106875\pi\)
\(128\) 0 0
\(129\) 3.04623 0.268205
\(130\) 0 0
\(131\) −9.91087 −0.865917 −0.432958 0.901414i \(-0.642530\pi\)
−0.432958 + 0.901414i \(0.642530\pi\)
\(132\) 0 0
\(133\) −6.38776 −0.553889
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.45856 −0.295485 −0.147743 0.989026i \(-0.547201\pi\)
−0.147743 + 0.989026i \(0.547201\pi\)
\(138\) 0 0
\(139\) −20.4157 −1.73163 −0.865817 0.500361i \(-0.833201\pi\)
−0.865817 + 0.500361i \(0.833201\pi\)
\(140\) 0 0
\(141\) 10.3555 0.872089
\(142\) 0 0
\(143\) 3.43835 0.287530
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.76156 −0.145291
\(148\) 0 0
\(149\) −17.0462 −1.39648 −0.698241 0.715863i \(-0.746033\pi\)
−0.698241 + 0.715863i \(0.746033\pi\)
\(150\) 0 0
\(151\) 2.89692 0.235748 0.117874 0.993029i \(-0.462392\pi\)
0.117874 + 0.993029i \(0.462392\pi\)
\(152\) 0 0
\(153\) −0.0924575 −0.00747474
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.1170 −0.807427 −0.403714 0.914885i \(-0.632281\pi\)
−0.403714 + 0.914885i \(0.632281\pi\)
\(158\) 0 0
\(159\) −11.9354 −0.946543
\(160\) 0 0
\(161\) −3.72928 −0.293909
\(162\) 0 0
\(163\) −0.476886 −0.0373526 −0.0186763 0.999826i \(-0.505945\pi\)
−0.0186763 + 0.999826i \(0.505945\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.1676 1.01894 0.509471 0.860488i \(-0.329841\pi\)
0.509471 + 0.860488i \(0.329841\pi\)
\(168\) 0 0
\(169\) 17.1493 1.31918
\(170\) 0 0
\(171\) 0.658473 0.0503547
\(172\) 0 0
\(173\) −13.9677 −1.06195 −0.530973 0.847389i \(-0.678174\pi\)
−0.530973 + 0.847389i \(0.678174\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.04623 0.0786394
\(178\) 0 0
\(179\) 7.45856 0.557479 0.278740 0.960367i \(-0.410083\pi\)
0.278740 + 0.960367i \(0.410083\pi\)
\(180\) 0 0
\(181\) −14.1170 −1.04931 −0.524656 0.851315i \(-0.675806\pi\)
−0.524656 + 0.851315i \(0.675806\pi\)
\(182\) 0 0
\(183\) −12.5693 −0.929153
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.561647 0.0410717
\(188\) 0 0
\(189\) −5.10308 −0.371195
\(190\) 0 0
\(191\) −8.42003 −0.609252 −0.304626 0.952472i \(-0.598531\pi\)
−0.304626 + 0.952472i \(0.598531\pi\)
\(192\) 0 0
\(193\) 22.2986 1.60509 0.802545 0.596591i \(-0.203479\pi\)
0.802545 + 0.596591i \(0.203479\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −26.3632 −1.87830 −0.939149 0.343509i \(-0.888384\pi\)
−0.939149 + 0.343509i \(0.888384\pi\)
\(198\) 0 0
\(199\) 22.4402 1.59075 0.795373 0.606120i \(-0.207275\pi\)
0.795373 + 0.606120i \(0.207275\pi\)
\(200\) 0 0
\(201\) −10.2062 −0.719888
\(202\) 0 0
\(203\) 7.87859 0.552969
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.384428 0.0267196
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −15.1955 −1.04610 −0.523052 0.852301i \(-0.675207\pi\)
−0.523052 + 0.852301i \(0.675207\pi\)
\(212\) 0 0
\(213\) −9.72928 −0.666639
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −7.52311 −0.510702
\(218\) 0 0
\(219\) −6.56934 −0.443915
\(220\) 0 0
\(221\) 4.92482 0.331279
\(222\) 0 0
\(223\) 6.89692 0.461852 0.230926 0.972971i \(-0.425825\pi\)
0.230926 + 0.972971i \(0.425825\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.77988 0.184507 0.0922535 0.995736i \(-0.470593\pi\)
0.0922535 + 0.995736i \(0.470593\pi\)
\(228\) 0 0
\(229\) 18.6585 1.23299 0.616493 0.787360i \(-0.288553\pi\)
0.616493 + 0.787360i \(0.288553\pi\)
\(230\) 0 0
\(231\) −1.10308 −0.0725776
\(232\) 0 0
\(233\) 11.0462 0.723663 0.361831 0.932244i \(-0.382152\pi\)
0.361831 + 0.932244i \(0.382152\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 9.99230 0.649070
\(238\) 0 0
\(239\) −20.1493 −1.30335 −0.651675 0.758498i \(-0.725934\pi\)
−0.651675 + 0.758498i \(0.725934\pi\)
\(240\) 0 0
\(241\) 3.72928 0.240224 0.120112 0.992760i \(-0.461675\pi\)
0.120112 + 0.992760i \(0.461675\pi\)
\(242\) 0 0
\(243\) 1.07081 0.0686924
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −35.0741 −2.23171
\(248\) 0 0
\(249\) −30.7110 −1.94623
\(250\) 0 0
\(251\) −21.4985 −1.35698 −0.678488 0.734612i \(-0.737364\pi\)
−0.678488 + 0.734612i \(0.737364\pi\)
\(252\) 0 0
\(253\) −2.33527 −0.146817
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.27072 −0.266400 −0.133200 0.991089i \(-0.542525\pi\)
−0.133200 + 0.991089i \(0.542525\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) −0.812155 −0.0502711
\(262\) 0 0
\(263\) 11.4586 0.706565 0.353283 0.935517i \(-0.385065\pi\)
0.353283 + 0.935517i \(0.385065\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −25.1878 −1.54147
\(268\) 0 0
\(269\) −7.07081 −0.431115 −0.215557 0.976491i \(-0.569157\pi\)
−0.215557 + 0.976491i \(0.569157\pi\)
\(270\) 0 0
\(271\) 17.0096 1.03326 0.516629 0.856209i \(-0.327187\pi\)
0.516629 + 0.856209i \(0.327187\pi\)
\(272\) 0 0
\(273\) −9.67243 −0.585402
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 18.7755 1.12811 0.564056 0.825737i \(-0.309240\pi\)
0.564056 + 0.825737i \(0.309240\pi\)
\(278\) 0 0
\(279\) 0.775511 0.0464286
\(280\) 0 0
\(281\) −4.59829 −0.274311 −0.137156 0.990550i \(-0.543796\pi\)
−0.137156 + 0.990550i \(0.543796\pi\)
\(282\) 0 0
\(283\) 13.5833 0.807443 0.403722 0.914882i \(-0.367716\pi\)
0.403722 + 0.914882i \(0.367716\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.72928 −0.456245
\(288\) 0 0
\(289\) −16.1955 −0.952679
\(290\) 0 0
\(291\) −17.8786 −1.04806
\(292\) 0 0
\(293\) −11.8261 −0.690889 −0.345444 0.938439i \(-0.612272\pi\)
−0.345444 + 0.938439i \(0.612272\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.19554 −0.185424
\(298\) 0 0
\(299\) −20.4769 −1.18421
\(300\) 0 0
\(301\) 1.72928 0.0996741
\(302\) 0 0
\(303\) −16.9817 −0.975572
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 20.9860 1.19774 0.598868 0.800847i \(-0.295617\pi\)
0.598868 + 0.800847i \(0.295617\pi\)
\(308\) 0 0
\(309\) −1.10308 −0.0627522
\(310\) 0 0
\(311\) −22.5048 −1.27613 −0.638065 0.769983i \(-0.720265\pi\)
−0.638065 + 0.769983i \(0.720265\pi\)
\(312\) 0 0
\(313\) 12.4846 0.705670 0.352835 0.935686i \(-0.385218\pi\)
0.352835 + 0.935686i \(0.385218\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −25.5231 −1.43352 −0.716760 0.697319i \(-0.754376\pi\)
−0.716760 + 0.697319i \(0.754376\pi\)
\(318\) 0 0
\(319\) 4.93356 0.276226
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.72928 −0.318786
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −33.3372 −1.84355
\(328\) 0 0
\(329\) 5.87859 0.324097
\(330\) 0 0
\(331\) −2.68305 −0.147474 −0.0737370 0.997278i \(-0.523493\pi\)
−0.0737370 + 0.997278i \(0.523493\pi\)
\(332\) 0 0
\(333\) −0.618502 −0.0338937
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −12.5048 −0.681179 −0.340590 0.940212i \(-0.610627\pi\)
−0.340590 + 0.940212i \(0.610627\pi\)
\(338\) 0 0
\(339\) −1.84299 −0.100098
\(340\) 0 0
\(341\) −4.71096 −0.255113
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 28.9450 1.55385 0.776925 0.629593i \(-0.216778\pi\)
0.776925 + 0.629593i \(0.216778\pi\)
\(348\) 0 0
\(349\) 32.1449 1.72068 0.860340 0.509721i \(-0.170251\pi\)
0.860340 + 0.509721i \(0.170251\pi\)
\(350\) 0 0
\(351\) −28.0202 −1.49561
\(352\) 0 0
\(353\) −8.17722 −0.435229 −0.217615 0.976035i \(-0.569828\pi\)
−0.217615 + 0.976035i \(0.569828\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.57997 −0.0836208
\(358\) 0 0
\(359\) 18.5048 0.976646 0.488323 0.872663i \(-0.337609\pi\)
0.488323 + 0.872663i \(0.337609\pi\)
\(360\) 0 0
\(361\) 21.8034 1.14755
\(362\) 0 0
\(363\) 18.6864 0.980781
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.4942 1.43518 0.717592 0.696464i \(-0.245244\pi\)
0.717592 + 0.696464i \(0.245244\pi\)
\(368\) 0 0
\(369\) 0.796763 0.0414778
\(370\) 0 0
\(371\) −6.77551 −0.351767
\(372\) 0 0
\(373\) −6.06455 −0.314011 −0.157005 0.987598i \(-0.550184\pi\)
−0.157005 + 0.987598i \(0.550184\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 43.2601 2.22801
\(378\) 0 0
\(379\) −5.72928 −0.294293 −0.147147 0.989115i \(-0.547009\pi\)
−0.147147 + 0.989115i \(0.547009\pi\)
\(380\) 0 0
\(381\) −37.4865 −1.92049
\(382\) 0 0
\(383\) 1.72928 0.0883622 0.0441811 0.999024i \(-0.485932\pi\)
0.0441811 + 0.999024i \(0.485932\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.178261 −0.00906150
\(388\) 0 0
\(389\) −36.7187 −1.86171 −0.930855 0.365389i \(-0.880936\pi\)
−0.930855 + 0.365389i \(0.880936\pi\)
\(390\) 0 0
\(391\) −3.34485 −0.169157
\(392\) 0 0
\(393\) 17.4586 0.880668
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.03228 0.101997 0.0509985 0.998699i \(-0.483760\pi\)
0.0509985 + 0.998699i \(0.483760\pi\)
\(398\) 0 0
\(399\) 11.2524 0.563324
\(400\) 0 0
\(401\) −1.64452 −0.0821234 −0.0410617 0.999157i \(-0.513074\pi\)
−0.0410617 + 0.999157i \(0.513074\pi\)
\(402\) 0 0
\(403\) −41.3082 −2.05771
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.75719 0.186237
\(408\) 0 0
\(409\) −4.98168 −0.246328 −0.123164 0.992386i \(-0.539304\pi\)
−0.123164 + 0.992386i \(0.539304\pi\)
\(410\) 0 0
\(411\) 6.09246 0.300519
\(412\) 0 0
\(413\) 0.593923 0.0292250
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 35.9634 1.76113
\(418\) 0 0
\(419\) 22.9205 1.11974 0.559869 0.828581i \(-0.310852\pi\)
0.559869 + 0.828581i \(0.310852\pi\)
\(420\) 0 0
\(421\) −20.9527 −1.02117 −0.510587 0.859826i \(-0.670572\pi\)
−0.510587 + 0.859826i \(0.670572\pi\)
\(422\) 0 0
\(423\) −0.605987 −0.0294641
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −7.13536 −0.345304
\(428\) 0 0
\(429\) −6.05685 −0.292428
\(430\) 0 0
\(431\) 33.1589 1.59721 0.798604 0.601857i \(-0.205572\pi\)
0.798604 + 0.601857i \(0.205572\pi\)
\(432\) 0 0
\(433\) 18.5414 0.891045 0.445522 0.895271i \(-0.353018\pi\)
0.445522 + 0.895271i \(0.353018\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 23.8217 1.13955
\(438\) 0 0
\(439\) −20.8401 −0.994642 −0.497321 0.867567i \(-0.665683\pi\)
−0.497321 + 0.867567i \(0.665683\pi\)
\(440\) 0 0
\(441\) 0.103084 0.00490875
\(442\) 0 0
\(443\) −17.5510 −0.833874 −0.416937 0.908935i \(-0.636896\pi\)
−0.416937 + 0.908935i \(0.636896\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 30.0279 1.42027
\(448\) 0 0
\(449\) −13.1955 −0.622736 −0.311368 0.950289i \(-0.600787\pi\)
−0.311368 + 0.950289i \(0.600787\pi\)
\(450\) 0 0
\(451\) −4.84006 −0.227910
\(452\) 0 0
\(453\) −5.10308 −0.239764
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 29.1020 1.36134 0.680668 0.732592i \(-0.261690\pi\)
0.680668 + 0.732592i \(0.261690\pi\)
\(458\) 0 0
\(459\) −4.57704 −0.213638
\(460\) 0 0
\(461\) −18.8280 −0.876907 −0.438454 0.898754i \(-0.644474\pi\)
−0.438454 + 0.898754i \(0.644474\pi\)
\(462\) 0 0
\(463\) 14.0925 0.654932 0.327466 0.944863i \(-0.393805\pi\)
0.327466 + 0.944863i \(0.393805\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.2663 0.567619 0.283809 0.958881i \(-0.408402\pi\)
0.283809 + 0.958881i \(0.408402\pi\)
\(468\) 0 0
\(469\) −5.79383 −0.267534
\(470\) 0 0
\(471\) 17.8217 0.821182
\(472\) 0 0
\(473\) 1.08287 0.0497905
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.698445 0.0319796
\(478\) 0 0
\(479\) −14.1570 −0.646850 −0.323425 0.946254i \(-0.604834\pi\)
−0.323425 + 0.946254i \(0.604834\pi\)
\(480\) 0 0
\(481\) 32.9450 1.50216
\(482\) 0 0
\(483\) 6.56934 0.298915
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −30.2341 −1.37004 −0.685018 0.728526i \(-0.740206\pi\)
−0.685018 + 0.728526i \(0.740206\pi\)
\(488\) 0 0
\(489\) 0.840061 0.0379889
\(490\) 0 0
\(491\) 39.9065 1.80096 0.900478 0.434902i \(-0.143217\pi\)
0.900478 + 0.434902i \(0.143217\pi\)
\(492\) 0 0
\(493\) 7.06644 0.318256
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.52311 −0.247746
\(498\) 0 0
\(499\) 27.3246 1.22322 0.611610 0.791160i \(-0.290522\pi\)
0.611610 + 0.791160i \(0.290522\pi\)
\(500\) 0 0
\(501\) −23.1955 −1.03630
\(502\) 0 0
\(503\) −1.40171 −0.0624991 −0.0312495 0.999512i \(-0.509949\pi\)
−0.0312495 + 0.999512i \(0.509949\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −30.2095 −1.34165
\(508\) 0 0
\(509\) 18.6585 0.827022 0.413511 0.910499i \(-0.364302\pi\)
0.413511 + 0.910499i \(0.364302\pi\)
\(510\) 0 0
\(511\) −3.72928 −0.164974
\(512\) 0 0
\(513\) 32.5972 1.43920
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.68116 0.161897
\(518\) 0 0
\(519\) 24.6049 1.08004
\(520\) 0 0
\(521\) −4.02791 −0.176466 −0.0882329 0.996100i \(-0.528122\pi\)
−0.0882329 + 0.996100i \(0.528122\pi\)
\(522\) 0 0
\(523\) −38.4436 −1.68102 −0.840510 0.541796i \(-0.817744\pi\)
−0.840510 + 0.541796i \(0.817744\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.74760 −0.293930
\(528\) 0 0
\(529\) −9.09246 −0.395324
\(530\) 0 0
\(531\) −0.0612237 −0.00265688
\(532\) 0 0
\(533\) −42.4402 −1.83829
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −13.1387 −0.566976
\(538\) 0 0
\(539\) −0.626198 −0.0269723
\(540\) 0 0
\(541\) 12.4846 0.536754 0.268377 0.963314i \(-0.413513\pi\)
0.268377 + 0.963314i \(0.413513\pi\)
\(542\) 0 0
\(543\) 24.8680 1.06719
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −37.7851 −1.61557 −0.807787 0.589474i \(-0.799335\pi\)
−0.807787 + 0.589474i \(0.799335\pi\)
\(548\) 0 0
\(549\) 0.735539 0.0313921
\(550\) 0 0
\(551\) −50.3265 −2.14398
\(552\) 0 0
\(553\) 5.67243 0.241216
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.93545 −0.0820076 −0.0410038 0.999159i \(-0.513056\pi\)
−0.0410038 + 0.999159i \(0.513056\pi\)
\(558\) 0 0
\(559\) 9.49521 0.401604
\(560\) 0 0
\(561\) −0.989374 −0.0417714
\(562\) 0 0
\(563\) 29.8463 1.25787 0.628936 0.777457i \(-0.283491\pi\)
0.628936 + 0.777457i \(0.283491\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9.29862 0.390506
\(568\) 0 0
\(569\) 15.3449 0.643290 0.321645 0.946860i \(-0.395764\pi\)
0.321645 + 0.946860i \(0.395764\pi\)
\(570\) 0 0
\(571\) 35.8217 1.49909 0.749547 0.661952i \(-0.230272\pi\)
0.749547 + 0.661952i \(0.230272\pi\)
\(572\) 0 0
\(573\) 14.8324 0.619631
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −2.92482 −0.121762 −0.0608810 0.998145i \(-0.519391\pi\)
−0.0608810 + 0.998145i \(0.519391\pi\)
\(578\) 0 0
\(579\) −39.2803 −1.63243
\(580\) 0 0
\(581\) −17.4340 −0.723284
\(582\) 0 0
\(583\) −4.24281 −0.175719
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.5756 −0.807972 −0.403986 0.914765i \(-0.632375\pi\)
−0.403986 + 0.914765i \(0.632375\pi\)
\(588\) 0 0
\(589\) 48.0558 1.98011
\(590\) 0 0
\(591\) 46.4402 1.91030
\(592\) 0 0
\(593\) −8.00770 −0.328837 −0.164418 0.986391i \(-0.552575\pi\)
−0.164418 + 0.986391i \(0.552575\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −39.5298 −1.61785
\(598\) 0 0
\(599\) −29.3005 −1.19719 −0.598593 0.801053i \(-0.704273\pi\)
−0.598593 + 0.801053i \(0.704273\pi\)
\(600\) 0 0
\(601\) 21.3449 0.870675 0.435337 0.900267i \(-0.356629\pi\)
0.435337 + 0.900267i \(0.356629\pi\)
\(602\) 0 0
\(603\) 0.597250 0.0243219
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −9.53081 −0.386844 −0.193422 0.981116i \(-0.561959\pi\)
−0.193422 + 0.981116i \(0.561959\pi\)
\(608\) 0 0
\(609\) −13.8786 −0.562389
\(610\) 0 0
\(611\) 32.2784 1.30584
\(612\) 0 0
\(613\) 9.75719 0.394089 0.197045 0.980395i \(-0.436866\pi\)
0.197045 + 0.980395i \(0.436866\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 37.9267 1.52687 0.763436 0.645884i \(-0.223511\pi\)
0.763436 + 0.645884i \(0.223511\pi\)
\(618\) 0 0
\(619\) 41.9109 1.68454 0.842270 0.539056i \(-0.181219\pi\)
0.842270 + 0.539056i \(0.181219\pi\)
\(620\) 0 0
\(621\) 19.0308 0.763681
\(622\) 0 0
\(623\) −14.2986 −0.572862
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 7.04623 0.281399
\(628\) 0 0
\(629\) 5.38150 0.214574
\(630\) 0 0
\(631\) −8.42003 −0.335196 −0.167598 0.985855i \(-0.553601\pi\)
−0.167598 + 0.985855i \(0.553601\pi\)
\(632\) 0 0
\(633\) 26.7678 1.06393
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.49084 −0.217555
\(638\) 0 0
\(639\) 0.569343 0.0225229
\(640\) 0 0
\(641\) −2.07707 −0.0820392 −0.0410196 0.999158i \(-0.513061\pi\)
−0.0410196 + 0.999158i \(0.513061\pi\)
\(642\) 0 0
\(643\) 27.2480 1.07456 0.537279 0.843405i \(-0.319452\pi\)
0.537279 + 0.843405i \(0.319452\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.3632 −0.486047 −0.243023 0.970020i \(-0.578139\pi\)
−0.243023 + 0.970020i \(0.578139\pi\)
\(648\) 0 0
\(649\) 0.371913 0.0145989
\(650\) 0 0
\(651\) 13.2524 0.519402
\(652\) 0 0
\(653\) −37.3449 −1.46142 −0.730709 0.682690i \(-0.760810\pi\)
−0.730709 + 0.682690i \(0.760810\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.384428 0.0149980
\(658\) 0 0
\(659\) −14.1772 −0.552266 −0.276133 0.961119i \(-0.589053\pi\)
−0.276133 + 0.961119i \(0.589053\pi\)
\(660\) 0 0
\(661\) −1.76925 −0.0688160 −0.0344080 0.999408i \(-0.510955\pi\)
−0.0344080 + 0.999408i \(0.510955\pi\)
\(662\) 0 0
\(663\) −8.67536 −0.336923
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −29.3815 −1.13766
\(668\) 0 0
\(669\) −12.1493 −0.469720
\(670\) 0 0
\(671\) −4.46815 −0.172491
\(672\) 0 0
\(673\) −4.05581 −0.156340 −0.0781701 0.996940i \(-0.524908\pi\)
−0.0781701 + 0.996940i \(0.524908\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.37713 0.360392 0.180196 0.983631i \(-0.442327\pi\)
0.180196 + 0.983631i \(0.442327\pi\)
\(678\) 0 0
\(679\) −10.1493 −0.389495
\(680\) 0 0
\(681\) −4.89692 −0.187650
\(682\) 0 0
\(683\) 5.49521 0.210268 0.105134 0.994458i \(-0.466473\pi\)
0.105134 + 0.994458i \(0.466473\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −32.8680 −1.25399
\(688\) 0 0
\(689\) −37.2032 −1.41733
\(690\) 0 0
\(691\) −3.03416 −0.115425 −0.0577125 0.998333i \(-0.518381\pi\)
−0.0577125 + 0.998333i \(0.518381\pi\)
\(692\) 0 0
\(693\) 0.0645508 0.00245208
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −6.93252 −0.262588
\(698\) 0 0
\(699\) −19.4586 −0.735990
\(700\) 0 0
\(701\) 35.2234 1.33037 0.665186 0.746678i \(-0.268352\pi\)
0.665186 + 0.746678i \(0.268352\pi\)
\(702\) 0 0
\(703\) −38.3265 −1.44551
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.64015 −0.362555
\(708\) 0 0
\(709\) 28.7187 1.07855 0.539276 0.842129i \(-0.318698\pi\)
0.539276 + 0.842129i \(0.318698\pi\)
\(710\) 0 0
\(711\) −0.584735 −0.0219293
\(712\) 0 0
\(713\) 28.0558 1.05070
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 35.4942 1.32555
\(718\) 0 0
\(719\) −8.60599 −0.320949 −0.160475 0.987040i \(-0.551302\pi\)
−0.160475 + 0.987040i \(0.551302\pi\)
\(720\) 0 0
\(721\) −0.626198 −0.0233208
\(722\) 0 0
\(723\) −6.56934 −0.244316
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 15.2803 0.566715 0.283358 0.959014i \(-0.408552\pi\)
0.283358 + 0.959014i \(0.408552\pi\)
\(728\) 0 0
\(729\) 26.0096 0.963318
\(730\) 0 0
\(731\) 1.55102 0.0573666
\(732\) 0 0
\(733\) 46.0235 1.69992 0.849959 0.526849i \(-0.176627\pi\)
0.849959 + 0.526849i \(0.176627\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.62809 −0.133642
\(738\) 0 0
\(739\) 46.3467 1.70489 0.852446 0.522815i \(-0.175118\pi\)
0.852446 + 0.522815i \(0.175118\pi\)
\(740\) 0 0
\(741\) 61.7851 2.26973
\(742\) 0 0
\(743\) −10.7755 −0.395315 −0.197658 0.980271i \(-0.563333\pi\)
−0.197658 + 0.980271i \(0.563333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.79716 0.0657546
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.76781 0.100999 0.0504995 0.998724i \(-0.483919\pi\)
0.0504995 + 0.998724i \(0.483919\pi\)
\(752\) 0 0
\(753\) 37.8709 1.38009
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −14.8401 −0.539371 −0.269686 0.962948i \(-0.586920\pi\)
−0.269686 + 0.962948i \(0.586920\pi\)
\(758\) 0 0
\(759\) 4.11371 0.149318
\(760\) 0 0
\(761\) 31.3169 1.13524 0.567619 0.823291i \(-0.307865\pi\)
0.567619 + 0.823291i \(0.307865\pi\)
\(762\) 0 0
\(763\) −18.9248 −0.685125
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.26113 0.117753
\(768\) 0 0
\(769\) 8.92586 0.321875 0.160937 0.986965i \(-0.448548\pi\)
0.160937 + 0.986965i \(0.448548\pi\)
\(770\) 0 0
\(771\) 7.52311 0.270938
\(772\) 0 0
\(773\) −36.7711 −1.32257 −0.661283 0.750136i \(-0.729988\pi\)
−0.661283 + 0.750136i \(0.729988\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −10.5693 −0.379173
\(778\) 0 0
\(779\) 49.3728 1.76896
\(780\) 0 0
\(781\) −3.45856 −0.123757
\(782\) 0 0
\(783\) −40.2051 −1.43681
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −6.53707 −0.233021 −0.116511 0.993189i \(-0.537171\pi\)
−0.116511 + 0.993189i \(0.537171\pi\)
\(788\) 0 0
\(789\) −20.1849 −0.718602
\(790\) 0 0
\(791\) −1.04623 −0.0371996
\(792\) 0 0
\(793\) −39.1791 −1.39129
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.82611 −0.277215 −0.138607 0.990347i \(-0.544263\pi\)
−0.138607 + 0.990347i \(0.544263\pi\)
\(798\) 0 0
\(799\) 5.27261 0.186531
\(800\) 0 0
\(801\) 1.47396 0.0520796
\(802\) 0 0
\(803\) −2.33527 −0.0824099
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.4556 0.438459
\(808\) 0 0
\(809\) 38.4113 1.35047 0.675235 0.737603i \(-0.264042\pi\)
0.675235 + 0.737603i \(0.264042\pi\)
\(810\) 0 0
\(811\) 7.64015 0.268282 0.134141 0.990962i \(-0.457172\pi\)
0.134141 + 0.990962i \(0.457172\pi\)
\(812\) 0 0
\(813\) −29.9634 −1.05086
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −11.0462 −0.386459
\(818\) 0 0
\(819\) 0.566016 0.0197782
\(820\) 0 0
\(821\) 2.56165 0.0894021 0.0447011 0.999000i \(-0.485766\pi\)
0.0447011 + 0.999000i \(0.485766\pi\)
\(822\) 0 0
\(823\) −0.784248 −0.0273372 −0.0136686 0.999907i \(-0.504351\pi\)
−0.0136686 + 0.999907i \(0.504351\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7.28904 −0.253465 −0.126732 0.991937i \(-0.540449\pi\)
−0.126732 + 0.991937i \(0.540449\pi\)
\(828\) 0 0
\(829\) −11.0708 −0.384505 −0.192253 0.981345i \(-0.561579\pi\)
−0.192253 + 0.981345i \(0.561579\pi\)
\(830\) 0 0
\(831\) −33.0741 −1.14733
\(832\) 0 0
\(833\) −0.896916 −0.0310763
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 38.3911 1.32699
\(838\) 0 0
\(839\) −5.55976 −0.191944 −0.0959721 0.995384i \(-0.530596\pi\)
−0.0959721 + 0.995384i \(0.530596\pi\)
\(840\) 0 0
\(841\) 33.0722 1.14042
\(842\) 0 0
\(843\) 8.10015 0.278984
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.6079 0.364491
\(848\) 0 0
\(849\) −23.9278 −0.821198
\(850\) 0 0
\(851\) −22.3757 −0.767029
\(852\) 0 0
\(853\) −16.0804 −0.550582 −0.275291 0.961361i \(-0.588774\pi\)
−0.275291 + 0.961361i \(0.588774\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.58767 −0.0542336 −0.0271168 0.999632i \(-0.508633\pi\)
−0.0271168 + 0.999632i \(0.508633\pi\)
\(858\) 0 0
\(859\) 4.94171 0.168609 0.0843044 0.996440i \(-0.473133\pi\)
0.0843044 + 0.996440i \(0.473133\pi\)
\(860\) 0 0
\(861\) 13.6156 0.464017
\(862\) 0 0
\(863\) 37.6647 1.28212 0.641061 0.767490i \(-0.278494\pi\)
0.641061 + 0.767490i \(0.278494\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 28.5294 0.968908
\(868\) 0 0
\(869\) 3.55206 0.120495
\(870\) 0 0
\(871\) −31.8130 −1.07794
\(872\) 0 0
\(873\) 1.04623 0.0354095
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.66473 0.123749 0.0618746 0.998084i \(-0.480292\pi\)
0.0618746 + 0.998084i \(0.480292\pi\)
\(878\) 0 0
\(879\) 20.8324 0.702658
\(880\) 0 0
\(881\) −43.4373 −1.46344 −0.731720 0.681605i \(-0.761282\pi\)
−0.731720 + 0.681605i \(0.761282\pi\)
\(882\) 0 0
\(883\) 47.3853 1.59464 0.797321 0.603556i \(-0.206250\pi\)
0.797321 + 0.603556i \(0.206250\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −21.3169 −0.715753 −0.357877 0.933769i \(-0.616499\pi\)
−0.357877 + 0.933769i \(0.616499\pi\)
\(888\) 0 0
\(889\) −21.2803 −0.713718
\(890\) 0 0
\(891\) 5.82278 0.195071
\(892\) 0 0
\(893\) −37.5510 −1.25660
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 36.0712 1.20438
\(898\) 0 0
\(899\) −59.2716 −1.97682
\(900\) 0 0
\(901\) −6.07707 −0.202456
\(902\) 0 0
\(903\) −3.04623 −0.101372
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 18.9325 0.628644 0.314322 0.949316i \(-0.398223\pi\)
0.314322 + 0.949316i \(0.398223\pi\)
\(908\) 0 0
\(909\) 0.993743 0.0329604
\(910\) 0 0
\(911\) −12.6705 −0.419794 −0.209897 0.977724i \(-0.567313\pi\)
−0.209897 + 0.977724i \(0.567313\pi\)
\(912\) 0 0
\(913\) −10.9171 −0.361304
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.91087 0.327286
\(918\) 0 0
\(919\) 22.8690 0.754379 0.377190 0.926136i \(-0.376891\pi\)
0.377190 + 0.926136i \(0.376891\pi\)
\(920\) 0 0
\(921\) −36.9681 −1.21814
\(922\) 0 0
\(923\) −30.3265 −0.998210
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0.0645508 0.00212013
\(928\) 0 0
\(929\) 50.4190 1.65419 0.827097 0.562060i \(-0.189991\pi\)
0.827097 + 0.562060i \(0.189991\pi\)
\(930\) 0 0
\(931\) 6.38776 0.209350
\(932\) 0 0
\(933\) 39.6435 1.29787
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 47.9344 1.56595 0.782974 0.622054i \(-0.213702\pi\)
0.782974 + 0.622054i \(0.213702\pi\)
\(938\) 0 0
\(939\) −21.9923 −0.717692
\(940\) 0 0
\(941\) 59.9667 1.95486 0.977429 0.211264i \(-0.0677580\pi\)
0.977429 + 0.211264i \(0.0677580\pi\)
\(942\) 0 0
\(943\) 28.8247 0.938660
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.5231 0.894381 0.447191 0.894439i \(-0.352425\pi\)
0.447191 + 0.894439i \(0.352425\pi\)
\(948\) 0 0
\(949\) −20.4769 −0.664708
\(950\) 0 0
\(951\) 44.9604 1.45794
\(952\) 0 0
\(953\) −0.840061 −0.0272123 −0.0136061 0.999907i \(-0.504331\pi\)
−0.0136061 + 0.999907i \(0.504331\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −8.69075 −0.280932
\(958\) 0 0
\(959\) 3.45856 0.111683
\(960\) 0 0
\(961\) 25.5972 0.825718
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −31.8988 −1.02580 −0.512898 0.858449i \(-0.671428\pi\)
−0.512898 + 0.858449i \(0.671428\pi\)
\(968\) 0 0
\(969\) 10.0925 0.324216
\(970\) 0 0
\(971\) 28.4157 0.911902 0.455951 0.890005i \(-0.349299\pi\)
0.455951 + 0.890005i \(0.349299\pi\)
\(972\) 0 0
\(973\) 20.4157 0.654496
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.55102 −0.305564 −0.152782 0.988260i \(-0.548823\pi\)
−0.152782 + 0.988260i \(0.548823\pi\)
\(978\) 0 0
\(979\) −8.95377 −0.286164
\(980\) 0 0
\(981\) 1.95084 0.0622856
\(982\) 0 0
\(983\) 0.0443400 0.00141423 0.000707113 1.00000i \(-0.499775\pi\)
0.000707113 1.00000i \(0.499775\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −10.3555 −0.329619
\(988\) 0 0
\(989\) −6.44898 −0.205066
\(990\) 0 0
\(991\) −13.9913 −0.444447 −0.222224 0.974996i \(-0.571331\pi\)
−0.222224 + 0.974996i \(0.571331\pi\)
\(992\) 0 0
\(993\) 4.72635 0.149986
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 19.0419 0.603062 0.301531 0.953456i \(-0.402502\pi\)
0.301531 + 0.953456i \(0.402502\pi\)
\(998\) 0 0
\(999\) −30.6185 −0.968727
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1400.2.a.t.1.1 3
4.3 odd 2 2800.2.a.bq.1.3 3
5.2 odd 4 280.2.g.b.169.5 yes 6
5.3 odd 4 280.2.g.b.169.2 6
5.4 even 2 1400.2.a.s.1.3 3
7.6 odd 2 9800.2.a.cd.1.3 3
15.2 even 4 2520.2.t.g.1009.3 6
15.8 even 4 2520.2.t.g.1009.4 6
20.3 even 4 560.2.g.f.449.5 6
20.7 even 4 560.2.g.f.449.2 6
20.19 odd 2 2800.2.a.br.1.1 3
35.13 even 4 1960.2.g.c.1569.5 6
35.27 even 4 1960.2.g.c.1569.2 6
35.34 odd 2 9800.2.a.cg.1.1 3
40.3 even 4 2240.2.g.m.449.2 6
40.13 odd 4 2240.2.g.l.449.5 6
40.27 even 4 2240.2.g.m.449.5 6
40.37 odd 4 2240.2.g.l.449.2 6
60.23 odd 4 5040.2.t.y.1009.4 6
60.47 odd 4 5040.2.t.y.1009.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.g.b.169.2 6 5.3 odd 4
280.2.g.b.169.5 yes 6 5.2 odd 4
560.2.g.f.449.2 6 20.7 even 4
560.2.g.f.449.5 6 20.3 even 4
1400.2.a.s.1.3 3 5.4 even 2
1400.2.a.t.1.1 3 1.1 even 1 trivial
1960.2.g.c.1569.2 6 35.27 even 4
1960.2.g.c.1569.5 6 35.13 even 4
2240.2.g.l.449.2 6 40.37 odd 4
2240.2.g.l.449.5 6 40.13 odd 4
2240.2.g.m.449.2 6 40.3 even 4
2240.2.g.m.449.5 6 40.27 even 4
2520.2.t.g.1009.3 6 15.2 even 4
2520.2.t.g.1009.4 6 15.8 even 4
2800.2.a.bq.1.3 3 4.3 odd 2
2800.2.a.br.1.1 3 20.19 odd 2
5040.2.t.y.1009.3 6 60.47 odd 4
5040.2.t.y.1009.4 6 60.23 odd 4
9800.2.a.cd.1.3 3 7.6 odd 2
9800.2.a.cg.1.1 3 35.34 odd 2