Properties

Label 1400.2.a.g
Level $1400$
Weight $2$
Character orbit 1400.a
Self dual yes
Analytic conductor $11.179$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{7} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{7} - 3 q^{9} - 4 q^{11} - 2 q^{13} + 6 q^{17} + 8 q^{19} + 6 q^{29} + 8 q^{31} + 2 q^{37} + 2 q^{41} + 4 q^{43} + 8 q^{47} + q^{49} - 6 q^{53} - 6 q^{61} - 3 q^{63} + 4 q^{67} - 8 q^{71} - 10 q^{73} - 4 q^{77} + 16 q^{79} + 9 q^{81} - 8 q^{83} - 6 q^{89} - 2 q^{91} + 6 q^{97} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 1.00000 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1400.2.a.g 1
4.b odd 2 1 2800.2.a.p 1
5.b even 2 1 56.2.a.a 1
5.c odd 4 2 1400.2.g.g 2
7.b odd 2 1 9800.2.a.u 1
15.d odd 2 1 504.2.a.c 1
20.d odd 2 1 112.2.a.b 1
20.e even 4 2 2800.2.g.p 2
35.c odd 2 1 392.2.a.d 1
35.i odd 6 2 392.2.i.d 2
35.j even 6 2 392.2.i.c 2
40.e odd 2 1 448.2.a.e 1
40.f even 2 1 448.2.a.d 1
55.d odd 2 1 6776.2.a.g 1
60.h even 2 1 1008.2.a.d 1
65.d even 2 1 9464.2.a.c 1
80.k odd 4 2 1792.2.b.d 2
80.q even 4 2 1792.2.b.i 2
105.g even 2 1 3528.2.a.x 1
105.o odd 6 2 3528.2.s.t 2
105.p even 6 2 3528.2.s.e 2
120.i odd 2 1 4032.2.a.bb 1
120.m even 2 1 4032.2.a.bk 1
140.c even 2 1 784.2.a.e 1
140.p odd 6 2 784.2.i.e 2
140.s even 6 2 784.2.i.g 2
280.c odd 2 1 3136.2.a.q 1
280.n even 2 1 3136.2.a.p 1
420.o odd 2 1 7056.2.a.bo 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.2.a.a 1 5.b even 2 1
112.2.a.b 1 20.d odd 2 1
392.2.a.d 1 35.c odd 2 1
392.2.i.c 2 35.j even 6 2
392.2.i.d 2 35.i odd 6 2
448.2.a.d 1 40.f even 2 1
448.2.a.e 1 40.e odd 2 1
504.2.a.c 1 15.d odd 2 1
784.2.a.e 1 140.c even 2 1
784.2.i.e 2 140.p odd 6 2
784.2.i.g 2 140.s even 6 2
1008.2.a.d 1 60.h even 2 1
1400.2.a.g 1 1.a even 1 1 trivial
1400.2.g.g 2 5.c odd 4 2
1792.2.b.d 2 80.k odd 4 2
1792.2.b.i 2 80.q even 4 2
2800.2.a.p 1 4.b odd 2 1
2800.2.g.p 2 20.e even 4 2
3136.2.a.p 1 280.n even 2 1
3136.2.a.q 1 280.c odd 2 1
3528.2.a.x 1 105.g even 2 1
3528.2.s.e 2 105.p even 6 2
3528.2.s.t 2 105.o odd 6 2
4032.2.a.bb 1 120.i odd 2 1
4032.2.a.bk 1 120.m even 2 1
6776.2.a.g 1 55.d odd 2 1
7056.2.a.bo 1 420.o odd 2 1
9464.2.a.c 1 65.d even 2 1
9800.2.a.u 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1400))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T - 2 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 6 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T - 16 \) Copy content Toggle raw display
$83$ \( T + 8 \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T - 6 \) Copy content Toggle raw display
show more
show less