Properties

Label 1400.2.a.d.1.1
Level $1400$
Weight $2$
Character 1400.1
Self dual yes
Analytic conductor $11.179$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.1790562830\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1400.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +1.00000 q^{7} -2.00000 q^{9} -1.00000 q^{11} +1.00000 q^{13} +3.00000 q^{17} -4.00000 q^{19} -1.00000 q^{21} -2.00000 q^{23} +5.00000 q^{27} -1.00000 q^{29} -6.00000 q^{31} +1.00000 q^{33} -2.00000 q^{37} -1.00000 q^{39} -10.0000 q^{41} -9.00000 q^{47} +1.00000 q^{49} -3.00000 q^{51} +14.0000 q^{53} +4.00000 q^{57} +6.00000 q^{59} -4.00000 q^{61} -2.00000 q^{63} -10.0000 q^{67} +2.00000 q^{69} -16.0000 q^{71} -10.0000 q^{73} -1.00000 q^{77} -11.0000 q^{79} +1.00000 q^{81} -4.00000 q^{83} +1.00000 q^{87} +12.0000 q^{89} +1.00000 q^{91} +6.00000 q^{93} +19.0000 q^{97} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) 14.0000 1.92305 0.961524 0.274721i \(-0.0885855\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.00000 0.107211
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 6.00000 0.622171
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 19.0000 1.92916 0.964579 0.263795i \(-0.0849741\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −1.00000 −0.0985329 −0.0492665 0.998786i \(-0.515688\pi\)
−0.0492665 + 0.998786i \(0.515688\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.0000 −1.54678 −0.773389 0.633932i \(-0.781440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(108\) 0 0
\(109\) −15.0000 −1.43674 −0.718370 0.695662i \(-0.755111\pi\)
−0.718370 + 0.695662i \(0.755111\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 10.0000 0.901670
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −18.0000 −1.59724 −0.798621 0.601834i \(-0.794437\pi\)
−0.798621 + 0.601834i \(0.794437\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 9.00000 0.757937
\(142\) 0 0
\(143\) −1.00000 −0.0836242
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 13.0000 1.05792 0.528962 0.848645i \(-0.322581\pi\)
0.528962 + 0.848645i \(0.322581\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 0 0
\(159\) −14.0000 −1.11027
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.0000 1.16073 0.580367 0.814355i \(-0.302909\pi\)
0.580367 + 0.814355i \(0.302909\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 8.00000 0.611775
\(172\) 0 0
\(173\) 15.0000 1.14043 0.570214 0.821496i \(-0.306860\pi\)
0.570214 + 0.821496i \(0.306860\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) 0 0
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.00000 −0.219382
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) 3.00000 0.217072 0.108536 0.994092i \(-0.465384\pi\)
0.108536 + 0.994092i \(0.465384\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 10.0000 0.705346
\(202\) 0 0
\(203\) −1.00000 −0.0701862
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 1.00000 0.0688428 0.0344214 0.999407i \(-0.489041\pi\)
0.0344214 + 0.999407i \(0.489041\pi\)
\(212\) 0 0
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 0 0
\(219\) 10.0000 0.675737
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) 15.0000 1.00447 0.502237 0.864730i \(-0.332510\pi\)
0.502237 + 0.864730i \(0.332510\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.00000 0.464606 0.232303 0.972643i \(-0.425374\pi\)
0.232303 + 0.972643i \(0.425374\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 0 0
\(231\) 1.00000 0.0657952
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 11.0000 0.714527
\(238\) 0 0
\(239\) 17.0000 1.09964 0.549819 0.835284i \(-0.314697\pi\)
0.549819 + 0.835284i \(0.314697\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 10.0000 0.631194 0.315597 0.948893i \(-0.397795\pi\)
0.315597 + 0.948893i \(0.397795\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 18.0000 1.08152 0.540758 0.841178i \(-0.318138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 0 0
\(279\) 12.0000 0.718421
\(280\) 0 0
\(281\) 15.0000 0.894825 0.447412 0.894328i \(-0.352346\pi\)
0.447412 + 0.894328i \(0.352346\pi\)
\(282\) 0 0
\(283\) 21.0000 1.24832 0.624160 0.781296i \(-0.285441\pi\)
0.624160 + 0.781296i \(0.285441\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.0000 −0.590281
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −19.0000 −1.11380
\(292\) 0 0
\(293\) 31.0000 1.81104 0.905520 0.424304i \(-0.139481\pi\)
0.905520 + 0.424304i \(0.139481\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 25.0000 1.42683 0.713413 0.700744i \(-0.247149\pi\)
0.713413 + 0.700744i \(0.247149\pi\)
\(308\) 0 0
\(309\) 1.00000 0.0568880
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −7.00000 −0.395663 −0.197832 0.980236i \(-0.563390\pi\)
−0.197832 + 0.980236i \(0.563390\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) 1.00000 0.0559893
\(320\) 0 0
\(321\) 16.0000 0.893033
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 15.0000 0.829502
\(328\) 0 0
\(329\) −9.00000 −0.496186
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) 4.00000 0.219199
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −34.0000 −1.85210 −0.926049 0.377403i \(-0.876817\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.0000 1.18102 0.590511 0.807030i \(-0.298926\pi\)
0.590511 + 0.807030i \(0.298926\pi\)
\(348\) 0 0
\(349\) 8.00000 0.428230 0.214115 0.976808i \(-0.431313\pi\)
0.214115 + 0.976808i \(0.431313\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3.00000 −0.158777
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −17.0000 −0.887393 −0.443696 0.896177i \(-0.646333\pi\)
−0.443696 + 0.896177i \(0.646333\pi\)
\(368\) 0 0
\(369\) 20.0000 1.04116
\(370\) 0 0
\(371\) 14.0000 0.726844
\(372\) 0 0
\(373\) −20.0000 −1.03556 −0.517780 0.855514i \(-0.673242\pi\)
−0.517780 + 0.855514i \(0.673242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.00000 −0.0515026
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) 18.0000 0.922168
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) −6.00000 −0.303433
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 15.0000 0.752828 0.376414 0.926451i \(-0.377157\pi\)
0.376414 + 0.926451i \(0.377157\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) 13.0000 0.649189 0.324595 0.945853i \(-0.394772\pi\)
0.324595 + 0.945853i \(0.394772\pi\)
\(402\) 0 0
\(403\) −6.00000 −0.298881
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) −28.0000 −1.38451 −0.692255 0.721653i \(-0.743383\pi\)
−0.692255 + 0.721653i \(0.743383\pi\)
\(410\) 0 0
\(411\) −8.00000 −0.394611
\(412\) 0 0
\(413\) 6.00000 0.295241
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) 1.00000 0.0487370 0.0243685 0.999703i \(-0.492242\pi\)
0.0243685 + 0.999703i \(0.492242\pi\)
\(422\) 0 0
\(423\) 18.0000 0.875190
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.00000 −0.193574
\(428\) 0 0
\(429\) 1.00000 0.0482805
\(430\) 0 0
\(431\) 31.0000 1.49322 0.746609 0.665263i \(-0.231681\pi\)
0.746609 + 0.665263i \(0.231681\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) −30.0000 −1.43182 −0.715911 0.698192i \(-0.753988\pi\)
−0.715911 + 0.698192i \(0.753988\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) 27.0000 1.27421 0.637104 0.770778i \(-0.280132\pi\)
0.637104 + 0.770778i \(0.280132\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 0 0
\(453\) −13.0000 −0.610793
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 0 0
\(459\) 15.0000 0.700140
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −27.0000 −1.24941 −0.624705 0.780860i \(-0.714781\pi\)
−0.624705 + 0.780860i \(0.714781\pi\)
\(468\) 0 0
\(469\) −10.0000 −0.461757
\(470\) 0 0
\(471\) −14.0000 −0.645086
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −28.0000 −1.28203
\(478\) 0 0
\(479\) 2.00000 0.0913823 0.0456912 0.998956i \(-0.485451\pi\)
0.0456912 + 0.998956i \(0.485451\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 2.00000 0.0910032
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 38.0000 1.72194 0.860972 0.508652i \(-0.169856\pi\)
0.860972 + 0.508652i \(0.169856\pi\)
\(488\) 0 0
\(489\) 10.0000 0.452216
\(490\) 0 0
\(491\) 5.00000 0.225647 0.112823 0.993615i \(-0.464011\pi\)
0.112823 + 0.993615i \(0.464011\pi\)
\(492\) 0 0
\(493\) −3.00000 −0.135113
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.0000 −0.717698
\(498\) 0 0
\(499\) 23.0000 1.02962 0.514811 0.857304i \(-0.327862\pi\)
0.514811 + 0.857304i \(0.327862\pi\)
\(500\) 0 0
\(501\) −15.0000 −0.670151
\(502\) 0 0
\(503\) 29.0000 1.29305 0.646523 0.762894i \(-0.276222\pi\)
0.646523 + 0.762894i \(0.276222\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) −20.0000 −0.883022
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9.00000 0.395820
\(518\) 0 0
\(519\) −15.0000 −0.658427
\(520\) 0 0
\(521\) −8.00000 −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.0000 −0.784092
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) −10.0000 −0.433148
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −20.0000 −0.863064
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −41.0000 −1.76273 −0.881364 0.472438i \(-0.843374\pi\)
−0.881364 + 0.472438i \(0.843374\pi\)
\(542\) 0 0
\(543\) 2.00000 0.0858282
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) 8.00000 0.341432
\(550\) 0 0
\(551\) 4.00000 0.170406
\(552\) 0 0
\(553\) −11.0000 −0.467768
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.0000 1.52537 0.762684 0.646771i \(-0.223881\pi\)
0.762684 + 0.646771i \(0.223881\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 3.00000 0.126660
\(562\) 0 0
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 0 0
\(573\) −3.00000 −0.125327
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −31.0000 −1.29055 −0.645273 0.763952i \(-0.723257\pi\)
−0.645273 + 0.763952i \(0.723257\pi\)
\(578\) 0 0
\(579\) 4.00000 0.166234
\(580\) 0 0
\(581\) −4.00000 −0.165948
\(582\) 0 0
\(583\) −14.0000 −0.579821
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.0000 0.825488 0.412744 0.910847i \(-0.364570\pi\)
0.412744 + 0.910847i \(0.364570\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) −19.0000 −0.780236 −0.390118 0.920765i \(-0.627566\pi\)
−0.390118 + 0.920765i \(0.627566\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10.0000 −0.409273
\(598\) 0 0
\(599\) 7.00000 0.286012 0.143006 0.989722i \(-0.454323\pi\)
0.143006 + 0.989722i \(0.454323\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 20.0000 0.814463
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.00000 0.0405887 0.0202944 0.999794i \(-0.493540\pi\)
0.0202944 + 0.999794i \(0.493540\pi\)
\(608\) 0 0
\(609\) 1.00000 0.0405220
\(610\) 0 0
\(611\) −9.00000 −0.364101
\(612\) 0 0
\(613\) 4.00000 0.161558 0.0807792 0.996732i \(-0.474259\pi\)
0.0807792 + 0.996732i \(0.474259\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) −38.0000 −1.52735 −0.763674 0.645601i \(-0.776607\pi\)
−0.763674 + 0.645601i \(0.776607\pi\)
\(620\) 0 0
\(621\) −10.0000 −0.401286
\(622\) 0 0
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) −13.0000 −0.517522 −0.258761 0.965941i \(-0.583314\pi\)
−0.258761 + 0.965941i \(0.583314\pi\)
\(632\) 0 0
\(633\) −1.00000 −0.0397464
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) 32.0000 1.26590
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 15.0000 0.591542 0.295771 0.955259i \(-0.404423\pi\)
0.295771 + 0.955259i \(0.404423\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) 6.00000 0.235159
\(652\) 0 0
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 20.0000 0.780274
\(658\) 0 0
\(659\) −21.0000 −0.818044 −0.409022 0.912525i \(-0.634130\pi\)
−0.409022 + 0.912525i \(0.634130\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) 0 0
\(663\) −3.00000 −0.116510
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.00000 0.0774403
\(668\) 0 0
\(669\) −15.0000 −0.579934
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 20.0000 0.770943 0.385472 0.922720i \(-0.374039\pi\)
0.385472 + 0.922720i \(0.374039\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.00000 −0.115299 −0.0576497 0.998337i \(-0.518361\pi\)
−0.0576497 + 0.998337i \(0.518361\pi\)
\(678\) 0 0
\(679\) 19.0000 0.729153
\(680\) 0 0
\(681\) −7.00000 −0.268241
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −18.0000 −0.686743
\(688\) 0 0
\(689\) 14.0000 0.533358
\(690\) 0 0
\(691\) −48.0000 −1.82601 −0.913003 0.407953i \(-0.866243\pi\)
−0.913003 + 0.407953i \(0.866243\pi\)
\(692\) 0 0
\(693\) 2.00000 0.0759737
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −30.0000 −1.13633
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −41.0000 −1.54855 −0.774274 0.632850i \(-0.781885\pi\)
−0.774274 + 0.632850i \(0.781885\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −17.0000 −0.638448 −0.319224 0.947679i \(-0.603422\pi\)
−0.319224 + 0.947679i \(0.603422\pi\)
\(710\) 0 0
\(711\) 22.0000 0.825064
\(712\) 0 0
\(713\) 12.0000 0.449404
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −17.0000 −0.634877
\(718\) 0 0
\(719\) −50.0000 −1.86469 −0.932343 0.361576i \(-0.882239\pi\)
−0.932343 + 0.361576i \(0.882239\pi\)
\(720\) 0 0
\(721\) −1.00000 −0.0372419
\(722\) 0 0
\(723\) −2.00000 −0.0743808
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 36.0000 1.33517 0.667583 0.744535i \(-0.267329\pi\)
0.667583 + 0.744535i \(0.267329\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 9.00000 0.332423 0.166211 0.986090i \(-0.446847\pi\)
0.166211 + 0.986090i \(0.446847\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.0000 0.368355
\(738\) 0 0
\(739\) 15.0000 0.551784 0.275892 0.961189i \(-0.411027\pi\)
0.275892 + 0.961189i \(0.411027\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) 0 0
\(743\) −42.0000 −1.54083 −0.770415 0.637542i \(-0.779951\pi\)
−0.770415 + 0.637542i \(0.779951\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 8.00000 0.292705
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) 17.0000 0.620339 0.310169 0.950681i \(-0.399614\pi\)
0.310169 + 0.950681i \(0.399614\pi\)
\(752\) 0 0
\(753\) −10.0000 −0.364420
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) 0 0
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 0 0
\(763\) −15.0000 −0.543036
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.00000 0.216647
\(768\) 0 0
\(769\) −8.00000 −0.288487 −0.144244 0.989542i \(-0.546075\pi\)
−0.144244 + 0.989542i \(0.546075\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) 13.0000 0.467578 0.233789 0.972287i \(-0.424888\pi\)
0.233789 + 0.972287i \(0.424888\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.00000 0.0717496
\(778\) 0 0
\(779\) 40.0000 1.43315
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 0 0
\(783\) −5.00000 −0.178685
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 31.0000 1.10503 0.552515 0.833503i \(-0.313668\pi\)
0.552515 + 0.833503i \(0.313668\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) −14.0000 −0.497783
\(792\) 0 0
\(793\) −4.00000 −0.142044
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.0000 0.956389 0.478195 0.878254i \(-0.341291\pi\)
0.478195 + 0.878254i \(0.341291\pi\)
\(798\) 0 0
\(799\) −27.0000 −0.955191
\(800\) 0 0
\(801\) −24.0000 −0.847998
\(802\) 0 0
\(803\) 10.0000 0.352892
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) −51.0000 −1.79306 −0.896532 0.442978i \(-0.853922\pi\)
−0.896532 + 0.442978i \(0.853922\pi\)
\(810\) 0 0
\(811\) −42.0000 −1.47482 −0.737410 0.675446i \(-0.763951\pi\)
−0.737410 + 0.675446i \(0.763951\pi\)
\(812\) 0 0
\(813\) 4.00000 0.140286
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 45.0000 1.57051 0.785255 0.619172i \(-0.212532\pi\)
0.785255 + 0.619172i \(0.212532\pi\)
\(822\) 0 0
\(823\) 10.0000 0.348578 0.174289 0.984695i \(-0.444237\pi\)
0.174289 + 0.984695i \(0.444237\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.0000 1.46048 0.730242 0.683189i \(-0.239408\pi\)
0.730242 + 0.683189i \(0.239408\pi\)
\(828\) 0 0
\(829\) −50.0000 −1.73657 −0.868286 0.496064i \(-0.834778\pi\)
−0.868286 + 0.496064i \(0.834778\pi\)
\(830\) 0 0
\(831\) −18.0000 −0.624413
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −30.0000 −1.03695
\(838\) 0 0
\(839\) 54.0000 1.86429 0.932144 0.362089i \(-0.117936\pi\)
0.932144 + 0.362089i \(0.117936\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) −15.0000 −0.516627
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10.0000 −0.343604
\(848\) 0 0
\(849\) −21.0000 −0.720718
\(850\) 0 0
\(851\) 4.00000 0.137118
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) 0 0
\(861\) 10.0000 0.340799
\(862\) 0 0
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8.00000 0.271694
\(868\) 0 0
\(869\) 11.0000 0.373149
\(870\) 0 0
\(871\) −10.0000 −0.338837
\(872\) 0 0
\(873\) −38.0000 −1.28611
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −52.0000 −1.75592 −0.877958 0.478738i \(-0.841094\pi\)
−0.877958 + 0.478738i \(0.841094\pi\)
\(878\) 0 0
\(879\) −31.0000 −1.04560
\(880\) 0 0
\(881\) 16.0000 0.539054 0.269527 0.962993i \(-0.413133\pi\)
0.269527 + 0.962993i \(0.413133\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 0 0
\(889\) −18.0000 −0.603701
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.00000 0.0667781
\(898\) 0 0
\(899\) 6.00000 0.200111
\(900\) 0 0
\(901\) 42.0000 1.39922
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −14.0000 −0.464862 −0.232431 0.972613i \(-0.574668\pi\)
−0.232431 + 0.972613i \(0.574668\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 4.00000 0.132381
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.00000 0.198137
\(918\) 0 0
\(919\) −27.0000 −0.890648 −0.445324 0.895370i \(-0.646911\pi\)
−0.445324 + 0.895370i \(0.646911\pi\)
\(920\) 0 0
\(921\) −25.0000 −0.823778
\(922\) 0 0
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.00000 0.0656886
\(928\) 0 0
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.00000 −0.0326686 −0.0163343 0.999867i \(-0.505200\pi\)
−0.0163343 + 0.999867i \(0.505200\pi\)
\(938\) 0 0
\(939\) 7.00000 0.228436
\(940\) 0 0
\(941\) −28.0000 −0.912774 −0.456387 0.889781i \(-0.650857\pi\)
−0.456387 + 0.889781i \(0.650857\pi\)
\(942\) 0 0
\(943\) 20.0000 0.651290
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 0 0
\(949\) −10.0000 −0.324614
\(950\) 0 0
\(951\) 12.0000 0.389127
\(952\) 0 0
\(953\) −30.0000 −0.971795 −0.485898 0.874016i \(-0.661507\pi\)
−0.485898 + 0.874016i \(0.661507\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.00000 −0.0323254
\(958\) 0 0
\(959\) 8.00000 0.258333
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 32.0000 1.03119
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 0 0
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) −18.0000 −0.577647 −0.288824 0.957382i \(-0.593264\pi\)
−0.288824 + 0.957382i \(0.593264\pi\)
\(972\) 0 0
\(973\) −14.0000 −0.448819
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −40.0000 −1.27971 −0.639857 0.768494i \(-0.721006\pi\)
−0.639857 + 0.768494i \(0.721006\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) 0 0
\(983\) 1.00000 0.0318950 0.0159475 0.999873i \(-0.494924\pi\)
0.0159475 + 0.999873i \(0.494924\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 9.00000 0.286473
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 27.0000 0.855099 0.427549 0.903992i \(-0.359377\pi\)
0.427549 + 0.903992i \(0.359377\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1400.2.a.d.1.1 1
4.3 odd 2 2800.2.a.u.1.1 1
5.2 odd 4 280.2.g.a.169.2 yes 2
5.3 odd 4 280.2.g.a.169.1 2
5.4 even 2 1400.2.a.j.1.1 1
7.6 odd 2 9800.2.a.bb.1.1 1
15.2 even 4 2520.2.t.a.1009.2 2
15.8 even 4 2520.2.t.a.1009.1 2
20.3 even 4 560.2.g.d.449.2 2
20.7 even 4 560.2.g.d.449.1 2
20.19 odd 2 2800.2.a.k.1.1 1
35.13 even 4 1960.2.g.a.1569.2 2
35.27 even 4 1960.2.g.a.1569.1 2
35.34 odd 2 9800.2.a.p.1.1 1
40.3 even 4 2240.2.g.a.449.1 2
40.13 odd 4 2240.2.g.b.449.2 2
40.27 even 4 2240.2.g.a.449.2 2
40.37 odd 4 2240.2.g.b.449.1 2
60.23 odd 4 5040.2.t.a.1009.1 2
60.47 odd 4 5040.2.t.a.1009.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.g.a.169.1 2 5.3 odd 4
280.2.g.a.169.2 yes 2 5.2 odd 4
560.2.g.d.449.1 2 20.7 even 4
560.2.g.d.449.2 2 20.3 even 4
1400.2.a.d.1.1 1 1.1 even 1 trivial
1400.2.a.j.1.1 1 5.4 even 2
1960.2.g.a.1569.1 2 35.27 even 4
1960.2.g.a.1569.2 2 35.13 even 4
2240.2.g.a.449.1 2 40.3 even 4
2240.2.g.a.449.2 2 40.27 even 4
2240.2.g.b.449.1 2 40.37 odd 4
2240.2.g.b.449.2 2 40.13 odd 4
2520.2.t.a.1009.1 2 15.8 even 4
2520.2.t.a.1009.2 2 15.2 even 4
2800.2.a.k.1.1 1 20.19 odd 2
2800.2.a.u.1.1 1 4.3 odd 2
5040.2.t.a.1009.1 2 60.23 odd 4
5040.2.t.a.1009.2 2 60.47 odd 4
9800.2.a.p.1.1 1 35.34 odd 2
9800.2.a.bb.1.1 1 7.6 odd 2