Properties

Label 1400.1.cf
Level $1400$
Weight $1$
Character orbit 1400.cf
Rep. character $\chi_{1400}(243,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $8$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1400.cf (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1400, [\chi])\).

Total New Old
Modular forms 56 24 32
Cusp forms 8 8 0
Eisenstein series 48 16 32

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8q + O(q^{10}) \) \( 8q - 4q^{11} + 4q^{16} + 12q^{26} - 8q^{36} + 4q^{46} - 8q^{56} + 4q^{81} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1400, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1400.1.cf.a \(8\) \(0.699\) \(\Q(\zeta_{24})\) \(D_{6}\) \(\Q(\sqrt{-10}) \) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{24}^{11}q^{2}-\zeta_{24}^{10}q^{4}-\zeta_{24}^{3}q^{7}+\cdots\)