Properties

Label 1400.1.cc.a.909.2
Level $1400$
Weight $1$
Character 1400.909
Analytic conductor $0.699$
Analytic rank $0$
Dimension $16$
Projective image $D_{20}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1400.cc (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.698691017686\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{40})\)
Defining polynomial: \(x^{16} - x^{12} + x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{20}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\)

Embedding invariants

Embedding label 909.2
Root \(0.156434 + 0.987688i\) of defining polynomial
Character \(\chi\) \(=\) 1400.909
Dual form 1400.1.cc.a.1189.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.587785 + 0.809017i) q^{2} +(1.69480 - 0.550672i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(-0.987688 + 0.156434i) q^{5} +(-0.550672 + 1.69480i) q^{6} +1.00000i q^{7} +(0.951057 + 0.309017i) q^{8} +(1.76007 - 1.27877i) q^{9} +O(q^{10})\) \(q+(-0.587785 + 0.809017i) q^{2} +(1.69480 - 0.550672i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(-0.987688 + 0.156434i) q^{5} +(-0.550672 + 1.69480i) q^{6} +1.00000i q^{7} +(0.951057 + 0.309017i) q^{8} +(1.76007 - 1.27877i) q^{9} +(0.453990 - 0.891007i) q^{10} +(-1.04744 - 1.44168i) q^{12} +(0.533698 + 0.734572i) q^{13} +(-0.809017 - 0.587785i) q^{14} +(-1.58779 + 0.809017i) q^{15} +(-0.809017 + 0.587785i) q^{16} +2.17557i q^{18} +(-0.437016 + 1.34500i) q^{19} +(0.453990 + 0.891007i) q^{20} +(0.550672 + 1.69480i) q^{21} +(1.11803 - 1.53884i) q^{23} +1.78201 q^{24} +(0.951057 - 0.309017i) q^{25} -0.907981 q^{26} +(1.23134 - 1.69480i) q^{27} +(0.951057 - 0.309017i) q^{28} +(0.278768 - 1.76007i) q^{30} -1.00000i q^{32} +(-0.156434 - 0.987688i) q^{35} +(-1.76007 - 1.27877i) q^{36} +(-0.831254 - 1.14412i) q^{38} +(1.30902 + 0.951057i) q^{39} +(-0.987688 - 0.156434i) q^{40} +(-1.69480 - 0.550672i) q^{42} +(-1.53836 + 1.53836i) q^{45} +(0.587785 + 1.80902i) q^{46} +(-1.04744 + 1.44168i) q^{48} -1.00000 q^{49} +(-0.309017 + 0.951057i) q^{50} +(0.533698 - 0.734572i) q^{52} +(0.647354 + 1.99235i) q^{54} +(-0.309017 + 0.951057i) q^{56} +2.52015i q^{57} +(0.253116 - 0.183900i) q^{59} +(1.26007 + 1.26007i) q^{60} +(-1.59811 - 1.16110i) q^{61} +(1.27877 + 1.76007i) q^{63} +(0.809017 + 0.587785i) q^{64} +(-0.642040 - 0.642040i) q^{65} +(1.04744 - 3.22369i) q^{69} +(0.891007 + 0.453990i) q^{70} +(-0.363271 - 1.11803i) q^{71} +(2.06909 - 0.672288i) q^{72} +(1.44168 - 1.04744i) q^{75} +1.41421 q^{76} +(-1.53884 + 0.500000i) q^{78} +(0.587785 + 1.80902i) q^{79} +(0.707107 - 0.707107i) q^{80} +(0.481305 - 1.48131i) q^{81} +(-1.87869 - 0.610425i) q^{83} +(1.44168 - 1.04744i) q^{84} +(-0.340334 - 2.14879i) q^{90} +(-0.734572 + 0.533698i) q^{91} +(-1.80902 - 0.587785i) q^{92} +(0.221232 - 1.39680i) q^{95} +(-0.550672 - 1.69480i) q^{96} +(0.587785 - 0.809017i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 4q^{4} + 4q^{9} + O(q^{10}) \) \( 16q + 4q^{4} + 4q^{9} - 4q^{14} - 16q^{15} - 4q^{16} + 4q^{30} - 4q^{36} + 12q^{39} - 16q^{49} + 4q^{50} + 4q^{56} - 4q^{60} + 20q^{63} + 4q^{64} - 4q^{65} - 16q^{81} - 20q^{92} + 4q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(3\) 1.69480 0.550672i 1.69480 0.550672i 0.707107 0.707107i \(-0.250000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(4\) −0.309017 0.951057i −0.309017 0.951057i
\(5\) −0.987688 + 0.156434i −0.987688 + 0.156434i
\(6\) −0.550672 + 1.69480i −0.550672 + 1.69480i
\(7\) 1.00000i 1.00000i
\(8\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(9\) 1.76007 1.27877i 1.76007 1.27877i
\(10\) 0.453990 0.891007i 0.453990 0.891007i
\(11\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(12\) −1.04744 1.44168i −1.04744 1.44168i
\(13\) 0.533698 + 0.734572i 0.533698 + 0.734572i 0.987688 0.156434i \(-0.0500000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(14\) −0.809017 0.587785i −0.809017 0.587785i
\(15\) −1.58779 + 0.809017i −1.58779 + 0.809017i
\(16\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(17\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(18\) 2.17557i 2.17557i
\(19\) −0.437016 + 1.34500i −0.437016 + 1.34500i 0.453990 + 0.891007i \(0.350000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(20\) 0.453990 + 0.891007i 0.453990 + 0.891007i
\(21\) 0.550672 + 1.69480i 0.550672 + 1.69480i
\(22\) 0 0
\(23\) 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i \(-0.400000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(24\) 1.78201 1.78201
\(25\) 0.951057 0.309017i 0.951057 0.309017i
\(26\) −0.907981 −0.907981
\(27\) 1.23134 1.69480i 1.23134 1.69480i
\(28\) 0.951057 0.309017i 0.951057 0.309017i
\(29\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(30\) 0.278768 1.76007i 0.278768 1.76007i
\(31\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) −0.156434 0.987688i −0.156434 0.987688i
\(36\) −1.76007 1.27877i −1.76007 1.27877i
\(37\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(38\) −0.831254 1.14412i −0.831254 1.14412i
\(39\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(40\) −0.987688 0.156434i −0.987688 0.156434i
\(41\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(42\) −1.69480 0.550672i −1.69480 0.550672i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −1.53836 + 1.53836i −1.53836 + 1.53836i
\(46\) 0.587785 + 1.80902i 0.587785 + 1.80902i
\(47\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(48\) −1.04744 + 1.44168i −1.04744 + 1.44168i
\(49\) −1.00000 −1.00000
\(50\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(51\) 0 0
\(52\) 0.533698 0.734572i 0.533698 0.734572i
\(53\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(54\) 0.647354 + 1.99235i 0.647354 + 1.99235i
\(55\) 0 0
\(56\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(57\) 2.52015i 2.52015i
\(58\) 0 0
\(59\) 0.253116 0.183900i 0.253116 0.183900i −0.453990 0.891007i \(-0.650000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) 1.26007 + 1.26007i 1.26007 + 1.26007i
\(61\) −1.59811 1.16110i −1.59811 1.16110i −0.891007 0.453990i \(-0.850000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(62\) 0 0
\(63\) 1.27877 + 1.76007i 1.27877 + 1.76007i
\(64\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(65\) −0.642040 0.642040i −0.642040 0.642040i
\(66\) 0 0
\(67\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(68\) 0 0
\(69\) 1.04744 3.22369i 1.04744 3.22369i
\(70\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(71\) −0.363271 1.11803i −0.363271 1.11803i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(72\) 2.06909 0.672288i 2.06909 0.672288i
\(73\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(74\) 0 0
\(75\) 1.44168 1.04744i 1.44168 1.04744i
\(76\) 1.41421 1.41421
\(77\) 0 0
\(78\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(79\) 0.587785 + 1.80902i 0.587785 + 1.80902i 0.587785 + 0.809017i \(0.300000\pi\)
1.00000i \(0.5\pi\)
\(80\) 0.707107 0.707107i 0.707107 0.707107i
\(81\) 0.481305 1.48131i 0.481305 1.48131i
\(82\) 0 0
\(83\) −1.87869 0.610425i −1.87869 0.610425i −0.987688 0.156434i \(-0.950000\pi\)
−0.891007 0.453990i \(-0.850000\pi\)
\(84\) 1.44168 1.04744i 1.44168 1.04744i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(90\) −0.340334 2.14879i −0.340334 2.14879i
\(91\) −0.734572 + 0.533698i −0.734572 + 0.533698i
\(92\) −1.80902 0.587785i −1.80902 0.587785i
\(93\) 0 0
\(94\) 0 0
\(95\) 0.221232 1.39680i 0.221232 1.39680i
\(96\) −0.550672 1.69480i −0.550672 1.69480i
\(97\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(98\) 0.587785 0.809017i 0.587785 0.809017i
\(99\) 0 0
\(100\) −0.587785 0.809017i −0.587785 0.809017i
\(101\) 0.907981 0.907981 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(102\) 0 0
\(103\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(104\) 0.280582 + 0.863541i 0.280582 + 0.863541i
\(105\) −0.809017 1.58779i −0.809017 1.58779i
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −1.99235 0.647354i −1.99235 0.647354i
\(109\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.587785 0.809017i −0.587785 0.809017i
\(113\) −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i \(-0.900000\pi\)
1.00000i \(-0.5\pi\)
\(114\) −2.03884 1.48131i −2.03884 1.48131i
\(115\) −0.863541 + 1.69480i −0.863541 + 1.69480i
\(116\) 0 0
\(117\) 1.87869 + 0.610425i 1.87869 + 0.610425i
\(118\) 0.312869i 0.312869i
\(119\) 0 0
\(120\) −1.76007 + 0.278768i −1.76007 + 0.278768i
\(121\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(122\) 1.87869 0.610425i 1.87869 0.610425i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(126\) −2.17557 −2.17557
\(127\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(128\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(129\) 0 0
\(130\) 0.896802 0.142040i 0.896802 0.142040i
\(131\) −0.610425 + 1.87869i −0.610425 + 1.87869i −0.156434 + 0.987688i \(0.550000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(132\) 0 0
\(133\) −1.34500 0.437016i −1.34500 0.437016i
\(134\) 0 0
\(135\) −0.951057 + 1.86655i −0.951057 + 1.86655i
\(136\) 0 0
\(137\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(138\) 1.99235 + 2.74224i 1.99235 + 2.74224i
\(139\) −1.14412 0.831254i −1.14412 0.831254i −0.156434 0.987688i \(-0.550000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(140\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(141\) 0 0
\(142\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(143\) 0 0
\(144\) −0.672288 + 2.06909i −0.672288 + 2.06909i
\(145\) 0 0
\(146\) 0 0
\(147\) −1.69480 + 0.550672i −1.69480 + 0.550672i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 1.78201i 1.78201i
\(151\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(152\) −0.831254 + 1.14412i −0.831254 + 1.14412i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.500000 1.53884i 0.500000 1.53884i
\(157\) 1.97538i 1.97538i −0.156434 0.987688i \(-0.550000\pi\)
0.156434 0.987688i \(-0.450000\pi\)
\(158\) −1.80902 0.587785i −1.80902 0.587785i
\(159\) 0 0
\(160\) 0.156434 + 0.987688i 0.156434 + 0.987688i
\(161\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(162\) 0.915497 + 1.26007i 0.915497 + 1.26007i
\(163\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.59811 1.16110i 1.59811 1.16110i
\(167\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(168\) 1.78201i 1.78201i
\(169\) 0.0542543 0.166977i 0.0542543 0.166977i
\(170\) 0 0
\(171\) 0.950759 + 2.92614i 0.950759 + 2.92614i
\(172\) 0 0
\(173\) 0.183900 0.253116i 0.183900 0.253116i −0.707107 0.707107i \(-0.750000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(174\) 0 0
\(175\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(176\) 0 0
\(177\) 0.327712 0.451057i 0.327712 0.451057i
\(178\) 0 0
\(179\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(180\) 1.93845 + 0.987688i 1.93845 + 0.987688i
\(181\) −0.0966818 + 0.297556i −0.0966818 + 0.297556i −0.987688 0.156434i \(-0.950000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(182\) 0.907981i 0.907981i
\(183\) −3.34786 1.08779i −3.34786 1.08779i
\(184\) 1.53884 1.11803i 1.53884 1.11803i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.69480 + 1.23134i 1.69480 + 1.23134i
\(190\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(191\) −1.53884 + 1.11803i −1.53884 + 1.11803i −0.587785 + 0.809017i \(0.700000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(192\) 1.69480 + 0.550672i 1.69480 + 0.550672i
\(193\) 1.61803i 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(194\) 0 0
\(195\) −1.44168 0.734572i −1.44168 0.734572i
\(196\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(197\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.00000 1.00000
\(201\) 0 0
\(202\) −0.533698 + 0.734572i −0.533698 + 0.734572i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.13818i 4.13818i
\(208\) −0.863541 0.280582i −0.863541 0.280582i
\(209\) 0 0
\(210\) 1.76007 + 0.278768i 1.76007 + 0.278768i
\(211\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(212\) 0 0
\(213\) −1.23134 1.69480i −1.23134 1.69480i
\(214\) 0 0
\(215\) 0 0
\(216\) 1.69480 1.23134i 1.69480 1.23134i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(224\) 1.00000 1.00000
\(225\) 1.27877 1.76007i 1.27877 1.76007i
\(226\) 1.61803 1.61803
\(227\) −1.04744 + 1.44168i −1.04744 + 1.44168i −0.156434 + 0.987688i \(0.550000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(228\) 2.39680 0.778768i 2.39680 0.778768i
\(229\) −0.0966818 0.297556i −0.0966818 0.297556i 0.891007 0.453990i \(-0.150000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(230\) −0.863541 1.69480i −0.863541 1.69480i
\(231\) 0 0
\(232\) 0 0
\(233\) −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(234\) −1.59811 + 1.16110i −1.59811 + 1.16110i
\(235\) 0 0
\(236\) −0.253116 0.183900i −0.253116 0.183900i
\(237\) 1.99235 + 2.74224i 1.99235 + 2.74224i
\(238\) 0 0
\(239\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(240\) 0.809017 1.58779i 0.809017 1.58779i
\(241\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(242\) −0.951057 0.309017i −0.951057 0.309017i
\(243\) 0.680668i 0.680668i
\(244\) −0.610425 + 1.87869i −0.610425 + 1.87869i
\(245\) 0.987688 0.156434i 0.987688 0.156434i
\(246\) 0 0
\(247\) −1.22123 + 0.396802i −1.22123 + 0.396802i
\(248\) 0 0
\(249\) −3.52015 −3.52015
\(250\) 0.156434 0.987688i 0.156434 0.987688i
\(251\) 1.97538 1.97538 0.987688 0.156434i \(-0.0500000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(252\) 1.27877 1.76007i 1.27877 1.76007i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.309017 0.951057i
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.412215 + 0.809017i −0.412215 + 0.809017i
\(261\) 0 0
\(262\) −1.16110 1.59811i −1.16110 1.59811i
\(263\) 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i \(-0.100000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.14412 0.831254i 1.14412 0.831254i
\(267\) 0 0
\(268\) 0 0
\(269\) 0.0966818 0.297556i 0.0966818 0.297556i −0.891007 0.453990i \(-0.850000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(270\) −0.951057 1.86655i −0.951057 1.86655i
\(271\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) 0 0
\(273\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(274\) 0 0
\(275\) 0 0
\(276\) −3.38959 −3.38959
\(277\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(278\) 1.34500 0.437016i 1.34500 0.437016i
\(279\) 0 0
\(280\) 0.156434 0.987688i 0.156434 0.987688i
\(281\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(282\) 0 0
\(283\) 1.69480 + 0.550672i 1.69480 + 0.550672i 0.987688 0.156434i \(-0.0500000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) −0.951057 + 0.690983i −0.951057 + 0.690983i
\(285\) −0.394238 2.48912i −0.394238 2.48912i
\(286\) 0 0
\(287\) 0 0
\(288\) −1.27877 1.76007i −1.27877 1.76007i
\(289\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(294\) 0.550672 1.69480i 0.550672 1.69480i
\(295\) −0.221232 + 0.221232i −0.221232 + 0.221232i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.72708 1.72708
\(300\) −1.44168 1.04744i −1.44168 1.04744i
\(301\) 0 0
\(302\) 0.363271 0.500000i 0.363271 0.500000i
\(303\) 1.53884 0.500000i 1.53884 0.500000i
\(304\) −0.437016 1.34500i −0.437016 1.34500i
\(305\) 1.76007 + 0.896802i 1.76007 + 0.896802i
\(306\) 0 0
\(307\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(312\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(313\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(314\) 1.59811 + 1.16110i 1.59811 + 1.16110i
\(315\) −1.53836 1.53836i −1.53836 1.53836i
\(316\) 1.53884 1.11803i 1.53884 1.11803i
\(317\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.891007 0.453990i −0.891007 0.453990i
\(321\) 0 0
\(322\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(323\) 0 0
\(324\) −1.55754 −1.55754
\(325\) 0.734572 + 0.533698i 0.734572 + 0.533698i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(332\) 1.97538i 1.97538i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −1.44168 1.04744i −1.44168 1.04744i
\(337\) 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i \(-0.100000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(338\) 0.103198 + 0.142040i 0.103198 + 0.142040i
\(339\) −2.33269 1.69480i −2.33269 1.69480i
\(340\) 0 0
\(341\) 0 0
\(342\) −2.92614 0.950759i −2.92614 0.950759i
\(343\) 1.00000i 1.00000i
\(344\) 0 0
\(345\) −0.530249 + 3.34786i −0.530249 + 3.34786i
\(346\) 0.0966818 + 0.297556i 0.0966818 + 0.297556i
\(347\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(348\) 0 0
\(349\) 0.907981 0.907981 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(350\) −0.951057 0.309017i −0.951057 0.309017i
\(351\) 1.90211 1.90211
\(352\) 0 0
\(353\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(354\) 0.172288 + 0.530249i 0.172288 + 0.530249i
\(355\) 0.533698 + 1.04744i 0.533698 + 1.04744i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(360\) −1.93845 + 0.987688i −1.93845 + 0.987688i
\(361\) −0.809017 0.587785i −0.809017 0.587785i
\(362\) −0.183900 0.253116i −0.183900 0.253116i
\(363\) 1.04744 + 1.44168i 1.04744 + 1.44168i
\(364\) 0.734572 + 0.533698i 0.734572 + 0.533698i
\(365\) 0 0
\(366\) 2.84786 2.06909i 2.84786 2.06909i
\(367\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(368\) 1.90211i 1.90211i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(374\) 0 0
\(375\) −1.26007 + 1.26007i −1.26007 + 1.26007i
\(376\) 0 0
\(377\) 0 0
\(378\) −1.99235 + 0.647354i −1.99235 + 0.647354i
\(379\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(380\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(381\) 0 0
\(382\) 1.90211i 1.90211i
\(383\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(384\) −1.44168 + 1.04744i −1.44168 + 1.04744i
\(385\) 0 0
\(386\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(390\) 1.44168 0.734572i 1.44168 0.734572i
\(391\) 0 0
\(392\) −0.951057 0.309017i −0.951057 0.309017i
\(393\) 3.52015i 3.52015i
\(394\) 0 0
\(395\) −0.863541 1.69480i −0.863541 1.69480i
\(396\) 0 0
\(397\) 0.863541 0.280582i 0.863541 0.280582i 0.156434 0.987688i \(-0.450000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 0 0
\(399\) −2.52015 −2.52015
\(400\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.280582 0.863541i −0.280582 0.863541i
\(405\) −0.243652 + 1.53836i −0.243652 + 1.53836i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.183900 + 0.253116i 0.183900 + 0.253116i
\(414\) 3.34786 + 2.43236i 3.34786 + 2.43236i
\(415\) 1.95106 + 0.309017i 1.95106 + 0.309017i
\(416\) 0.734572 0.533698i 0.734572 0.533698i
\(417\) −2.39680 0.778768i −2.39680 0.778768i
\(418\) 0 0
\(419\) −0.550672 + 1.69480i −0.550672 + 1.69480i 0.156434 + 0.987688i \(0.450000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) −1.26007 + 1.26007i −1.26007 + 1.26007i
\(421\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 2.09488 2.09488
\(427\) 1.16110 1.59811i 1.16110 1.59811i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(432\) 2.09488i 2.09488i
\(433\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.58114 + 2.17625i 1.58114 + 2.17625i
\(438\) 0 0
\(439\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(440\) 0 0
\(441\) −1.76007 + 1.27877i −1.76007 + 1.27877i
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(449\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(450\) 0.672288 + 2.06909i 0.672288 + 2.06909i
\(451\) 0 0
\(452\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(453\) −1.04744 + 0.340334i −1.04744 + 0.340334i
\(454\) −0.550672 1.69480i −0.550672 1.69480i
\(455\) 0.642040 0.642040i 0.642040 0.642040i
\(456\) −0.778768 + 2.39680i −0.778768 + 2.39680i
\(457\) 1.61803i 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(458\) 0.297556 + 0.0966818i 0.297556 + 0.0966818i
\(459\) 0 0
\(460\) 1.87869 + 0.297556i 1.87869 + 0.297556i
\(461\) −1.14412 0.831254i −1.14412 0.831254i −0.156434 0.987688i \(-0.550000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(462\) 0 0
\(463\) 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i \(0.100000\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.951057 0.690983i 0.951057 0.690983i
\(467\) 1.34500 + 0.437016i 1.34500 + 0.437016i 0.891007 0.453990i \(-0.150000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(468\) 1.97538i 1.97538i
\(469\) 0 0
\(470\) 0 0
\(471\) −1.08779 3.34786i −1.08779 3.34786i
\(472\) 0.297556 0.0966818i 0.297556 0.0966818i
\(473\) 0 0
\(474\) −3.38959 −3.38959
\(475\) 1.41421i 1.41421i
\(476\) 0 0
\(477\) 0 0
\(478\) 0.587785 0.190983i 0.587785 0.190983i
\(479\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) 0.809017 + 1.58779i 0.809017 + 1.58779i
\(481\) 0 0
\(482\) 0 0
\(483\) 3.22369 + 1.04744i 3.22369 + 1.04744i
\(484\) 0.809017 0.587785i 0.809017 0.587785i
\(485\) 0 0
\(486\) 0.550672 + 0.400087i 0.550672 + 0.400087i
\(487\) 0.690983 + 0.951057i 0.690983 + 0.951057i 1.00000 \(0\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(488\) −1.16110 1.59811i −1.16110 1.59811i
\(489\) 0 0
\(490\) −0.453990 + 0.891007i −0.453990 + 0.891007i
\(491\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.396802 1.22123i 0.396802 1.22123i
\(495\) 0 0
\(496\) 0 0
\(497\) 1.11803 0.363271i 1.11803 0.363271i
\(498\) 2.06909 2.84786i 2.06909 2.84786i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(501\) 0 0
\(502\) −1.16110 + 1.59811i −1.16110 + 1.59811i
\(503\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(504\) 0.672288 + 2.06909i 0.672288 + 2.06909i
\(505\) −0.896802 + 0.142040i −0.896802 + 0.142040i
\(506\) 0 0
\(507\) 0.312869i 0.312869i
\(508\) 0 0
\(509\) −1.14412 + 0.831254i −1.14412 + 0.831254i −0.987688 0.156434i \(-0.950000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(513\) 1.74138 + 2.39680i 1.74138 + 2.39680i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.172288 0.530249i 0.172288 0.530249i
\(520\) −0.412215 0.809017i −0.412215 0.809017i
\(521\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(522\) 0 0
\(523\) 0.533698 0.734572i 0.533698 0.734572i −0.453990 0.891007i \(-0.650000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(524\) 1.97538 1.97538
\(525\) 1.04744 + 1.44168i 1.04744 + 1.44168i
\(526\) −0.618034 −0.618034
\(527\) 0 0
\(528\) 0 0
\(529\) −0.809017 2.48990i −0.809017 2.48990i
\(530\) 0 0
\(531\) 0.210338 0.647354i 0.210338 0.647354i
\(532\) 1.41421i 1.41421i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.183900 + 0.253116i 0.183900 + 0.253116i
\(539\) 0 0
\(540\) 2.06909 + 0.327712i 2.06909 + 0.327712i
\(541\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) 0 0
\(543\) 0.557537i 0.557537i
\(544\) 0 0
\(545\) 0 0
\(546\) −0.500000 1.53884i −0.500000 1.53884i
\(547\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(548\) 0 0
\(549\) −4.29757 −4.29757
\(550\) 0 0
\(551\) 0 0
\(552\) 1.99235 2.74224i 1.99235 2.74224i
\(553\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.437016 + 1.34500i −0.437016 + 1.34500i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(561\) 0 0
\(562\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(563\) −0.533698 0.734572i −0.533698 0.734572i 0.453990 0.891007i \(-0.350000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(564\) 0 0
\(565\) 1.14412 + 1.14412i 1.14412 + 1.14412i
\(566\) −1.44168 + 1.04744i −1.44168 + 1.04744i
\(567\) 1.48131 + 0.481305i 1.48131 + 0.481305i
\(568\) 1.17557i 1.17557i
\(569\) −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i \(0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(570\) 2.24547 + 1.14412i 2.24547 + 1.14412i
\(571\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(572\) 0 0
\(573\) −1.99235 + 2.74224i −1.99235 + 2.74224i
\(574\) 0 0
\(575\) 0.587785 1.80902i 0.587785 1.80902i
\(576\) 2.17557 2.17557
\(577\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(578\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(579\) −0.891007 2.74224i −0.891007 2.74224i
\(580\) 0 0
\(581\) 0.610425 1.87869i 0.610425 1.87869i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.95106 0.309017i −1.95106 0.309017i
\(586\) 1.14412 + 0.831254i 1.14412 + 0.831254i
\(587\) 0.183900 + 0.253116i 0.183900 + 0.253116i 0.891007 0.453990i \(-0.150000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 1.04744 + 1.44168i 1.04744 + 1.44168i
\(589\) 0 0
\(590\) −0.0489435 0.309017i −0.0489435 0.309017i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −1.01515 + 1.39724i −1.01515 + 1.39724i
\(599\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(600\) 1.69480 0.550672i 1.69480 0.550672i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(605\) −0.453990 0.891007i −0.453990 0.891007i
\(606\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 1.34500 + 0.437016i 1.34500 + 0.437016i
\(609\) 0 0
\(610\) −1.76007 + 0.896802i −1.76007 + 0.896802i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(614\) 1.14412 + 0.831254i 1.14412 + 0.831254i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i \(-0.300000\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −0.0966818 + 0.297556i −0.0966818 + 0.297556i −0.987688 0.156434i \(-0.950000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(620\) 0 0
\(621\) −1.23134 3.78968i −1.23134 3.78968i
\(622\) 0 0
\(623\) 0 0
\(624\) −1.61803 −1.61803
\(625\) 0.809017 0.587785i 0.809017 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) −1.87869 + 0.610425i −1.87869 + 0.610425i
\(629\) 0 0
\(630\) 2.14879 0.340334i 2.14879 0.340334i
\(631\) −0.363271 + 1.11803i −0.363271 + 1.11803i 0.587785 + 0.809017i \(0.300000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(632\) 1.90211i 1.90211i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.533698 0.734572i −0.533698 0.734572i
\(638\) 0 0
\(639\) −2.06909 1.50328i −2.06909 1.50328i
\(640\) 0.891007 0.453990i 0.891007 0.453990i
\(641\) −1.53884 + 1.11803i −1.53884 + 1.11803i −0.587785 + 0.809017i \(0.700000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(642\) 0 0
\(643\) 1.97538i 1.97538i 0.156434 + 0.987688i \(0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(644\) 0.587785 1.80902i 0.587785 1.80902i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(648\) 0.915497 1.26007i 0.915497 1.26007i
\(649\) 0 0
\(650\) −0.863541 + 0.280582i −0.863541 + 0.280582i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(654\) 0 0
\(655\) 0.309017 1.95106i 0.309017 1.95106i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(660\) 0 0
\(661\) 1.59811 + 1.16110i 1.59811 + 1.16110i 0.891007 + 0.453990i \(0.150000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −1.59811 1.16110i −1.59811 1.16110i
\(665\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 1.69480 0.550672i 1.69480 0.550672i
\(673\) 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
1.00000 \(0\)
\(674\) −0.618034 −0.618034
\(675\) 0.647354 1.99235i 0.647354 1.99235i
\(676\) −0.175571 −0.175571
\(677\) −1.16110 + 1.59811i −1.16110 + 1.59811i −0.453990 + 0.891007i \(0.650000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 2.74224 0.891007i 2.74224 0.891007i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.981305 + 3.02015i −0.981305 + 3.02015i
\(682\) 0 0
\(683\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(684\) 2.48912 1.80845i 2.48912 1.80845i
\(685\) 0 0
\(686\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(687\) −0.327712 0.451057i −0.327712 0.451057i
\(688\) 0 0
\(689\) 0 0
\(690\) −2.39680 2.39680i −2.39680 2.39680i
\(691\) 0.734572 0.533698i 0.734572 0.533698i −0.156434 0.987688i \(-0.550000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(692\) −0.297556 0.0966818i −0.297556 0.0966818i
\(693\) 0 0
\(694\) 0 0
\(695\) 1.26007 + 0.642040i 1.26007 + 0.642040i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.533698 + 0.734572i −0.533698 + 0.734572i
\(699\) −2.09488 −2.09488
\(700\) 0.809017 0.587785i 0.809017 0.587785i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.907981i 0.907981i
\(708\) −0.530249 0.172288i −0.530249 0.172288i
\(709\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(710\) −1.16110 0.183900i −1.16110 0.183900i
\(711\) 3.34786 + 2.43236i 3.34786 + 2.43236i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.04744 0.340334i −1.04744 0.340334i
\(718\) 0.618034i 0.618034i
\(719\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(720\) 0.340334 2.14879i 0.340334 2.14879i
\(721\) 0 0
\(722\) 0.951057 0.309017i 0.951057 0.309017i
\(723\) 0 0
\(724\) 0.312869 0.312869
\(725\) 0 0
\(726\) −1.78201 −1.78201
\(727\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(728\) −0.863541 + 0.280582i −0.863541 + 0.280582i
\(729\) 0.106480 + 0.327712i 0.106480 + 0.327712i
\(730\) 0 0
\(731\) 0 0
\(732\) 3.52015i 3.52015i
\(733\) 0.297556 + 0.0966818i 0.297556 + 0.0966818i 0.453990 0.891007i \(-0.350000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(734\) 0 0
\(735\) 1.58779 0.809017i 1.58779 0.809017i
\(736\) −1.53884 1.11803i −1.53884 1.11803i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(740\) 0 0
\(741\) −1.85123 + 1.34500i −1.85123 + 1.34500i
\(742\) 0 0
\(743\) 1.17557i 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.08723 + 1.32802i −4.08723 + 1.32802i
\(748\) 0 0
\(749\) 0 0
\(750\) −0.278768 1.76007i −0.278768 1.76007i
\(751\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 3.34786 1.08779i 3.34786 1.08779i
\(754\) 0 0
\(755\) 0.610425 0.0966818i 0.610425 0.0966818i
\(756\) 0.647354 1.99235i 0.647354 1.99235i
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.642040 1.26007i 0.642040 1.26007i
\(761\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(765\) 0 0
\(766\) 0 0
\(767\) 0.270175 + 0.0877853i 0.270175 + 0.0877853i
\(768\) 1.78201i 1.78201i
\(769\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(773\) 1.04744 1.44168i 1.04744 1.44168i 0.156434 0.987688i \(-0.450000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −0.253116 + 1.59811i −0.253116 + 1.59811i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.809017 0.587785i 0.809017 0.587785i
\(785\) 0.309017 + 1.95106i 0.309017 + 1.95106i
\(786\) −2.84786 2.06909i −2.84786 2.06909i
\(787\) −0.831254 1.14412i −0.831254 1.14412i −0.987688 0.156434i \(-0.950000\pi\)
0.156434 0.987688i \(-0.450000\pi\)
\(788\) 0 0
\(789\) 0.891007 + 0.647354i 0.891007 + 0.647354i
\(790\) 1.87869 + 0.297556i 1.87869 + 0.297556i
\(791\) 1.30902 0.951057i 1.30902 0.951057i
\(792\) 0 0
\(793\) 1.79360i 1.79360i
\(794\) −0.280582 + 0.863541i −0.280582 + 0.863541i
\(795\) 0 0
\(796\) 0 0