Defining parameters
Level: | \( N \) | \(=\) | \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1400.cc (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1400 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1400, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 32 | 0 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 16 | 16 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1400, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
1400.1.cc.a | \(16\) | \(0.699\) | \(\Q(\zeta_{40})\) | \(D_{20}\) | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{40}^{6}q^{2}+(\zeta_{40}^{9}-\zeta_{40}^{15})q^{3}+\zeta_{40}^{12}q^{4}+\cdots\) |