Properties

Label 1400.1.bs.a.181.1
Level $1400$
Weight $1$
Character 1400.181
Analytic conductor $0.699$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -56
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1400.bs (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.698691017686\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.1225000000.2

Embedding invariants

Embedding label 181.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 1400.181
Dual form 1400.1.bs.a.1021.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(-1.30902 + 0.951057i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(-1.30902 - 0.951057i) q^{6} +1.00000 q^{7} +(-0.809017 - 0.587785i) q^{8} +(0.500000 - 1.53884i) q^{9} +O(q^{10})\) \(q+(0.309017 + 0.951057i) q^{2} +(-1.30902 + 0.951057i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(-1.30902 - 0.951057i) q^{6} +1.00000 q^{7} +(-0.809017 - 0.587785i) q^{8} +(0.500000 - 1.53884i) q^{9} +(0.809017 - 0.587785i) q^{10} +(0.500000 - 1.53884i) q^{12} +(0.500000 - 1.53884i) q^{13} +(0.309017 + 0.951057i) q^{14} +(1.30902 + 0.951057i) q^{15} +(0.309017 - 0.951057i) q^{16} +1.61803 q^{18} +(1.61803 + 1.17557i) q^{19} +(0.809017 + 0.587785i) q^{20} +(-1.30902 + 0.951057i) q^{21} +(-0.500000 - 1.53884i) q^{23} +1.61803 q^{24} +(-0.809017 + 0.587785i) q^{25} +1.61803 q^{26} +(0.309017 + 0.951057i) q^{27} +(-0.809017 + 0.587785i) q^{28} +(-0.500000 + 1.53884i) q^{30} +1.00000 q^{32} +(-0.309017 - 0.951057i) q^{35} +(0.500000 + 1.53884i) q^{36} +(-0.618034 + 1.90211i) q^{38} +(0.809017 + 2.48990i) q^{39} +(-0.309017 + 0.951057i) q^{40} +(-1.30902 - 0.951057i) q^{42} -1.61803 q^{45} +(1.30902 - 0.951057i) q^{46} +(0.500000 + 1.53884i) q^{48} +1.00000 q^{49} +(-0.809017 - 0.587785i) q^{50} +(0.500000 + 1.53884i) q^{52} +(-0.809017 + 0.587785i) q^{54} +(-0.809017 - 0.587785i) q^{56} -3.23607 q^{57} +(-0.190983 + 0.587785i) q^{59} -1.61803 q^{60} +(-0.190983 - 0.587785i) q^{61} +(0.500000 - 1.53884i) q^{63} +(0.309017 + 0.951057i) q^{64} -1.61803 q^{65} +(2.11803 + 1.53884i) q^{69} +(0.809017 - 0.587785i) q^{70} +(-0.500000 + 0.363271i) q^{71} +(-1.30902 + 0.951057i) q^{72} +(0.500000 - 1.53884i) q^{75} -2.00000 q^{76} +(-2.11803 + 1.53884i) q^{78} +(1.30902 - 0.951057i) q^{79} -1.00000 q^{80} +(0.500000 + 0.363271i) q^{83} +(0.500000 - 1.53884i) q^{84} +(-0.500000 - 1.53884i) q^{90} +(0.500000 - 1.53884i) q^{91} +(1.30902 + 0.951057i) q^{92} +(0.618034 - 1.90211i) q^{95} +(-1.30902 + 0.951057i) q^{96} +(0.309017 + 0.951057i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - q^{2} - 3q^{3} - q^{4} + q^{5} - 3q^{6} + 4q^{7} - q^{8} + 2q^{9} + O(q^{10}) \) \( 4q - q^{2} - 3q^{3} - q^{4} + q^{5} - 3q^{6} + 4q^{7} - q^{8} + 2q^{9} + q^{10} + 2q^{12} + 2q^{13} - q^{14} + 3q^{15} - q^{16} + 2q^{18} + 2q^{19} + q^{20} - 3q^{21} - 2q^{23} + 2q^{24} - q^{25} + 2q^{26} - q^{27} - q^{28} - 2q^{30} + 4q^{32} + q^{35} + 2q^{36} + 2q^{38} + q^{39} + q^{40} - 3q^{42} - 2q^{45} + 3q^{46} + 2q^{48} + 4q^{49} - q^{50} + 2q^{52} - q^{54} - q^{56} - 4q^{57} - 3q^{59} - 2q^{60} - 3q^{61} + 2q^{63} - q^{64} - 2q^{65} + 4q^{69} + q^{70} - 2q^{71} - 3q^{72} + 2q^{75} - 8q^{76} - 4q^{78} + 3q^{79} - 4q^{80} + 2q^{83} + 2q^{84} - 2q^{90} + 2q^{91} + 3q^{92} - 2q^{95} - 3q^{96} - q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(3\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(4\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(5\) −0.309017 0.951057i −0.309017 0.951057i
\(6\) −1.30902 0.951057i −1.30902 0.951057i
\(7\) 1.00000 1.00000
\(8\) −0.809017 0.587785i −0.809017 0.587785i
\(9\) 0.500000 1.53884i 0.500000 1.53884i
\(10\) 0.809017 0.587785i 0.809017 0.587785i
\(11\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(12\) 0.500000 1.53884i 0.500000 1.53884i
\(13\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(14\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(15\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(16\) 0.309017 0.951057i 0.309017 0.951057i
\(17\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(18\) 1.61803 1.61803
\(19\) 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(20\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(21\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(22\) 0 0
\(23\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(24\) 1.61803 1.61803
\(25\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(26\) 1.61803 1.61803
\(27\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(28\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(29\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(30\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(31\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(32\) 1.00000 1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) −0.309017 0.951057i −0.309017 0.951057i
\(36\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(37\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(38\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(39\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(40\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(41\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(42\) −1.30902 0.951057i −1.30902 0.951057i
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −1.61803 −1.61803
\(46\) 1.30902 0.951057i 1.30902 0.951057i
\(47\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(48\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(49\) 1.00000 1.00000
\(50\) −0.809017 0.587785i −0.809017 0.587785i
\(51\) 0 0
\(52\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(53\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(54\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(55\) 0 0
\(56\) −0.809017 0.587785i −0.809017 0.587785i
\(57\) −3.23607 −3.23607
\(58\) 0 0
\(59\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(60\) −1.61803 −1.61803
\(61\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0.500000 1.53884i 0.500000 1.53884i
\(64\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(65\) −1.61803 −1.61803
\(66\) 0 0
\(67\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(68\) 0 0
\(69\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(70\) 0.809017 0.587785i 0.809017 0.587785i
\(71\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(73\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(74\) 0 0
\(75\) 0.500000 1.53884i 0.500000 1.53884i
\(76\) −2.00000 −2.00000
\(77\) 0 0
\(78\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(79\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(80\) −1.00000 −1.00000
\(81\) 0 0
\(82\) 0 0
\(83\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(84\) 0.500000 1.53884i 0.500000 1.53884i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(90\) −0.500000 1.53884i −0.500000 1.53884i
\(91\) 0.500000 1.53884i 0.500000 1.53884i
\(92\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(93\) 0 0
\(94\) 0 0
\(95\) 0.618034 1.90211i 0.618034 1.90211i
\(96\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(97\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(99\) 0 0
\(100\) 0.309017 0.951057i 0.309017 0.951057i
\(101\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(102\) 0 0
\(103\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(104\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(105\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −0.809017 0.587785i −0.809017 0.587785i
\(109\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.309017 0.951057i 0.309017 0.951057i
\(113\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(114\) −1.00000 3.07768i −1.00000 3.07768i
\(115\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(116\) 0 0
\(117\) −2.11803 1.53884i −2.11803 1.53884i
\(118\) −0.618034 −0.618034
\(119\) 0 0
\(120\) −0.500000 1.53884i −0.500000 1.53884i
\(121\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(122\) 0.500000 0.363271i 0.500000 0.363271i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(126\) 1.61803 1.61803
\(127\) 0.618034 + 1.90211i 0.618034 + 1.90211i 0.309017 + 0.951057i \(0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(128\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(129\) 0 0
\(130\) −0.500000 1.53884i −0.500000 1.53884i
\(131\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(132\) 0 0
\(133\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(134\) 0 0
\(135\) 0.809017 0.587785i 0.809017 0.587785i
\(136\) 0 0
\(137\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(138\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(139\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(140\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(141\) 0 0
\(142\) −0.500000 0.363271i −0.500000 0.363271i
\(143\) 0 0
\(144\) −1.30902 0.951057i −1.30902 0.951057i
\(145\) 0 0
\(146\) 0 0
\(147\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 1.61803 1.61803
\(151\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) −0.618034 1.90211i −0.618034 1.90211i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −2.11803 1.53884i −2.11803 1.53884i
\(157\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(158\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(159\) 0 0
\(160\) −0.309017 0.951057i −0.309017 0.951057i
\(161\) −0.500000 1.53884i −0.500000 1.53884i
\(162\) 0 0
\(163\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(167\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(168\) 1.61803 1.61803
\(169\) −1.30902 0.951057i −1.30902 0.951057i
\(170\) 0 0
\(171\) 2.61803 1.90211i 2.61803 1.90211i
\(172\) 0 0
\(173\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(176\) 0 0
\(177\) −0.309017 0.951057i −0.309017 0.951057i
\(178\) 0 0
\(179\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(180\) 1.30902 0.951057i 1.30902 0.951057i
\(181\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(182\) 1.61803 1.61803
\(183\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(184\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(190\) 2.00000 2.00000
\(191\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(192\) −1.30902 0.951057i −1.30902 0.951057i
\(193\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(194\) 0 0
\(195\) 2.11803 1.53884i 2.11803 1.53884i
\(196\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(197\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.00000 1.00000
\(201\) 0 0
\(202\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.61803 −2.61803
\(208\) −1.30902 0.951057i −1.30902 0.951057i
\(209\) 0 0
\(210\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(211\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(212\) 0 0
\(213\) 0.309017 0.951057i 0.309017 0.951057i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.309017 0.951057i 0.309017 0.951057i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(224\) 1.00000 1.00000
\(225\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(226\) 0.618034 0.618034
\(227\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(228\) 2.61803 1.90211i 2.61803 1.90211i
\(229\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(230\) −1.30902 0.951057i −1.30902 0.951057i
\(231\) 0 0
\(232\) 0 0
\(233\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(234\) 0.809017 2.48990i 0.809017 2.48990i
\(235\) 0 0
\(236\) −0.190983 0.587785i −0.190983 0.587785i
\(237\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(238\) 0 0
\(239\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(240\) 1.30902 0.951057i 1.30902 0.951057i
\(241\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(242\) −0.809017 0.587785i −0.809017 0.587785i
\(243\) −1.00000 −1.00000
\(244\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(245\) −0.309017 0.951057i −0.309017 0.951057i
\(246\) 0 0
\(247\) 2.61803 1.90211i 2.61803 1.90211i
\(248\) 0 0
\(249\) −1.00000 −1.00000
\(250\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(251\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(252\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(253\) 0 0
\(254\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.809017 0.587785i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.30902 0.951057i 1.30902 0.951057i
\(261\) 0 0
\(262\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(263\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(267\) 0 0
\(268\) 0 0
\(269\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(270\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(271\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(272\) 0 0
\(273\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(274\) 2.00000 2.00000
\(275\) 0 0
\(276\) −2.61803 −2.61803
\(277\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(278\) 1.61803 1.17557i 1.61803 1.17557i
\(279\) 0 0
\(280\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(281\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(282\) 0 0
\(283\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(284\) 0.190983 0.587785i 0.190983 0.587785i
\(285\) 1.00000 + 3.07768i 1.00000 + 3.07768i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.500000 1.53884i 0.500000 1.53884i
\(289\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(294\) −1.30902 0.951057i −1.30902 0.951057i
\(295\) 0.618034 0.618034
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.61803 −2.61803
\(300\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(301\) 0 0
\(302\) −0.500000 1.53884i −0.500000 1.53884i
\(303\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(304\) 1.61803 1.17557i 1.61803 1.17557i
\(305\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(306\) 0 0
\(307\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(312\) 0.809017 2.48990i 0.809017 2.48990i
\(313\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(314\) −0.190983 0.587785i −0.190983 0.587785i
\(315\) −1.61803 −1.61803
\(316\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(317\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.809017 0.587785i 0.809017 0.587785i
\(321\) 0 0
\(322\) 1.30902 0.951057i 1.30902 0.951057i
\(323\) 0 0
\(324\) 0 0
\(325\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(332\) −0.618034 −0.618034
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(337\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(338\) 0.500000 1.53884i 0.500000 1.53884i
\(339\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(340\) 0 0
\(341\) 0 0
\(342\) 2.61803 + 1.90211i 2.61803 + 1.90211i
\(343\) 1.00000 1.00000
\(344\) 0 0
\(345\) 0.809017 2.48990i 0.809017 2.48990i
\(346\) 0.500000 0.363271i 0.500000 0.363271i
\(347\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(348\) 0 0
\(349\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(350\) −0.809017 0.587785i −0.809017 0.587785i
\(351\) 1.61803 1.61803
\(352\) 0 0
\(353\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(354\) 0.809017 0.587785i 0.809017 0.587785i
\(355\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(360\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(361\) 0.927051 + 2.85317i 0.927051 + 2.85317i
\(362\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(363\) 0.500000 1.53884i 0.500000 1.53884i
\(364\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(365\) 0 0
\(366\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(367\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(368\) −1.61803 −1.61803
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(374\) 0 0
\(375\) −1.61803 −1.61803
\(376\) 0 0
\(377\) 0 0
\(378\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(379\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(380\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(381\) −2.61803 1.90211i −2.61803 1.90211i
\(382\) −1.61803 −1.61803
\(383\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(384\) 0.500000 1.53884i 0.500000 1.53884i
\(385\) 0 0
\(386\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(390\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(391\) 0 0
\(392\) −0.809017 0.587785i −0.809017 0.587785i
\(393\) −1.00000 −1.00000
\(394\) 0 0
\(395\) −1.30902 0.951057i −1.30902 0.951057i
\(396\) 0 0
\(397\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) −3.23607 −3.23607
\(400\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(401\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(410\) 0 0
\(411\) 1.00000 + 3.07768i 1.00000 + 3.07768i
\(412\) 0 0
\(413\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(414\) −0.809017 2.48990i −0.809017 2.48990i
\(415\) 0.190983 0.587785i 0.190983 0.587785i
\(416\) 0.500000 1.53884i 0.500000 1.53884i
\(417\) 2.61803 + 1.90211i 2.61803 + 1.90211i
\(418\) 0 0
\(419\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(420\) −1.61803 −1.61803
\(421\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 1.00000 1.00000
\(427\) −0.190983 0.587785i −0.190983 0.587785i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(432\) 1.00000 1.00000
\(433\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.00000 3.07768i 1.00000 3.07768i
\(438\) 0 0
\(439\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(440\) 0 0
\(441\) 0.500000 1.53884i 0.500000 1.53884i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(449\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(450\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(451\) 0 0
\(452\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(453\) 2.11803 1.53884i 2.11803 1.53884i
\(454\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(455\) −1.61803 −1.61803
\(456\) 2.61803 + 1.90211i 2.61803 + 1.90211i
\(457\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(458\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(459\) 0 0
\(460\) 0.500000 1.53884i 0.500000 1.53884i
\(461\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(462\) 0 0
\(463\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.190983 0.587785i 0.190983 0.587785i
\(467\) 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(468\) 2.61803 2.61803
\(469\) 0 0
\(470\) 0 0
\(471\) 0.809017 0.587785i 0.809017 0.587785i
\(472\) 0.500000 0.363271i 0.500000 0.363271i
\(473\) 0 0
\(474\) −2.61803 −2.61803
\(475\) −2.00000 −2.00000
\(476\) 0 0
\(477\) 0 0
\(478\) 1.30902 0.951057i 1.30902 0.951057i
\(479\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(480\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(481\) 0 0
\(482\) 0 0
\(483\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(484\) 0.309017 0.951057i 0.309017 0.951057i
\(485\) 0 0
\(486\) −0.309017 0.951057i −0.309017 0.951057i
\(487\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(488\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(489\) 0 0
\(490\) 0.809017 0.587785i 0.809017 0.587785i
\(491\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 2.61803 + 1.90211i 2.61803 + 1.90211i
\(495\) 0 0
\(496\) 0 0
\(497\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(498\) −0.309017 0.951057i −0.309017 0.951057i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −1.00000 −1.00000
\(501\) 0 0
\(502\) −0.190983 0.587785i −0.190983 0.587785i
\(503\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(504\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(505\) −0.500000 1.53884i −0.500000 1.53884i
\(506\) 0 0
\(507\) 2.61803 2.61803
\(508\) −1.61803 1.17557i −1.61803 1.17557i
\(509\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.309017 0.951057i 0.309017 0.951057i
\(513\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(520\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(521\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(522\) 0 0
\(523\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(524\) −0.618034 −0.618034
\(525\) 0.500000 1.53884i 0.500000 1.53884i
\(526\) −1.61803 −1.61803
\(527\) 0 0
\(528\) 0 0
\(529\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(530\) 0 0
\(531\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(532\) −2.00000 −2.00000
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(539\) 0 0
\(540\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(541\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(542\) 0 0
\(543\) −1.00000 −1.00000
\(544\) 0 0
\(545\) 0 0
\(546\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(547\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(548\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(549\) −1.00000 −1.00000
\(550\) 0 0
\(551\) 0 0
\(552\) −0.809017 2.48990i −0.809017 2.48990i
\(553\) 1.30902 0.951057i 1.30902 0.951057i
\(554\) 0 0
\(555\) 0 0
\(556\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.00000 −1.00000
\(561\) 0 0
\(562\) 0.190983 0.587785i 0.190983 0.587785i
\(563\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(564\) 0 0
\(565\) −0.618034 −0.618034
\(566\) 0.500000 1.53884i 0.500000 1.53884i
\(567\) 0 0
\(568\) 0.618034 0.618034
\(569\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(570\) −2.61803 + 1.90211i −2.61803 + 1.90211i
\(571\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(572\) 0 0
\(573\) −0.809017 2.48990i −0.809017 2.48990i
\(574\) 0 0
\(575\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(576\) 1.61803 1.61803
\(577\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(578\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(579\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(580\) 0 0
\(581\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(586\) −0.618034 1.90211i −0.618034 1.90211i
\(587\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(588\) 0.500000 1.53884i 0.500000 1.53884i
\(589\) 0 0
\(590\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −0.809017 2.48990i −0.809017 2.48990i
\(599\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(600\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.30902 0.951057i 1.30902 0.951057i
\(605\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(606\) −2.11803 1.53884i −2.11803 1.53884i
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(609\) 0 0
\(610\) −0.500000 0.363271i −0.500000 0.363271i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(614\) −0.618034 1.90211i −0.618034 1.90211i
\(615\) 0 0
\(616\) 0 0
\(617\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(618\) 0 0
\(619\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(620\) 0 0
\(621\) 1.30902 0.951057i 1.30902 0.951057i
\(622\) 0 0
\(623\) 0 0
\(624\) 2.61803 2.61803
\(625\) 0.309017 0.951057i 0.309017 0.951057i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.500000 0.363271i 0.500000 0.363271i
\(629\) 0 0
\(630\) −0.500000 1.53884i −0.500000 1.53884i
\(631\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(632\) −1.61803 −1.61803
\(633\) 0 0
\(634\) 0 0
\(635\) 1.61803 1.17557i 1.61803 1.17557i
\(636\) 0 0
\(637\) 0.500000 1.53884i 0.500000 1.53884i
\(638\) 0 0
\(639\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(640\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(641\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(642\) 0 0
\(643\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(644\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(654\) 0 0
\(655\) 0.190983 0.587785i 0.190983 0.587785i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(660\) 0 0
\(661\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.190983 0.587785i −0.190983 0.587785i
\(665\) 0.618034 1.90211i 0.618034 1.90211i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(673\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(674\) −1.61803 −1.61803
\(675\) −0.809017 0.587785i −0.809017 0.587785i
\(676\) 1.61803 1.61803
\(677\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(678\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(679\) 0 0
\(680\) 0 0
\(681\) −2.11803 1.53884i −2.11803 1.53884i
\(682\) 0 0
\(683\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(684\) −1.00000 + 3.07768i −1.00000 + 3.07768i
\(685\) −2.00000 −2.00000
\(686\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(687\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(688\) 0 0
\(689\) 0 0
\(690\) 2.61803 2.61803
\(691\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(692\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(693\) 0 0
\(694\) 0 0
\(695\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(699\) 1.00000 1.00000
\(700\) 0.309017 0.951057i 0.309017 0.951057i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.61803 1.61803
\(708\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(709\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(710\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(711\) −0.809017 2.48990i −0.809017 2.48990i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(718\) −1.61803 −1.61803
\(719\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(720\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(721\) 0 0
\(722\) −2.42705 + 1.76336i −2.42705 + 1.76336i
\(723\) 0 0
\(724\) −0.618034 −0.618034
\(725\) 0 0
\(726\) 1.61803 1.61803
\(727\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(728\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(729\) 1.30902 0.951057i 1.30902 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) −1.00000 −1.00000
\(733\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(734\) 0 0
\(735\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(736\) −0.500000 1.53884i −0.500000 1.53884i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(740\) 0 0
\(741\) −1.61803 + 4.97980i −1.61803 + 4.97980i
\(742\) 0 0
\(743\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.809017 0.587785i 0.809017 0.587785i
\(748\) 0 0
\(749\) 0 0
\(750\) −0.500000 1.53884i −0.500000 1.53884i
\(751\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0.809017 0.587785i 0.809017 0.587785i
\(754\) 0 0
\(755\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(756\) −0.809017 0.587785i −0.809017 0.587785i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(761\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(762\) 1.00000 3.07768i 1.00000 3.07768i
\(763\) 0 0
\(764\) −0.500000 1.53884i −0.500000 1.53884i
\(765\) 0 0
\(766\) 0 0
\(767\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(768\) 1.61803 1.61803
\(769\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(773\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.309017 0.951057i 0.309017 0.951057i
\(785\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(786\) −0.309017 0.951057i −0.309017 0.951057i
\(787\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(788\) 0 0
\(789\) −0.809017 2.48990i −0.809017 2.48990i
\(790\) 0.500000 1.53884i 0.500000 1.53884i
\(791\) 0.190983 0.587785i 0.190983 0.587785i
\(792\) 0 0
\(793\) −1.00000 −1.00000
\(794\) −1.30902 0.951057i −1.30902 0.951057i
\(795\) 0 0
\(796\) 0 0