Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1400))\).
|
Total |
New |
Old |
Modular forms
| 2230 |
489 |
1741 |
Cusp forms
| 214 |
79 |
135 |
Eisenstein series
| 2016 |
410 |
1606 |
The following table gives the dimensions of subspaces with specified projective image type.
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1400))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
1400.1.c |
\(\chi_{1400}(349, \cdot)\) |
1400.1.c.a |
2 |
1 |
1400.1.c.b |
4 |
1400.1.d |
\(\chi_{1400}(351, \cdot)\) |
None |
0 |
1 |
1400.1.f |
\(\chi_{1400}(601, \cdot)\) |
None |
0 |
1 |
1400.1.i |
\(\chi_{1400}(99, \cdot)\) |
None |
0 |
1 |
1400.1.j |
\(\chi_{1400}(799, \cdot)\) |
None |
0 |
1 |
1400.1.m |
\(\chi_{1400}(1301, \cdot)\) |
1400.1.m.a |
1 |
1 |
1400.1.m.b |
2 |
1400.1.m.c |
2 |
1400.1.m.d |
2 |
1400.1.m.e |
2 |
1400.1.o |
\(\chi_{1400}(1051, \cdot)\) |
None |
0 |
1 |
1400.1.p |
\(\chi_{1400}(1049, \cdot)\) |
None |
0 |
1 |
1400.1.r |
\(\chi_{1400}(1007, \cdot)\) |
None |
0 |
2 |
1400.1.u |
\(\chi_{1400}(757, \cdot)\) |
None |
0 |
2 |
1400.1.v |
\(\chi_{1400}(57, \cdot)\) |
None |
0 |
2 |
1400.1.y |
\(\chi_{1400}(307, \cdot)\) |
1400.1.y.a |
4 |
2 |
1400.1.y.b |
8 |
1400.1.ba |
\(\chi_{1400}(51, \cdot)\) |
1400.1.ba.a |
4 |
2 |
1400.1.bc |
\(\chi_{1400}(649, \cdot)\) |
None |
0 |
2 |
1400.1.be |
\(\chi_{1400}(599, \cdot)\) |
None |
0 |
2 |
1400.1.bf |
\(\chi_{1400}(101, \cdot)\) |
1400.1.bf.a |
2 |
2 |
1400.1.bf.b |
2 |
1400.1.bi |
\(\chi_{1400}(201, \cdot)\) |
None |
0 |
2 |
1400.1.bj |
\(\chi_{1400}(499, \cdot)\) |
None |
0 |
2 |
1400.1.bl |
\(\chi_{1400}(549, \cdot)\) |
1400.1.bl.a |
4 |
2 |
1400.1.bo |
\(\chi_{1400}(151, \cdot)\) |
None |
0 |
2 |
1400.1.bp |
\(\chi_{1400}(209, \cdot)\) |
None |
0 |
4 |
1400.1.bq |
\(\chi_{1400}(211, \cdot)\) |
None |
0 |
4 |
1400.1.bs |
\(\chi_{1400}(181, \cdot)\) |
1400.1.bs.a |
4 |
4 |
1400.1.bs.b |
4 |
1400.1.bs.c |
8 |
1400.1.bv |
\(\chi_{1400}(239, \cdot)\) |
None |
0 |
4 |
1400.1.bw |
\(\chi_{1400}(379, \cdot)\) |
None |
0 |
4 |
1400.1.bz |
\(\chi_{1400}(41, \cdot)\) |
None |
0 |
4 |
1400.1.cb |
\(\chi_{1400}(71, \cdot)\) |
None |
0 |
4 |
1400.1.cc |
\(\chi_{1400}(69, \cdot)\) |
1400.1.cc.a |
16 |
4 |
1400.1.cf |
\(\chi_{1400}(243, \cdot)\) |
1400.1.cf.a |
8 |
4 |
1400.1.cg |
\(\chi_{1400}(193, \cdot)\) |
None |
0 |
4 |
1400.1.cj |
\(\chi_{1400}(93, \cdot)\) |
None |
0 |
4 |
1400.1.ck |
\(\chi_{1400}(143, \cdot)\) |
None |
0 |
4 |
1400.1.cn |
\(\chi_{1400}(27, \cdot)\) |
None |
0 |
8 |
1400.1.cq |
\(\chi_{1400}(113, \cdot)\) |
None |
0 |
8 |
1400.1.cr |
\(\chi_{1400}(197, \cdot)\) |
None |
0 |
8 |
1400.1.cu |
\(\chi_{1400}(167, \cdot)\) |
None |
0 |
8 |
1400.1.cv |
\(\chi_{1400}(191, \cdot)\) |
None |
0 |
8 |
1400.1.cy |
\(\chi_{1400}(229, \cdot)\) |
None |
0 |
8 |
1400.1.da |
\(\chi_{1400}(179, \cdot)\) |
None |
0 |
8 |
1400.1.db |
\(\chi_{1400}(241, \cdot)\) |
None |
0 |
8 |
1400.1.de |
\(\chi_{1400}(61, \cdot)\) |
None |
0 |
8 |
1400.1.df |
\(\chi_{1400}(39, \cdot)\) |
None |
0 |
8 |
1400.1.dh |
\(\chi_{1400}(89, \cdot)\) |
None |
0 |
8 |
1400.1.dj |
\(\chi_{1400}(11, \cdot)\) |
None |
0 |
8 |
1400.1.dl |
\(\chi_{1400}(47, \cdot)\) |
None |
0 |
16 |
1400.1.dm |
\(\chi_{1400}(37, \cdot)\) |
None |
0 |
16 |
1400.1.dp |
\(\chi_{1400}(137, \cdot)\) |
None |
0 |
16 |
1400.1.dq |
\(\chi_{1400}(3, \cdot)\) |
None |
0 |
16 |