Properties

Label 140.4
Level 140
Weight 4
Dimension 854
Nonzero newspaces 12
Newform subspaces 25
Sturm bound 4608
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 25 \)
Sturm bound: \(4608\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(140))\).

Total New Old
Modular forms 1848 910 938
Cusp forms 1608 854 754
Eisenstein series 240 56 184

Trace form

\( 854 q - 2 q^{2} + 4 q^{3} - 6 q^{4} - 60 q^{5} - 40 q^{6} - 32 q^{7} - 26 q^{8} + 122 q^{9} + 148 q^{10} + 208 q^{11} + 484 q^{12} + 20 q^{13} + 306 q^{14} - 152 q^{15} - 218 q^{16} + 88 q^{17} - 666 q^{18}+ \cdots + 14000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(140))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
140.4.a \(\chi_{140}(1, \cdot)\) 140.4.a.a 1 1
140.4.a.b 1
140.4.a.c 1
140.4.a.d 1
140.4.a.e 1
140.4.a.f 1
140.4.c \(\chi_{140}(139, \cdot)\) 140.4.c.a 4 1
140.4.c.b 64
140.4.e \(\chi_{140}(29, \cdot)\) 140.4.e.a 2 1
140.4.e.b 2
140.4.e.c 4
140.4.g \(\chi_{140}(111, \cdot)\) 140.4.g.a 48 1
140.4.i \(\chi_{140}(81, \cdot)\) 140.4.i.a 2 2
140.4.i.b 2
140.4.i.c 4
140.4.i.d 4
140.4.i.e 4
140.4.k \(\chi_{140}(43, \cdot)\) 140.4.k.a 108 2
140.4.m \(\chi_{140}(13, \cdot)\) 140.4.m.a 24 2
140.4.o \(\chi_{140}(31, \cdot)\) 140.4.o.a 96 2
140.4.q \(\chi_{140}(9, \cdot)\) 140.4.q.a 24 2
140.4.s \(\chi_{140}(19, \cdot)\) 140.4.s.a 8 2
140.4.s.b 128
140.4.u \(\chi_{140}(17, \cdot)\) 140.4.u.a 48 4
140.4.w \(\chi_{140}(23, \cdot)\) 140.4.w.a 272 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(140))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(140)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 2}\)