Properties

Label 140.2.q.a.109.1
Level $140$
Weight $2$
Character 140.109
Analytic conductor $1.118$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.1
Root \(-1.63746 - 1.52274i\) of defining polynomial
Character \(\chi\) \(=\) 140.109
Dual form 140.2.q.a.9.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(-1.63746 - 1.52274i) q^{5} +(-2.63746 - 0.209313i) q^{7} +O(q^{10})\) \(q+(-1.50000 - 0.866025i) q^{3} +(-1.63746 - 1.52274i) q^{5} +(-2.63746 - 0.209313i) q^{7} +(-1.13746 + 1.97014i) q^{11} -6.09095i q^{13} +(1.13746 + 3.70219i) q^{15} +(4.13746 + 2.38876i) q^{17} +(-2.13746 - 3.70219i) q^{19} +(3.77492 + 2.59808i) q^{21} +(0.774917 - 0.447399i) q^{23} +(0.362541 + 4.98684i) q^{25} +5.19615i q^{27} +3.27492 q^{29} +(2.13746 - 3.70219i) q^{31} +(3.41238 - 1.97014i) q^{33} +(4.00000 + 4.35890i) q^{35} +(4.86254 - 2.80739i) q^{37} +(-5.27492 + 9.13642i) q^{39} -11.2749 q^{41} -6.50958i q^{43} +(-1.86254 + 1.07534i) q^{47} +(6.91238 + 1.10411i) q^{49} +(-4.13746 - 7.16629i) q^{51} +(-6.41238 - 3.70219i) q^{53} +(4.86254 - 1.49397i) q^{55} +7.40437i q^{57} +(2.13746 - 3.70219i) q^{59} +(-0.774917 - 1.34220i) q^{61} +(-9.27492 + 9.97368i) q^{65} +(-12.0498 - 6.95698i) q^{67} -1.54983 q^{69} +10.5498 q^{71} +(-1.86254 - 1.07534i) q^{73} +(3.77492 - 7.79423i) q^{75} +(3.41238 - 4.95807i) q^{77} +(-0.137459 - 0.238085i) q^{79} +(4.50000 - 7.79423i) q^{81} +5.67232i q^{83} +(-3.13746 - 10.2118i) q^{85} +(-4.91238 - 2.83616i) q^{87} +(-3.50000 - 6.06218i) q^{89} +(-1.27492 + 16.0646i) q^{91} +(-6.41238 + 3.70219i) q^{93} +(-2.13746 + 9.31697i) q^{95} +6.92820i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + q^{5} - 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{3} + q^{5} - 3 q^{7} + 3 q^{11} - 3 q^{15} + 9 q^{17} - q^{19} - 12 q^{23} + 9 q^{25} - 2 q^{29} + q^{31} - 9 q^{33} + 16 q^{35} + 27 q^{37} - 6 q^{39} - 30 q^{41} - 15 q^{47} + 5 q^{49} - 9 q^{51} - 3 q^{53} + 27 q^{55} + q^{59} + 12 q^{61} - 22 q^{65} - 18 q^{67} + 24 q^{69} + 12 q^{71} - 15 q^{73} - 9 q^{77} + 7 q^{79} + 18 q^{81} - 5 q^{85} + 3 q^{87} - 14 q^{89} + 10 q^{91} - 3 q^{93} - q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) −1.63746 1.52274i −0.732294 0.680989i
\(6\) 0 0
\(7\) −2.63746 0.209313i −0.996866 0.0791130i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.13746 + 1.97014i −0.342957 + 0.594018i −0.984980 0.172666i \(-0.944762\pi\)
0.642024 + 0.766685i \(0.278095\pi\)
\(12\) 0 0
\(13\) 6.09095i 1.68933i −0.535299 0.844663i \(-0.679801\pi\)
0.535299 0.844663i \(-0.320199\pi\)
\(14\) 0 0
\(15\) 1.13746 + 3.70219i 0.293691 + 0.955901i
\(16\) 0 0
\(17\) 4.13746 + 2.38876i 1.00348 + 0.579360i 0.909276 0.416193i \(-0.136636\pi\)
0.0942047 + 0.995553i \(0.469969\pi\)
\(18\) 0 0
\(19\) −2.13746 3.70219i −0.490367 0.849340i 0.509572 0.860428i \(-0.329804\pi\)
−0.999939 + 0.0110882i \(0.996470\pi\)
\(20\) 0 0
\(21\) 3.77492 + 2.59808i 0.823754 + 0.566947i
\(22\) 0 0
\(23\) 0.774917 0.447399i 0.161581 0.0932891i −0.417029 0.908893i \(-0.636929\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 0.362541 + 4.98684i 0.0725083 + 0.997368i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 3.27492 0.608137 0.304068 0.952650i \(-0.401655\pi\)
0.304068 + 0.952650i \(0.401655\pi\)
\(30\) 0 0
\(31\) 2.13746 3.70219i 0.383899 0.664932i −0.607717 0.794154i \(-0.707914\pi\)
0.991616 + 0.129221i \(0.0412478\pi\)
\(32\) 0 0
\(33\) 3.41238 1.97014i 0.594018 0.342957i
\(34\) 0 0
\(35\) 4.00000 + 4.35890i 0.676123 + 0.736788i
\(36\) 0 0
\(37\) 4.86254 2.80739i 0.799397 0.461532i −0.0438633 0.999038i \(-0.513967\pi\)
0.843260 + 0.537506i \(0.180633\pi\)
\(38\) 0 0
\(39\) −5.27492 + 9.13642i −0.844663 + 1.46300i
\(40\) 0 0
\(41\) −11.2749 −1.76085 −0.880423 0.474189i \(-0.842741\pi\)
−0.880423 + 0.474189i \(0.842741\pi\)
\(42\) 0 0
\(43\) 6.50958i 0.992701i −0.868122 0.496351i \(-0.834673\pi\)
0.868122 0.496351i \(-0.165327\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.86254 + 1.07534i −0.271680 + 0.156854i −0.629651 0.776878i \(-0.716802\pi\)
0.357971 + 0.933733i \(0.383469\pi\)
\(48\) 0 0
\(49\) 6.91238 + 1.10411i 0.987482 + 0.157730i
\(50\) 0 0
\(51\) −4.13746 7.16629i −0.579360 1.00348i
\(52\) 0 0
\(53\) −6.41238 3.70219i −0.880808 0.508534i −0.00988297 0.999951i \(-0.503146\pi\)
−0.870925 + 0.491417i \(0.836479\pi\)
\(54\) 0 0
\(55\) 4.86254 1.49397i 0.655665 0.201446i
\(56\) 0 0
\(57\) 7.40437i 0.980733i
\(58\) 0 0
\(59\) 2.13746 3.70219i 0.278273 0.481984i −0.692682 0.721243i \(-0.743571\pi\)
0.970956 + 0.239259i \(0.0769045\pi\)
\(60\) 0 0
\(61\) −0.774917 1.34220i −0.0992180 0.171851i 0.812143 0.583458i \(-0.198301\pi\)
−0.911361 + 0.411608i \(0.864967\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.27492 + 9.97368i −1.15041 + 1.23708i
\(66\) 0 0
\(67\) −12.0498 6.95698i −1.47212 0.849930i −0.472613 0.881270i \(-0.656689\pi\)
−0.999509 + 0.0313404i \(0.990022\pi\)
\(68\) 0 0
\(69\) −1.54983 −0.186578
\(70\) 0 0
\(71\) 10.5498 1.25204 0.626018 0.779809i \(-0.284684\pi\)
0.626018 + 0.779809i \(0.284684\pi\)
\(72\) 0 0
\(73\) −1.86254 1.07534i −0.217994 0.125859i 0.387027 0.922068i \(-0.373502\pi\)
−0.605021 + 0.796209i \(0.706835\pi\)
\(74\) 0 0
\(75\) 3.77492 7.79423i 0.435890 0.900000i
\(76\) 0 0
\(77\) 3.41238 4.95807i 0.388876 0.565024i
\(78\) 0 0
\(79\) −0.137459 0.238085i −0.0154653 0.0267867i 0.858189 0.513334i \(-0.171590\pi\)
−0.873654 + 0.486547i \(0.838256\pi\)
\(80\) 0 0
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 0 0
\(83\) 5.67232i 0.622618i 0.950309 + 0.311309i \(0.100767\pi\)
−0.950309 + 0.311309i \(0.899233\pi\)
\(84\) 0 0
\(85\) −3.13746 10.2118i −0.340305 1.10762i
\(86\) 0 0
\(87\) −4.91238 2.83616i −0.526662 0.304068i
\(88\) 0 0
\(89\) −3.50000 6.06218i −0.370999 0.642590i 0.618720 0.785611i \(-0.287651\pi\)
−0.989720 + 0.143022i \(0.954318\pi\)
\(90\) 0 0
\(91\) −1.27492 + 16.0646i −0.133648 + 1.68403i
\(92\) 0 0
\(93\) −6.41238 + 3.70219i −0.664932 + 0.383899i
\(94\) 0 0
\(95\) −2.13746 + 9.31697i −0.219299 + 0.955901i
\(96\) 0 0
\(97\) 6.92820i 0.703452i 0.936103 + 0.351726i \(0.114405\pi\)
−0.936103 + 0.351726i \(0.885595\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.774917 + 1.34220i −0.0771071 + 0.133553i −0.902001 0.431735i \(-0.857902\pi\)
0.824894 + 0.565288i \(0.191235\pi\)
\(102\) 0 0
\(103\) 2.22508 1.28465i 0.219244 0.126581i −0.386356 0.922350i \(-0.626266\pi\)
0.605600 + 0.795769i \(0.292933\pi\)
\(104\) 0 0
\(105\) −2.22508 10.0025i −0.217146 0.976139i
\(106\) 0 0
\(107\) 12.0498 6.95698i 1.16490 0.672556i 0.212428 0.977177i \(-0.431863\pi\)
0.952474 + 0.304621i \(0.0985297\pi\)
\(108\) 0 0
\(109\) 1.77492 3.07425i 0.170006 0.294459i −0.768416 0.639951i \(-0.778955\pi\)
0.938422 + 0.345492i \(0.112288\pi\)
\(110\) 0 0
\(111\) −9.72508 −0.923064
\(112\) 0 0
\(113\) 13.0192i 1.22474i 0.790572 + 0.612369i \(0.209783\pi\)
−0.790572 + 0.612369i \(0.790217\pi\)
\(114\) 0 0
\(115\) −1.95017 0.447399i −0.181854 0.0417201i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.4124 7.16629i −0.954501 0.656933i
\(120\) 0 0
\(121\) 2.91238 + 5.04438i 0.264761 + 0.458580i
\(122\) 0 0
\(123\) 16.9124 + 9.76436i 1.52494 + 0.880423i
\(124\) 0 0
\(125\) 7.00000 8.71780i 0.626099 0.779744i
\(126\) 0 0
\(127\) 1.78959i 0.158801i −0.996843 0.0794004i \(-0.974699\pi\)
0.996843 0.0794004i \(-0.0253006\pi\)
\(128\) 0 0
\(129\) −5.63746 + 9.76436i −0.496351 + 0.859704i
\(130\) 0 0
\(131\) 9.13746 + 15.8265i 0.798343 + 1.38277i 0.920694 + 0.390285i \(0.127623\pi\)
−0.122351 + 0.992487i \(0.539043\pi\)
\(132\) 0 0
\(133\) 4.86254 + 10.2118i 0.421636 + 0.885472i
\(134\) 0 0
\(135\) 7.91238 8.50848i 0.680989 0.732294i
\(136\) 0 0
\(137\) 7.96221 + 4.59698i 0.680258 + 0.392747i 0.799952 0.600064i \(-0.204858\pi\)
−0.119695 + 0.992811i \(0.538192\pi\)
\(138\) 0 0
\(139\) 17.0997 1.45037 0.725187 0.688551i \(-0.241753\pi\)
0.725187 + 0.688551i \(0.241753\pi\)
\(140\) 0 0
\(141\) 3.72508 0.313709
\(142\) 0 0
\(143\) 12.0000 + 6.92820i 1.00349 + 0.579365i
\(144\) 0 0
\(145\) −5.36254 4.98684i −0.445335 0.414134i
\(146\) 0 0
\(147\) −9.41238 7.64246i −0.776320 0.630339i
\(148\) 0 0
\(149\) 3.77492 + 6.53835i 0.309253 + 0.535642i 0.978199 0.207669i \(-0.0665876\pi\)
−0.668946 + 0.743311i \(0.733254\pi\)
\(150\) 0 0
\(151\) 10.1375 17.5586i 0.824975 1.42890i −0.0769640 0.997034i \(-0.524523\pi\)
0.901939 0.431864i \(-0.142144\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.13746 + 2.80739i −0.733938 + 0.225495i
\(156\) 0 0
\(157\) 9.41238 + 5.43424i 0.751189 + 0.433699i 0.826123 0.563489i \(-0.190541\pi\)
−0.0749341 + 0.997188i \(0.523875\pi\)
\(158\) 0 0
\(159\) 6.41238 + 11.1066i 0.508534 + 0.880808i
\(160\) 0 0
\(161\) −2.13746 + 1.01779i −0.168455 + 0.0802135i
\(162\) 0 0
\(163\) −6.41238 + 3.70219i −0.502256 + 0.289978i −0.729645 0.683826i \(-0.760315\pi\)
0.227389 + 0.973804i \(0.426981\pi\)
\(164\) 0 0
\(165\) −8.58762 1.97014i −0.668546 0.153375i
\(166\) 0 0
\(167\) 12.6005i 0.975058i −0.873107 0.487529i \(-0.837898\pi\)
0.873107 0.487529i \(-0.162102\pi\)
\(168\) 0 0
\(169\) −24.0997 −1.85382
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.2371 + 9.37451i −1.23449 + 0.712731i −0.967962 0.251097i \(-0.919209\pi\)
−0.266524 + 0.963828i \(0.585875\pi\)
\(174\) 0 0
\(175\) 0.0876242 13.2285i 0.00662376 0.999978i
\(176\) 0 0
\(177\) −6.41238 + 3.70219i −0.481984 + 0.278273i
\(178\) 0 0
\(179\) 0.137459 0.238085i 0.0102741 0.0177953i −0.860843 0.508871i \(-0.830063\pi\)
0.871117 + 0.491076i \(0.163396\pi\)
\(180\) 0 0
\(181\) −16.7251 −1.24317 −0.621583 0.783348i \(-0.713510\pi\)
−0.621583 + 0.783348i \(0.713510\pi\)
\(182\) 0 0
\(183\) 2.68439i 0.198436i
\(184\) 0 0
\(185\) −12.2371 2.80739i −0.899692 0.206403i
\(186\) 0 0
\(187\) −9.41238 + 5.43424i −0.688301 + 0.397391i
\(188\) 0 0
\(189\) 1.08762 13.7046i 0.0791130 0.996866i
\(190\) 0 0
\(191\) −11.4124 19.7668i −0.825771 1.43028i −0.901329 0.433135i \(-0.857407\pi\)
0.0755585 0.997141i \(-0.475926\pi\)
\(192\) 0 0
\(193\) 7.96221 + 4.59698i 0.573132 + 0.330898i 0.758399 0.651790i \(-0.225982\pi\)
−0.185267 + 0.982688i \(0.559315\pi\)
\(194\) 0 0
\(195\) 22.5498 6.92820i 1.61483 0.496139i
\(196\) 0 0
\(197\) 26.0383i 1.85515i −0.373634 0.927576i \(-0.621888\pi\)
0.373634 0.927576i \(-0.378112\pi\)
\(198\) 0 0
\(199\) 4.86254 8.42217i 0.344696 0.597032i −0.640602 0.767873i \(-0.721315\pi\)
0.985299 + 0.170841i \(0.0546485\pi\)
\(200\) 0 0
\(201\) 12.0498 + 20.8709i 0.849930 + 1.47212i
\(202\) 0 0
\(203\) −8.63746 0.685484i −0.606231 0.0481115i
\(204\) 0 0
\(205\) 18.4622 + 17.1687i 1.28946 + 1.19912i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.72508 0.672698
\(210\) 0 0
\(211\) −19.6495 −1.35273 −0.676364 0.736568i \(-0.736445\pi\)
−0.676364 + 0.736568i \(0.736445\pi\)
\(212\) 0 0
\(213\) −15.8248 9.13642i −1.08429 0.626018i
\(214\) 0 0
\(215\) −9.91238 + 10.6592i −0.676018 + 0.726949i
\(216\) 0 0
\(217\) −6.41238 + 9.31697i −0.435300 + 0.632477i
\(218\) 0 0
\(219\) 1.86254 + 3.22602i 0.125859 + 0.217994i
\(220\) 0 0
\(221\) 14.5498 25.2011i 0.978728 1.69521i
\(222\) 0 0
\(223\) 8.71780i 0.583787i 0.956451 + 0.291893i \(0.0942853\pi\)
−0.956451 + 0.291893i \(0.905715\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.58762 3.22602i −0.370864 0.214118i 0.302972 0.952999i \(-0.402021\pi\)
−0.673836 + 0.738881i \(0.735354\pi\)
\(228\) 0 0
\(229\) −2.13746 3.70219i −0.141247 0.244647i 0.786719 0.617311i \(-0.211778\pi\)
−0.927967 + 0.372663i \(0.878445\pi\)
\(230\) 0 0
\(231\) −9.41238 + 4.48190i −0.619289 + 0.294887i
\(232\) 0 0
\(233\) 16.1375 9.31697i 1.05720 0.610375i 0.132544 0.991177i \(-0.457686\pi\)
0.924656 + 0.380802i \(0.124352\pi\)
\(234\) 0 0
\(235\) 4.68729 + 1.07534i 0.305765 + 0.0701474i
\(236\) 0 0
\(237\) 0.476171i 0.0309306i
\(238\) 0 0
\(239\) 14.5498 0.941151 0.470575 0.882360i \(-0.344046\pi\)
0.470575 + 0.882360i \(0.344046\pi\)
\(240\) 0 0
\(241\) 6.41238 11.1066i 0.413057 0.715436i −0.582165 0.813071i \(-0.697794\pi\)
0.995222 + 0.0976343i \(0.0311275\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.63746 12.3337i −0.615715 0.787969i
\(246\) 0 0
\(247\) −22.5498 + 13.0192i −1.43481 + 0.828389i
\(248\) 0 0
\(249\) 4.91238 8.50848i 0.311309 0.539203i
\(250\) 0 0
\(251\) −5.45017 −0.344011 −0.172006 0.985096i \(-0.555025\pi\)
−0.172006 + 0.985096i \(0.555025\pi\)
\(252\) 0 0
\(253\) 2.03559i 0.127976i
\(254\) 0 0
\(255\) −4.13746 + 18.0348i −0.259098 + 1.12938i
\(256\) 0 0
\(257\) 21.4124 12.3624i 1.33567 0.771148i 0.349506 0.936934i \(-0.386350\pi\)
0.986162 + 0.165786i \(0.0530162\pi\)
\(258\) 0 0
\(259\) −13.4124 + 6.38658i −0.833404 + 0.396843i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.3248 13.4666i −1.43827 0.830383i −0.440536 0.897735i \(-0.645212\pi\)
−0.997729 + 0.0673516i \(0.978545\pi\)
\(264\) 0 0
\(265\) 4.86254 + 15.8265i 0.298704 + 0.972217i
\(266\) 0 0
\(267\) 12.1244i 0.741999i
\(268\) 0 0
\(269\) −14.7749 + 25.5909i −0.900843 + 1.56031i −0.0744400 + 0.997225i \(0.523717\pi\)
−0.826403 + 0.563080i \(0.809616\pi\)
\(270\) 0 0
\(271\) 6.41238 + 11.1066i 0.389524 + 0.674676i 0.992386 0.123170i \(-0.0393062\pi\)
−0.602861 + 0.797846i \(0.705973\pi\)
\(272\) 0 0
\(273\) 15.8248 22.9928i 0.957758 1.39159i
\(274\) 0 0
\(275\) −10.2371 4.95807i −0.617322 0.298983i
\(276\) 0 0
\(277\) 16.1375 + 9.31697i 0.969606 + 0.559802i 0.899116 0.437710i \(-0.144210\pi\)
0.0704898 + 0.997512i \(0.477544\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 16.9622 + 9.79314i 1.00830 + 0.582142i 0.910693 0.413084i \(-0.135548\pi\)
0.0976056 + 0.995225i \(0.468882\pi\)
\(284\) 0 0
\(285\) 11.2749 12.1244i 0.667868 0.718185i
\(286\) 0 0
\(287\) 29.7371 + 2.35999i 1.75533 + 0.139306i
\(288\) 0 0
\(289\) 2.91238 + 5.04438i 0.171316 + 0.296728i
\(290\) 0 0
\(291\) 6.00000 10.3923i 0.351726 0.609208i
\(292\) 0 0
\(293\) 6.92820i 0.404750i 0.979308 + 0.202375i \(0.0648660\pi\)
−0.979308 + 0.202375i \(0.935134\pi\)
\(294\) 0 0
\(295\) −9.13746 + 2.80739i −0.532003 + 0.163453i
\(296\) 0 0
\(297\) −10.2371 5.91041i −0.594018 0.342957i
\(298\) 0 0
\(299\) −2.72508 4.71998i −0.157596 0.272964i
\(300\) 0 0
\(301\) −1.36254 + 17.1687i −0.0785356 + 0.989590i
\(302\) 0 0
\(303\) 2.32475 1.34220i 0.133553 0.0771071i
\(304\) 0 0
\(305\) −0.774917 + 3.37779i −0.0443716 + 0.193411i
\(306\) 0 0
\(307\) 3.99782i 0.228167i 0.993471 + 0.114084i \(0.0363932\pi\)
−0.993471 + 0.114084i \(0.963607\pi\)
\(308\) 0 0
\(309\) −4.45017 −0.253161
\(310\) 0 0
\(311\) −6.41238 + 11.1066i −0.363612 + 0.629795i −0.988552 0.150878i \(-0.951790\pi\)
0.624940 + 0.780673i \(0.285123\pi\)
\(312\) 0 0
\(313\) 12.5120 7.22383i 0.707223 0.408315i −0.102809 0.994701i \(-0.532783\pi\)
0.810032 + 0.586386i \(0.199450\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.31271 + 1.91259i −0.186060 + 0.107422i −0.590137 0.807303i \(-0.700926\pi\)
0.404077 + 0.914725i \(0.367593\pi\)
\(318\) 0 0
\(319\) −3.72508 + 6.45203i −0.208565 + 0.361244i
\(320\) 0 0
\(321\) −24.0997 −1.34511
\(322\) 0 0
\(323\) 20.4235i 1.13640i
\(324\) 0 0
\(325\) 30.3746 2.20822i 1.68488 0.122490i
\(326\) 0 0
\(327\) −5.32475 + 3.07425i −0.294459 + 0.170006i
\(328\) 0 0
\(329\) 5.13746 2.44631i 0.283237 0.134869i
\(330\) 0 0
\(331\) 2.41238 + 4.17836i 0.132596 + 0.229663i 0.924677 0.380753i \(-0.124335\pi\)
−0.792080 + 0.610417i \(0.791002\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.13746 + 29.7405i 0.499233 + 1.62490i
\(336\) 0 0
\(337\) 13.0192i 0.709198i 0.935018 + 0.354599i \(0.115383\pi\)
−0.935018 + 0.354599i \(0.884617\pi\)
\(338\) 0 0
\(339\) 11.2749 19.5287i 0.612369 1.06065i
\(340\) 0 0
\(341\) 4.86254 + 8.42217i 0.263321 + 0.456086i
\(342\) 0 0
\(343\) −18.0000 4.35890i −0.971909 0.235358i
\(344\) 0 0
\(345\) 2.53779 + 2.35999i 0.136630 + 0.127058i
\(346\) 0 0
\(347\) 10.5000 + 6.06218i 0.563670 + 0.325435i 0.754617 0.656165i \(-0.227823\pi\)
−0.190947 + 0.981600i \(0.561156\pi\)
\(348\) 0 0
\(349\) 11.2749 0.603532 0.301766 0.953382i \(-0.402424\pi\)
0.301766 + 0.953382i \(0.402424\pi\)
\(350\) 0 0
\(351\) 31.6495 1.68933
\(352\) 0 0
\(353\) −18.4124 10.6304i −0.979992 0.565799i −0.0777242 0.996975i \(-0.524765\pi\)
−0.902268 + 0.431176i \(0.858099\pi\)
\(354\) 0 0
\(355\) −17.2749 16.0646i −0.916857 0.852622i
\(356\) 0 0
\(357\) 9.41238 + 19.7668i 0.498156 + 1.04617i
\(358\) 0 0
\(359\) −0.687293 1.19043i −0.0362739 0.0628283i 0.847318 0.531085i \(-0.178216\pi\)
−0.883592 + 0.468257i \(0.844882\pi\)
\(360\) 0 0
\(361\) 0.362541 0.627940i 0.0190811 0.0330495i
\(362\) 0 0
\(363\) 10.0888i 0.529523i
\(364\) 0 0
\(365\) 1.41238 + 4.59698i 0.0739271 + 0.240617i
\(366\) 0 0
\(367\) −12.7749 7.37560i −0.666845 0.385003i 0.128035 0.991770i \(-0.459133\pi\)
−0.794880 + 0.606766i \(0.792466\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.1375 + 11.1066i 0.837815 + 0.576624i
\(372\) 0 0
\(373\) 4.86254 2.80739i 0.251773 0.145361i −0.368803 0.929508i \(-0.620232\pi\)
0.620576 + 0.784146i \(0.286899\pi\)
\(374\) 0 0
\(375\) −18.0498 + 7.01452i −0.932089 + 0.362228i
\(376\) 0 0
\(377\) 19.9474i 1.02734i
\(378\) 0 0
\(379\) −23.6495 −1.21479 −0.607397 0.794399i \(-0.707786\pi\)
−0.607397 + 0.794399i \(0.707786\pi\)
\(380\) 0 0
\(381\) −1.54983 + 2.68439i −0.0794004 + 0.137526i
\(382\) 0 0
\(383\) 17.3248 10.0025i 0.885253 0.511101i 0.0128665 0.999917i \(-0.495904\pi\)
0.872387 + 0.488816i \(0.162571\pi\)
\(384\) 0 0
\(385\) −13.1375 + 2.92248i −0.669547 + 0.148943i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.68729 + 4.65453i −0.136251 + 0.235994i −0.926075 0.377340i \(-0.876839\pi\)
0.789824 + 0.613334i \(0.210172\pi\)
\(390\) 0 0
\(391\) 4.27492 0.216192
\(392\) 0 0
\(393\) 31.6531i 1.59669i
\(394\) 0 0
\(395\) −0.137459 + 0.599168i −0.00691629 + 0.0301474i
\(396\) 0 0
\(397\) −13.1375 + 7.58492i −0.659350 + 0.380676i −0.792029 0.610483i \(-0.790975\pi\)
0.132679 + 0.991159i \(0.457642\pi\)
\(398\) 0 0
\(399\) 1.54983 19.5287i 0.0775888 0.977659i
\(400\) 0 0
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) 0 0
\(403\) −22.5498 13.0192i −1.12329 0.648530i
\(404\) 0 0
\(405\) −19.2371 + 5.91041i −0.955901 + 0.293691i
\(406\) 0 0
\(407\) 12.7732i 0.633142i
\(408\) 0 0
\(409\) 5.04983 8.74657i 0.249698 0.432490i −0.713744 0.700407i \(-0.753002\pi\)
0.963442 + 0.267917i \(0.0863352\pi\)
\(410\) 0 0
\(411\) −7.96221 13.7910i −0.392747 0.680258i
\(412\) 0 0
\(413\) −6.41238 + 9.31697i −0.315532 + 0.458458i
\(414\) 0 0
\(415\) 8.63746 9.28819i 0.423996 0.455940i
\(416\) 0 0
\(417\) −25.6495 14.8087i −1.25606 0.725187i
\(418\) 0 0
\(419\) −17.0997 −0.835373 −0.417687 0.908591i \(-0.637159\pi\)
−0.417687 + 0.908591i \(0.637159\pi\)
\(420\) 0 0
\(421\) 3.27492 0.159610 0.0798048 0.996811i \(-0.474570\pi\)
0.0798048 + 0.996811i \(0.474570\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.4124 + 21.4989i −0.505074 + 1.04285i
\(426\) 0 0
\(427\) 1.76287 + 3.70219i 0.0853114 + 0.179161i
\(428\) 0 0
\(429\) −12.0000 20.7846i −0.579365 1.00349i
\(430\) 0 0
\(431\) −9.68729 + 16.7789i −0.466620 + 0.808210i −0.999273 0.0381236i \(-0.987862\pi\)
0.532653 + 0.846334i \(0.321195\pi\)
\(432\) 0 0
\(433\) 26.8756i 1.29156i −0.763525 0.645778i \(-0.776533\pi\)
0.763525 0.645778i \(-0.223467\pi\)
\(434\) 0 0
\(435\) 3.72508 + 12.1244i 0.178604 + 0.581318i
\(436\) 0 0
\(437\) −3.31271 1.91259i −0.158468 0.0914917i
\(438\) 0 0
\(439\) 0.587624 + 1.01779i 0.0280458 + 0.0485767i 0.879708 0.475515i \(-0.157738\pi\)
−0.851662 + 0.524092i \(0.824405\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.5000 + 6.06218i −0.498870 + 0.288023i −0.728247 0.685315i \(-0.759665\pi\)
0.229377 + 0.973338i \(0.426331\pi\)
\(444\) 0 0
\(445\) −3.50000 + 15.2561i −0.165916 + 0.723211i
\(446\) 0 0
\(447\) 13.0767i 0.618507i
\(448\) 0 0
\(449\) 25.8248 1.21875 0.609373 0.792884i \(-0.291421\pi\)
0.609373 + 0.792884i \(0.291421\pi\)
\(450\) 0 0
\(451\) 12.8248 22.2131i 0.603894 1.04598i
\(452\) 0 0
\(453\) −30.4124 + 17.5586i −1.42890 + 0.824975i
\(454\) 0 0
\(455\) 26.5498 24.3638i 1.24468 1.14219i
\(456\) 0 0
\(457\) −17.6873 + 10.2118i −0.827377 + 0.477686i −0.852954 0.521987i \(-0.825191\pi\)
0.0255769 + 0.999673i \(0.491858\pi\)
\(458\) 0 0
\(459\) −12.4124 + 21.4989i −0.579360 + 1.00348i
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 6.50958i 0.302526i 0.988494 + 0.151263i \(0.0483340\pi\)
−0.988494 + 0.151263i \(0.951666\pi\)
\(464\) 0 0
\(465\) 16.1375 + 3.70219i 0.748357 + 0.171685i
\(466\) 0 0
\(467\) 16.5997 9.58382i 0.768141 0.443486i −0.0640700 0.997945i \(-0.520408\pi\)
0.832211 + 0.554459i \(0.187075\pi\)
\(468\) 0 0
\(469\) 30.3248 + 20.8709i 1.40027 + 0.963730i
\(470\) 0 0
\(471\) −9.41238 16.3027i −0.433699 0.751189i
\(472\) 0 0
\(473\) 12.8248 + 7.40437i 0.589683 + 0.340453i
\(474\) 0 0
\(475\) 17.6873 12.0014i 0.811549 0.550660i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.41238 + 11.1066i −0.292989 + 0.507472i −0.974515 0.224322i \(-0.927983\pi\)
0.681526 + 0.731794i \(0.261317\pi\)
\(480\) 0 0
\(481\) −17.0997 29.6175i −0.779678 1.35044i
\(482\) 0 0
\(483\) 4.08762 + 0.324401i 0.185993 + 0.0147608i
\(484\) 0 0
\(485\) 10.5498 11.3446i 0.479043 0.515134i
\(486\) 0 0
\(487\) 28.9622 + 16.7213i 1.31240 + 0.757716i 0.982494 0.186296i \(-0.0596485\pi\)
0.329909 + 0.944013i \(0.392982\pi\)
\(488\) 0 0
\(489\) 12.8248 0.579955
\(490\) 0 0
\(491\) −13.4502 −0.606997 −0.303499 0.952832i \(-0.598155\pi\)
−0.303499 + 0.952832i \(0.598155\pi\)
\(492\) 0 0
\(493\) 13.5498 + 7.82300i 0.610254 + 0.352330i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.8248 2.20822i −1.24811 0.0990523i
\(498\) 0 0
\(499\) 19.6873 + 34.0994i 0.881324 + 1.52650i 0.849869 + 0.526993i \(0.176681\pi\)
0.0314548 + 0.999505i \(0.489986\pi\)
\(500\) 0 0
\(501\) −10.9124 + 18.9008i −0.487529 + 0.844425i
\(502\) 0 0
\(503\) 16.1797i 0.721418i −0.932678 0.360709i \(-0.882535\pi\)
0.932678 0.360709i \(-0.117465\pi\)
\(504\) 0 0
\(505\) 3.31271 1.01779i 0.147414 0.0452913i
\(506\) 0 0
\(507\) 36.1495 + 20.8709i 1.60546 + 0.926910i
\(508\) 0 0
\(509\) −14.7749 25.5909i −0.654887 1.13430i −0.981922 0.189285i \(-0.939383\pi\)
0.327036 0.945012i \(-0.393950\pi\)
\(510\) 0 0
\(511\) 4.68729 + 3.22602i 0.207354 + 0.142711i
\(512\) 0 0
\(513\) 19.2371 11.1066i 0.849340 0.490367i
\(514\) 0 0
\(515\) −5.59967 1.28465i −0.246751 0.0566085i
\(516\) 0 0
\(517\) 4.89261i 0.215177i
\(518\) 0 0
\(519\) 32.4743 1.42546
\(520\) 0 0
\(521\) 6.41238 11.1066i 0.280931 0.486587i −0.690683 0.723158i \(-0.742690\pi\)
0.971614 + 0.236570i \(0.0760234\pi\)
\(522\) 0 0
\(523\) 10.1375 5.85286i 0.443280 0.255928i −0.261708 0.965147i \(-0.584286\pi\)
0.704988 + 0.709219i \(0.250952\pi\)
\(524\) 0 0
\(525\) −11.5876 + 19.7668i −0.505725 + 0.862695i
\(526\) 0 0
\(527\) 17.6873 10.2118i 0.770471 0.444831i
\(528\) 0 0
\(529\) −11.0997 + 19.2252i −0.482594 + 0.835878i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 68.6750i 2.97464i
\(534\) 0 0
\(535\) −30.3248 6.95698i −1.31105 0.300776i
\(536\) 0 0
\(537\) −0.412376 + 0.238085i −0.0177953 + 0.0102741i
\(538\) 0 0
\(539\) −10.0378 + 12.3624i −0.432358 + 0.532488i
\(540\) 0 0
\(541\) 1.22508 + 2.12191i 0.0526704 + 0.0912278i 0.891159 0.453692i \(-0.149893\pi\)
−0.838488 + 0.544920i \(0.816560\pi\)
\(542\) 0 0
\(543\) 25.0876 + 14.4843i 1.07661 + 0.621583i
\(544\) 0 0
\(545\) −7.58762 + 2.33122i −0.325018 + 0.0998585i
\(546\) 0 0
\(547\) 36.1271i 1.54468i −0.635208 0.772341i \(-0.719086\pi\)
0.635208 0.772341i \(-0.280914\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.00000 12.1244i −0.298210 0.516515i
\(552\) 0 0
\(553\) 0.312707 + 0.656712i 0.0132977 + 0.0279262i
\(554\) 0 0
\(555\) 15.9244 + 14.8087i 0.675954 + 0.628596i
\(556\) 0 0
\(557\) 4.86254 + 2.80739i 0.206032 + 0.118953i 0.599466 0.800400i \(-0.295380\pi\)
−0.393434 + 0.919353i \(0.628713\pi\)
\(558\) 0 0
\(559\) −39.6495 −1.67700
\(560\) 0 0
\(561\) 18.8248 0.794782
\(562\) 0 0
\(563\) −10.5997 6.11972i −0.446723 0.257916i 0.259722 0.965683i \(-0.416369\pi\)
−0.706445 + 0.707768i \(0.749702\pi\)
\(564\) 0 0
\(565\) 19.8248 21.3183i 0.834034 0.896869i
\(566\) 0 0
\(567\) −13.5000 + 19.6150i −0.566947 + 0.823754i
\(568\) 0 0
\(569\) −14.6873 25.4391i −0.615723 1.06646i −0.990257 0.139251i \(-0.955531\pi\)
0.374534 0.927213i \(-0.377803\pi\)
\(570\) 0 0
\(571\) 0.137459 0.238085i 0.00575246 0.00996356i −0.863135 0.504974i \(-0.831502\pi\)
0.868887 + 0.495010i \(0.164836\pi\)
\(572\) 0 0
\(573\) 39.5336i 1.65154i
\(574\) 0 0
\(575\) 2.51204 + 3.70219i 0.104760 + 0.154392i
\(576\) 0 0
\(577\) −7.13746 4.12081i −0.297136 0.171552i 0.344019 0.938963i \(-0.388211\pi\)
−0.641156 + 0.767411i \(0.721545\pi\)
\(578\) 0 0
\(579\) −7.96221 13.7910i −0.330898 0.573132i
\(580\) 0 0
\(581\) 1.18729 14.9605i 0.0492572 0.620667i
\(582\) 0 0
\(583\) 14.5876 8.42217i 0.604158 0.348811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.9715i 0.576665i 0.957530 + 0.288333i \(0.0931009\pi\)
−0.957530 + 0.288333i \(0.906899\pi\)
\(588\) 0 0
\(589\) −18.2749 −0.753005
\(590\) 0 0
\(591\) −22.5498 + 39.0575i −0.927576 + 1.60661i
\(592\) 0 0
\(593\) 17.5876 10.1542i 0.722237 0.416984i −0.0933384 0.995634i \(-0.529754\pi\)
0.815576 + 0.578651i \(0.196421\pi\)
\(594\) 0 0
\(595\) 6.13746 + 27.5898i 0.251611 + 1.13107i
\(596\) 0 0
\(597\) −14.5876 + 8.42217i −0.597032 + 0.344696i
\(598\) 0 0
\(599\) −1.13746 + 1.97014i −0.0464753 + 0.0804976i −0.888327 0.459211i \(-0.848132\pi\)
0.841852 + 0.539709i \(0.181466\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.91238 12.6948i 0.118405 0.516115i
\(606\) 0 0
\(607\) 27.8746 16.0934i 1.13139 0.653211i 0.187109 0.982339i \(-0.440088\pi\)
0.944285 + 0.329128i \(0.106755\pi\)
\(608\) 0 0
\(609\) 12.3625 + 8.50848i 0.500955 + 0.344781i
\(610\) 0 0
\(611\) 6.54983 + 11.3446i 0.264978 + 0.458955i
\(612\) 0 0
\(613\) −32.0619 18.5109i −1.29497 0.747650i −0.315437 0.948947i \(-0.602151\pi\)
−0.979530 + 0.201297i \(0.935484\pi\)
\(614\) 0 0
\(615\) −12.8248 41.7419i −0.517144 1.68319i
\(616\) 0 0
\(617\) 3.57919i 0.144093i −0.997401 0.0720464i \(-0.977047\pi\)
0.997401 0.0720464i \(-0.0229530\pi\)
\(618\) 0 0
\(619\) 21.9622 38.0397i 0.882736 1.52894i 0.0344487 0.999406i \(-0.489032\pi\)
0.848287 0.529537i \(-0.177634\pi\)
\(620\) 0 0
\(621\) 2.32475 + 4.02659i 0.0932891 + 0.161581i
\(622\) 0 0
\(623\) 7.96221 + 16.7213i 0.318999 + 0.669926i
\(624\) 0 0
\(625\) −24.7371 + 3.61587i −0.989485 + 0.144635i
\(626\) 0 0
\(627\) −14.5876 8.42217i −0.582574 0.336349i
\(628\) 0 0
\(629\) 26.8248 1.06957
\(630\) 0 0
\(631\) 2.90033 0.115460 0.0577302 0.998332i \(-0.481614\pi\)
0.0577302 + 0.998332i \(0.481614\pi\)
\(632\) 0 0
\(633\) 29.4743 + 17.0170i 1.17150 + 0.676364i
\(634\) 0 0
\(635\) −2.72508 + 2.93039i −0.108142 + 0.116289i
\(636\) 0 0
\(637\) 6.72508 42.1029i 0.266457 1.66818i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.0498 + 24.3350i −0.554935 + 0.961176i 0.442973 + 0.896535i \(0.353924\pi\)
−0.997909 + 0.0646411i \(0.979410\pi\)
\(642\) 0 0
\(643\) 38.3353i 1.51180i 0.654689 + 0.755898i \(0.272800\pi\)
−0.654689 + 0.755898i \(0.727200\pi\)
\(644\) 0 0
\(645\) 24.0997 7.40437i 0.948924 0.291547i
\(646\) 0 0
\(647\) 0.675248 + 0.389855i 0.0265468 + 0.0153268i 0.513215 0.858260i \(-0.328454\pi\)
−0.486668 + 0.873587i \(0.661788\pi\)
\(648\) 0 0
\(649\) 4.86254 + 8.42217i 0.190871 + 0.330599i
\(650\) 0 0
\(651\) 17.6873 8.42217i 0.693220 0.330091i
\(652\) 0 0
\(653\) −32.0619 + 18.5109i −1.25468 + 0.724389i −0.972035 0.234836i \(-0.924545\pi\)
−0.282643 + 0.959225i \(0.591211\pi\)
\(654\) 0 0
\(655\) 9.13746 39.8293i 0.357030 1.55626i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25.4502 0.991398 0.495699 0.868494i \(-0.334912\pi\)
0.495699 + 0.868494i \(0.334912\pi\)
\(660\) 0 0
\(661\) 7.77492 13.4666i 0.302409 0.523788i −0.674272 0.738483i \(-0.735542\pi\)
0.976681 + 0.214695i \(0.0688758\pi\)
\(662\) 0 0
\(663\) −43.6495 + 25.2011i −1.69521 + 0.978728i
\(664\) 0 0
\(665\) 7.58762 24.1257i 0.294235 0.935555i
\(666\) 0 0
\(667\) 2.53779 1.46519i 0.0982636 0.0567325i
\(668\) 0 0
\(669\) 7.54983 13.0767i 0.291893 0.505574i
\(670\) 0 0
\(671\) 3.52575 0.136110
\(672\) 0 0
\(673\) 3.57919i 0.137968i 0.997618 + 0.0689838i \(0.0219757\pi\)
−0.997618 + 0.0689838i \(0.978024\pi\)
\(674\) 0 0
\(675\) −25.9124 + 1.88382i −0.997368 + 0.0725083i
\(676\) 0 0
\(677\) −21.3127 + 12.3049i −0.819114 + 0.472916i −0.850111 0.526604i \(-0.823465\pi\)
0.0309969 + 0.999519i \(0.490132\pi\)
\(678\) 0 0
\(679\) 1.45017 18.2728i 0.0556522 0.701248i
\(680\) 0 0
\(681\) 5.58762 + 9.67805i 0.214118 + 0.370864i
\(682\) 0 0
\(683\) 13.5997 + 7.85177i 0.520377 + 0.300440i 0.737089 0.675796i \(-0.236200\pi\)
−0.216712 + 0.976236i \(0.569533\pi\)
\(684\) 0 0
\(685\) −6.03779 19.6517i −0.230692 0.750854i
\(686\) 0 0
\(687\) 7.40437i 0.282494i
\(688\) 0 0
\(689\) −22.5498 + 39.0575i −0.859080 + 1.48797i
\(690\) 0 0
\(691\) 3.68729 + 6.38658i 0.140271 + 0.242957i 0.927599 0.373578i \(-0.121869\pi\)
−0.787327 + 0.616535i \(0.788536\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.0000 26.0383i −1.06210 0.987689i
\(696\) 0 0
\(697\) −46.6495 26.9331i −1.76698 1.02016i
\(698\) 0 0
\(699\) −32.2749 −1.22075
\(700\) 0 0
\(701\) −13.8248 −0.522154 −0.261077 0.965318i \(-0.584078\pi\)
−0.261077 + 0.965318i \(0.584078\pi\)
\(702\) 0 0
\(703\) −20.7870 12.0014i −0.783995 0.452640i
\(704\) 0 0
\(705\) −6.09967 5.67232i −0.229727 0.213632i
\(706\) 0 0
\(707\) 2.32475 3.37779i 0.0874313 0.127035i
\(708\) 0 0
\(709\) −12.7749 22.1268i −0.479772 0.830990i 0.519959 0.854191i \(-0.325947\pi\)
−0.999731 + 0.0232018i \(0.992614\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.82518i 0.143254i
\(714\) 0 0
\(715\) −9.09967 29.6175i −0.340308 1.10763i
\(716\) 0 0
\(717\) −21.8248 12.6005i −0.815060 0.470575i
\(718\) 0 0
\(719\) 3.68729 + 6.38658i 0.137513 + 0.238179i 0.926555 0.376160i \(-0.122756\pi\)
−0.789042 + 0.614340i \(0.789423\pi\)
\(720\) 0 0
\(721\) −6.13746 + 2.92248i −0.228571 + 0.108839i
\(722\) 0 0
\(723\) −19.2371 + 11.1066i −0.715436 + 0.413057i
\(724\) 0 0
\(725\) 1.18729 + 16.3315i 0.0440950 + 0.606536i
\(726\) 0 0
\(727\) 18.6915i 0.693228i 0.938008 + 0.346614i \(0.112669\pi\)
−0.938008 + 0.346614i \(0.887331\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 15.5498 26.9331i 0.575131 0.996157i
\(732\) 0 0
\(733\) 28.8625 16.6638i 1.06606 0.615491i 0.138959 0.990298i \(-0.455624\pi\)
0.927103 + 0.374807i \(0.122291\pi\)
\(734\) 0 0
\(735\) 3.77492 + 26.8468i 0.139240 + 0.990259i
\(736\) 0 0
\(737\) 27.4124 15.8265i 1.00975 0.582978i
\(738\) 0 0
\(739\) 15.9622 27.6474i 0.587179 1.01702i −0.407420 0.913241i \(-0.633572\pi\)
0.994600 0.103784i \(-0.0330950\pi\)
\(740\) 0 0
\(741\) 45.0997 1.65678
\(742\) 0 0
\(743\) 19.5287i 0.716440i −0.933637 0.358220i \(-0.883384\pi\)
0.933637 0.358220i \(-0.116616\pi\)
\(744\) 0 0
\(745\) 3.77492 16.4545i 0.138302 0.602846i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −33.2371 + 15.8265i −1.21446 + 0.578289i
\(750\) 0 0
\(751\) 11.1375 + 19.2906i 0.406412 + 0.703926i 0.994485 0.104882i \(-0.0334466\pi\)
−0.588073 + 0.808808i \(0.700113\pi\)
\(752\) 0 0
\(753\) 8.17525 + 4.71998i 0.297923 + 0.172006i
\(754\) 0 0
\(755\) −43.3368 + 13.3148i −1.57719 + 0.484575i
\(756\) 0 0
\(757\) 9.43996i 0.343101i −0.985175 0.171551i \(-0.945122\pi\)
0.985175 0.171551i \(-0.0548777\pi\)
\(758\) 0 0
\(759\) 1.76287 3.05338i 0.0639882 0.110831i
\(760\) 0 0
\(761\) 14.9622 + 25.9153i 0.542380 + 0.939429i 0.998767 + 0.0496479i \(0.0158099\pi\)
−0.456387 + 0.889781i \(0.650857\pi\)
\(762\) 0 0
\(763\) −5.32475 + 7.73668i −0.192769 + 0.280087i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.5498 13.0192i −0.814227 0.470094i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) −42.8248 −1.54230
\(772\) 0 0
\(773\) 23.5876 + 13.6183i 0.848388 + 0.489817i 0.860107 0.510114i \(-0.170397\pi\)
−0.0117187 + 0.999931i \(0.503730\pi\)
\(774\) 0 0
\(775\) 19.2371 + 9.31697i 0.691018 + 0.334675i
\(776\) 0 0
\(777\) 25.6495 + 2.03559i 0.920171 + 0.0730264i
\(778\) 0 0
\(779\) 24.0997 + 41.7419i 0.863460 + 1.49556i
\(780\) 0 0
\(781\) −12.0000 + 20.7846i −0.429394 + 0.743732i
\(782\) 0 0
\(783\) 17.0170i 0.608137i
\(784\) 0 0
\(785\) −7.13746 23.2309i −0.254747 0.829147i
\(786\) 0 0
\(787\) −1.50000 0.866025i −0.0534692 0.0308705i 0.473027 0.881048i \(-0.343161\pi\)
−0.526496 + 0.850177i \(0.676495\pi\)
\(788\) 0 0
\(789\) 23.3248 + 40.3997i 0.830383 + 1.43827i
\(790\) 0 0
\(791\) 2.72508 34.3375i 0.0968928 1.22090i
\(792\) 0 0
\(793\) −8.17525 + 4.71998i −0.290312 + 0.167611i
\(794\) 0