Newspace parameters
| Level: | \( N \) | \(=\) | \( 140 = 2^{2} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 140.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(1.11790562830\) |
| Analytic rank: | \(0\) |
| Dimension: | \(36\) |
| Relative dimension: | \(18\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 43.1 | −1.38250 | − | 0.297828i | −0.137886 | + | 0.137886i | 1.82260 | + | 0.823494i | −0.499053 | + | 2.17967i | 0.231693 | − | 0.149560i | −0.707107 | − | 0.707107i | −2.27447 | − | 1.68130i | 2.96198i | 1.33911 | − | 2.86475i | ||
| 43.2 | −1.36728 | + | 0.361308i | −1.26588 | + | 1.26588i | 1.73891 | − | 0.988019i | 1.96164 | − | 1.07330i | 1.27344 | − | 2.18818i | 0.707107 | + | 0.707107i | −2.02060 | + | 1.97918i | − | 0.204893i | −2.29431 | + | 2.17626i | |
| 43.3 | −1.25629 | + | 0.649412i | 2.28163 | − | 2.28163i | 1.15653 | − | 1.63170i | 0.0430826 | + | 2.23565i | −1.38467 | + | 4.34811i | 0.707107 | + | 0.707107i | −0.393286 | + | 2.80095i | − | 7.41170i | −1.50599 | − | 2.78065i | |
| 43.4 | −1.16481 | − | 0.802007i | −1.75731 | + | 1.75731i | 0.713568 | + | 1.86837i | −0.854664 | − | 2.06629i | 3.45630 | − | 0.637557i | −0.707107 | − | 0.707107i | 0.667278 | − | 2.74859i | − | 3.17626i | −0.661657 | + | 3.09228i | |
| 43.5 | −1.08834 | − | 0.903055i | 1.00798 | − | 1.00798i | 0.368985 | + | 1.96567i | 2.21855 | − | 0.279354i | −2.00729 | + | 0.186768i | 0.707107 | + | 0.707107i | 1.37352 | − | 2.47254i | 0.967954i | −2.66682 | − | 1.69944i | ||
| 43.6 | −0.649412 | + | 1.25629i | −2.28163 | + | 2.28163i | −1.15653 | − | 1.63170i | 0.0430826 | + | 2.23565i | −1.38467 | − | 4.34811i | −0.707107 | − | 0.707107i | 2.80095 | − | 0.393286i | − | 7.41170i | −2.83661 | − | 1.39774i | |
| 43.7 | −0.622342 | − | 1.26992i | 2.09607 | − | 2.09607i | −1.22538 | + | 1.58065i | −2.14272 | − | 0.639344i | −3.96631 | − | 1.35737i | −0.707107 | − | 0.707107i | 2.76990 | + | 0.572433i | − | 5.78704i | 0.521588 | + | 3.11897i | |
| 43.8 | −0.396294 | − | 1.35755i | −0.945787 | + | 0.945787i | −1.68590 | + | 1.07598i | −1.94751 | + | 1.09873i | 1.65877 | + | 0.909146i | 0.707107 | + | 0.707107i | 2.12881 | + | 1.86230i | 1.21097i | 2.26337 | + | 2.20843i | ||
| 43.9 | −0.361308 | + | 1.36728i | 1.26588 | − | 1.26588i | −1.73891 | − | 0.988019i | 1.96164 | − | 1.07330i | 1.27344 | + | 2.18818i | −0.707107 | − | 0.707107i | 1.97918 | − | 2.02060i | − | 0.204893i | 0.758752 | + | 3.06990i | |
| 43.10 | 0.297828 | + | 1.38250i | 0.137886 | − | 0.137886i | −1.82260 | + | 0.823494i | −0.499053 | + | 2.17967i | 0.231693 | + | 0.149560i | 0.707107 | + | 0.707107i | −1.68130 | − | 2.27447i | 2.96198i | −3.16201 | − | 0.0407730i | ||
| 43.11 | 0.447909 | − | 1.34141i | 0.396892 | − | 0.396892i | −1.59875 | − | 1.20166i | −0.137858 | − | 2.23181i | −0.354623 | − | 0.710167i | 0.707107 | + | 0.707107i | −2.32801 | + | 1.60635i | 2.68495i | −3.05552 | − | 0.814726i | ||
| 43.12 | 0.578354 | − | 1.29055i | 1.27396 | − | 1.27396i | −1.33101 | − | 1.49278i | 1.35854 | + | 1.77606i | −0.907305 | − | 2.38090i | −0.707107 | − | 0.707107i | −2.69630 | + | 0.854378i | − | 0.245954i | 3.07780 | − | 0.726061i | |
| 43.13 | 0.802007 | + | 1.16481i | 1.75731 | − | 1.75731i | −0.713568 | + | 1.86837i | −0.854664 | − | 2.06629i | 3.45630 | + | 0.637557i | 0.707107 | + | 0.707107i | −2.74859 | + | 0.667278i | − | 3.17626i | 1.72139 | − | 2.65270i | |
| 43.14 | 0.903055 | + | 1.08834i | −1.00798 | + | 1.00798i | −0.368985 | + | 1.96567i | 2.21855 | − | 0.279354i | −2.00729 | − | 0.186768i | −0.707107 | − | 0.707107i | −2.47254 | + | 1.37352i | 0.967954i | 2.30750 | + | 2.16227i | ||
| 43.15 | 1.26992 | + | 0.622342i | −2.09607 | + | 2.09607i | 1.22538 | + | 1.58065i | −2.14272 | − | 0.639344i | −3.96631 | + | 1.35737i | 0.707107 | + | 0.707107i | 0.572433 | + | 2.76990i | − | 5.78704i | −2.32318 | − | 2.14542i | |
| 43.16 | 1.29055 | − | 0.578354i | −1.27396 | + | 1.27396i | 1.33101 | − | 1.49278i | 1.35854 | + | 1.77606i | −0.907305 | + | 2.38090i | 0.707107 | + | 0.707107i | 0.854378 | − | 2.69630i | − | 0.245954i | 2.78044 | + | 1.50637i | |
| 43.17 | 1.34141 | − | 0.447909i | −0.396892 | + | 0.396892i | 1.59875 | − | 1.20166i | −0.137858 | − | 2.23181i | −0.354623 | + | 0.710167i | −0.707107 | − | 0.707107i | 1.60635 | − | 2.32801i | 2.68495i | −1.18457 | − | 2.93203i | ||
| 43.18 | 1.35755 | + | 0.396294i | 0.945787 | − | 0.945787i | 1.68590 | + | 1.07598i | −1.94751 | + | 1.09873i | 1.65877 | − | 0.909146i | −0.707107 | − | 0.707107i | 1.86230 | + | 2.12881i | 1.21097i | −3.07927 | + | 0.719794i | ||
| 127.1 | −1.38250 | + | 0.297828i | −0.137886 | − | 0.137886i | 1.82260 | − | 0.823494i | −0.499053 | − | 2.17967i | 0.231693 | + | 0.149560i | −0.707107 | + | 0.707107i | −2.27447 | + | 1.68130i | − | 2.96198i | 1.33911 | + | 2.86475i | |
| 127.2 | −1.36728 | − | 0.361308i | −1.26588 | − | 1.26588i | 1.73891 | + | 0.988019i | 1.96164 | + | 1.07330i | 1.27344 | + | 2.18818i | 0.707107 | − | 0.707107i | −2.02060 | − | 1.97918i | 0.204893i | −2.29431 | − | 2.17626i | ||
| See all 36 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 4.b | odd | 2 | 1 | inner |
| 5.c | odd | 4 | 1 | inner |
| 20.e | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 140.2.k.a | ✓ | 36 |
| 4.b | odd | 2 | 1 | inner | 140.2.k.a | ✓ | 36 |
| 5.b | even | 2 | 1 | 700.2.k.b | 36 | ||
| 5.c | odd | 4 | 1 | inner | 140.2.k.a | ✓ | 36 |
| 5.c | odd | 4 | 1 | 700.2.k.b | 36 | ||
| 7.b | odd | 2 | 1 | 980.2.k.l | 36 | ||
| 7.c | even | 3 | 2 | 980.2.x.k | 72 | ||
| 7.d | odd | 6 | 2 | 980.2.x.l | 72 | ||
| 20.d | odd | 2 | 1 | 700.2.k.b | 36 | ||
| 20.e | even | 4 | 1 | inner | 140.2.k.a | ✓ | 36 |
| 20.e | even | 4 | 1 | 700.2.k.b | 36 | ||
| 28.d | even | 2 | 1 | 980.2.k.l | 36 | ||
| 28.f | even | 6 | 2 | 980.2.x.l | 72 | ||
| 28.g | odd | 6 | 2 | 980.2.x.k | 72 | ||
| 35.f | even | 4 | 1 | 980.2.k.l | 36 | ||
| 35.k | even | 12 | 2 | 980.2.x.l | 72 | ||
| 35.l | odd | 12 | 2 | 980.2.x.k | 72 | ||
| 140.j | odd | 4 | 1 | 980.2.k.l | 36 | ||
| 140.w | even | 12 | 2 | 980.2.x.k | 72 | ||
| 140.x | odd | 12 | 2 | 980.2.x.l | 72 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 140.2.k.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
| 140.2.k.a | ✓ | 36 | 4.b | odd | 2 | 1 | inner |
| 140.2.k.a | ✓ | 36 | 5.c | odd | 4 | 1 | inner |
| 140.2.k.a | ✓ | 36 | 20.e | even | 4 | 1 | inner |
| 700.2.k.b | 36 | 5.b | even | 2 | 1 | ||
| 700.2.k.b | 36 | 5.c | odd | 4 | 1 | ||
| 700.2.k.b | 36 | 20.d | odd | 2 | 1 | ||
| 700.2.k.b | 36 | 20.e | even | 4 | 1 | ||
| 980.2.k.l | 36 | 7.b | odd | 2 | 1 | ||
| 980.2.k.l | 36 | 28.d | even | 2 | 1 | ||
| 980.2.k.l | 36 | 35.f | even | 4 | 1 | ||
| 980.2.k.l | 36 | 140.j | odd | 4 | 1 | ||
| 980.2.x.k | 72 | 7.c | even | 3 | 2 | ||
| 980.2.x.k | 72 | 28.g | odd | 6 | 2 | ||
| 980.2.x.k | 72 | 35.l | odd | 12 | 2 | ||
| 980.2.x.k | 72 | 140.w | even | 12 | 2 | ||
| 980.2.x.l | 72 | 7.d | odd | 6 | 2 | ||
| 980.2.x.l | 72 | 28.f | even | 6 | 2 | ||
| 980.2.x.l | 72 | 35.k | even | 12 | 2 | ||
| 980.2.x.l | 72 | 140.x | odd | 12 | 2 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(140, [\chi])\).