Properties

 Label 140.2.g.b Level $140$ Weight $2$ Character orbit 140.g Analytic conductor $1.118$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [140,2,Mod(111,140)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(140, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([1, 0, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("140.111");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$140 = 2^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 140.g (of order $$2$$, degree $$1$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.11790562830$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - x^{2} + 1$$ x^4 - x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta_{2} - \beta_1) q^{2} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{3} + (\beta_{3} + \beta_1) q^{4} - \beta_{2} q^{5} + (\beta_{3} + \beta_{2} + 2) q^{6} + ( - \beta_{3} + 3 \beta_{2} - \beta_1) q^{7} + ( - 2 \beta_{2} - 2) q^{8}+O(q^{10})$$ q + (b2 - b1) * q^2 + (-b3 + b2 - b1) * q^3 + (b3 + b1) * q^4 - b2 * q^5 + (b3 + b2 + 2) * q^6 + (-b3 + 3*b2 - b1) * q^7 + (-2*b2 - 2) * q^8 $$q + (\beta_{2} - \beta_1) q^{2} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{3} + (\beta_{3} + \beta_1) q^{4} - \beta_{2} q^{5} + (\beta_{3} + \beta_{2} + 2) q^{6} + ( - \beta_{3} + 3 \beta_{2} - \beta_1) q^{7} + ( - 2 \beta_{2} - 2) q^{8} + ( - \beta_{3} + \beta_{2}) q^{10} + ( - \beta_{3} + 2 \beta_{2} + \beta_1 - 1) q^{11} + (\beta_{3} - \beta_1 - 2) q^{12} + ( - 2 \beta_{3} + 3 \beta_{2} + \cdots - 2) q^{13}+ \cdots + (3 \beta_{2} + 5 \beta_1 - 8) q^{98}+O(q^{100})$$ q + (b2 - b1) * q^2 + (-b3 + b2 - b1) * q^3 + (b3 + b1) * q^4 - b2 * q^5 + (b3 + b2 + 2) * q^6 + (-b3 + 3*b2 - b1) * q^7 + (-2*b2 - 2) * q^8 + (-b3 + b2) * q^10 + (-b3 + 2*b2 + b1 - 1) * q^11 + (b3 - b1 - 2) * q^12 + (-2*b3 + 3*b2 + 2*b1 - 2) * q^13 + (3*b3 - b2 + 2) * q^14 + (-b3 + b1 - 1) * q^15 + (-2*b3 + 2*b1) * q^16 + (-2*b3 - 3*b2 + 2*b1 - 2) * q^17 - 6 * q^19 + (b3 - b1 + 2) * q^20 + (2*b3 - 2*b1 + 5) * q^21 + (2*b3 - 3*b2 - b1 + 2) * q^22 + (2*b3 - 2*b2 - 2*b1 + 2) * q^23 + (-2*b2 + 4*b1 - 2) * q^24 - q^25 + (3*b3 - 5*b2 - 2*b1 + 4) * q^26 + (3*b3 - 3*b2 + 3*b1) * q^27 + (-b3 + b1 - 6) * q^28 + (-4*b3 + 4*b2 - 4*b1 + 1) * q^29 + (-b2 - b1 + 2) * q^30 + 6 * q^31 + (-4*b1 + 4) * q^32 + (2*b3 - 3*b2 - 2*b1 + 2) * q^33 + (-3*b3 + b2 - 2*b1 + 4) * q^34 + (-b3 + b1 + 1) * q^35 + (2*b3 - 2*b2 + 2*b1 - 6) * q^37 + (-6*b2 + 6*b1) * q^38 + (3*b3 - 6*b2 - 3*b1 + 3) * q^39 + (2*b2 - 2) * q^40 + (-2*b3 + 2*b1 - 2) * q^41 + (5*b2 - b1 - 4) * q^42 + 2*b2 * q^43 + (-3*b3 + 4*b2 + b1 - 4) * q^44 + (-2*b3 + 4*b2 + 2*b1 - 4) * q^46 + (b3 - b2 + b1) * q^47 + (-2*b3 - 4*b2 - 2*b1) * q^48 + (4*b3 - 4*b1 + 3) * q^49 + (-b2 + b1) * q^50 + (-3*b3 - 6*b2 + 3*b1 - 3) * q^51 + (-5*b3 + 8*b2 + b1 - 6) * q^52 + 2 * q^53 + (-3*b3 - 3*b2 - 6) * q^54 + (b3 - b2 + b1 + 2) * q^55 + (-6*b2 + 4*b1 + 2) * q^56 + (6*b3 - 6*b2 + 6*b1) * q^57 + (4*b3 + 5*b2 - b1 + 8) * q^58 + (-2*b3 + 2*b2 - 2*b1) * q^59 + (-b3 + 4*b2 - b1) * q^60 + (2*b3 + 6*b2 - 2*b1 + 2) * q^61 + (6*b2 - 6*b1) * q^62 + 8*b2 * q^64 + (2*b3 - 2*b2 + 2*b1 + 3) * q^65 + (-3*b3 + 5*b2 + 2*b1 - 4) * q^66 + (-2*b3 + 2*b1 - 2) * q^67 + (b3 + 8*b2 - 5*b1 + 6) * q^68 + (-2*b3 + 6*b2 + 2*b1 - 2) * q^69 + (b2 - 3*b1 + 2) * q^70 + (2*b3 + 4*b2 - 2*b1 + 2) * q^71 + (4*b3 + 6*b2 - 4*b1 + 4) * q^73 + (-2*b3 - 8*b2 + 6*b1 - 4) * q^74 + (b3 - b2 + b1) * q^75 + (-6*b3 - 6*b1) * q^76 + (-b2 - 4*b1 - 2) * q^77 + (-6*b3 + 9*b2 + 3*b1 - 6) * q^78 + (5*b3 + 6*b2 - 5*b1 + 5) * q^79 + (2*b3 - 4*b2 + 2*b1) * q^80 - 9 * q^81 + (-2*b2 - 2*b1 + 4) * q^82 + (2*b3 - 2*b2 + 2*b1 - 12) * q^83 + (5*b3 - 8*b2 + 5*b1) * q^84 + (2*b3 - 2*b2 + 2*b1 - 3) * q^85 + (2*b3 - 2*b2) * q^86 + (-b3 + b2 - b1 + 12) * q^87 + (4*b3 - 6*b2 + 6) * q^88 + (-2*b3 + 6*b2 + 2*b1 - 2) * q^89 + (-b3 - 2*b2 - 7*b1 - 3) * q^91 + (4*b3 - 8*b2 + 4) * q^92 + (-6*b3 + 6*b2 - 6*b1) * q^93 + (-b3 - b2 - 2) * q^94 + 6*b2 * q^95 + (-4*b3 + 8*b2 + 4) * q^96 + (-6*b3 - 3*b2 + 6*b1 - 6) * q^97 + (3*b2 + 5*b1 - 8) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 2 q^{2} + 6 q^{6} - 8 q^{8}+O(q^{10})$$ 4 * q - 2 * q^2 + 6 * q^6 - 8 * q^8 $$4 q - 2 q^{2} + 6 q^{6} - 8 q^{8} + 2 q^{10} - 12 q^{12} + 2 q^{14} + 8 q^{16} - 24 q^{19} + 4 q^{20} + 12 q^{21} + 2 q^{22} - 4 q^{25} + 6 q^{26} - 20 q^{28} + 4 q^{29} + 6 q^{30} + 24 q^{31} + 8 q^{32} + 18 q^{34} + 8 q^{35} - 24 q^{37} + 12 q^{38} - 8 q^{40} - 18 q^{42} - 8 q^{44} - 8 q^{46} - 4 q^{49} + 2 q^{50} - 12 q^{52} + 8 q^{53} - 18 q^{54} + 8 q^{55} + 16 q^{56} + 22 q^{58} - 12 q^{62} + 12 q^{65} - 6 q^{66} + 12 q^{68} + 2 q^{70} - 16 q^{77} - 6 q^{78} - 36 q^{81} + 12 q^{82} - 48 q^{83} - 12 q^{85} - 4 q^{86} + 48 q^{87} + 16 q^{88} - 24 q^{91} + 8 q^{92} - 6 q^{94} + 24 q^{96} - 22 q^{98}+O(q^{100})$$ 4 * q - 2 * q^2 + 6 * q^6 - 8 * q^8 + 2 * q^10 - 12 * q^12 + 2 * q^14 + 8 * q^16 - 24 * q^19 + 4 * q^20 + 12 * q^21 + 2 * q^22 - 4 * q^25 + 6 * q^26 - 20 * q^28 + 4 * q^29 + 6 * q^30 + 24 * q^31 + 8 * q^32 + 18 * q^34 + 8 * q^35 - 24 * q^37 + 12 * q^38 - 8 * q^40 - 18 * q^42 - 8 * q^44 - 8 * q^46 - 4 * q^49 + 2 * q^50 - 12 * q^52 + 8 * q^53 - 18 * q^54 + 8 * q^55 + 16 * q^56 + 22 * q^58 - 12 * q^62 + 12 * q^65 - 6 * q^66 + 12 * q^68 + 2 * q^70 - 16 * q^77 - 6 * q^78 - 36 * q^81 + 12 * q^82 - 48 * q^83 - 12 * q^85 - 4 * q^86 + 48 * q^87 + 16 * q^88 - 24 * q^91 + 8 * q^92 - 6 * q^94 + 24 * q^96 - 22 * q^98

Basis of coefficient ring

 $$\beta_{1}$$ $$=$$ $$\zeta_{12}^{2} + \zeta_{12}$$ v^2 + v $$\beta_{2}$$ $$=$$ $$\zeta_{12}^{3}$$ v^3 $$\beta_{3}$$ $$=$$ $$-\zeta_{12}^{2} + \zeta_{12}$$ -v^2 + v
 $$\zeta_{12}$$ $$=$$ $$( \beta_{3} + \beta_1 ) / 2$$ (b3 + b1) / 2 $$\zeta_{12}^{2}$$ $$=$$ $$( -\beta_{3} + \beta_1 ) / 2$$ (-b3 + b1) / 2 $$\zeta_{12}^{3}$$ $$=$$ $$\beta_{2}$$ b2

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/140\mathbb{Z}\right)^\times$$.

 $$n$$ $$57$$ $$71$$ $$101$$ $$\chi(n)$$ $$1$$ $$-1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
111.1
 0.866025 + 0.500000i 0.866025 − 0.500000i −0.866025 − 0.500000i −0.866025 + 0.500000i
−1.36603 0.366025i −1.73205 1.73205 + 1.00000i 1.00000i 2.36603 + 0.633975i −1.73205 + 2.00000i −2.00000 2.00000i 0 −0.366025 + 1.36603i
111.2 −1.36603 + 0.366025i −1.73205 1.73205 1.00000i 1.00000i 2.36603 0.633975i −1.73205 2.00000i −2.00000 + 2.00000i 0 −0.366025 1.36603i
111.3 0.366025 1.36603i 1.73205 −1.73205 1.00000i 1.00000i 0.633975 2.36603i 1.73205 2.00000i −2.00000 + 2.00000i 0 1.36603 + 0.366025i
111.4 0.366025 + 1.36603i 1.73205 −1.73205 + 1.00000i 1.00000i 0.633975 + 2.36603i 1.73205 + 2.00000i −2.00000 2.00000i 0 1.36603 0.366025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.2.g.b yes 4
3.b odd 2 1 1260.2.c.b 4
4.b odd 2 1 140.2.g.a 4
5.b even 2 1 700.2.g.g 4
5.c odd 4 1 700.2.c.c 4
5.c odd 4 1 700.2.c.f 4
7.b odd 2 1 140.2.g.a 4
7.c even 3 1 980.2.o.b 4
7.c even 3 1 980.2.o.d 4
7.d odd 6 1 980.2.o.a 4
7.d odd 6 1 980.2.o.c 4
8.b even 2 1 2240.2.k.b 4
8.d odd 2 1 2240.2.k.a 4
12.b even 2 1 1260.2.c.a 4
20.d odd 2 1 700.2.g.f 4
20.e even 4 1 700.2.c.b 4
20.e even 4 1 700.2.c.e 4
21.c even 2 1 1260.2.c.a 4
28.d even 2 1 inner 140.2.g.b yes 4
28.f even 6 1 980.2.o.b 4
28.f even 6 1 980.2.o.d 4
28.g odd 6 1 980.2.o.a 4
28.g odd 6 1 980.2.o.c 4
35.c odd 2 1 700.2.g.f 4
35.f even 4 1 700.2.c.b 4
35.f even 4 1 700.2.c.e 4
56.e even 2 1 2240.2.k.b 4
56.h odd 2 1 2240.2.k.a 4
84.h odd 2 1 1260.2.c.b 4
140.c even 2 1 700.2.g.g 4
140.j odd 4 1 700.2.c.c 4
140.j odd 4 1 700.2.c.f 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.g.a 4 4.b odd 2 1
140.2.g.a 4 7.b odd 2 1
140.2.g.b yes 4 1.a even 1 1 trivial
140.2.g.b yes 4 28.d even 2 1 inner
700.2.c.b 4 20.e even 4 1
700.2.c.b 4 35.f even 4 1
700.2.c.c 4 5.c odd 4 1
700.2.c.c 4 140.j odd 4 1
700.2.c.e 4 20.e even 4 1
700.2.c.e 4 35.f even 4 1
700.2.c.f 4 5.c odd 4 1
700.2.c.f 4 140.j odd 4 1
700.2.g.f 4 20.d odd 2 1
700.2.g.f 4 35.c odd 2 1
700.2.g.g 4 5.b even 2 1
700.2.g.g 4 140.c even 2 1
980.2.o.a 4 7.d odd 6 1
980.2.o.a 4 28.g odd 6 1
980.2.o.b 4 7.c even 3 1
980.2.o.b 4 28.f even 6 1
980.2.o.c 4 7.d odd 6 1
980.2.o.c 4 28.g odd 6 1
980.2.o.d 4 7.c even 3 1
980.2.o.d 4 28.f even 6 1
1260.2.c.a 4 12.b even 2 1
1260.2.c.a 4 21.c even 2 1
1260.2.c.b 4 3.b odd 2 1
1260.2.c.b 4 84.h odd 2 1
2240.2.k.a 4 8.d odd 2 1
2240.2.k.a 4 56.h odd 2 1
2240.2.k.b 4 8.b even 2 1
2240.2.k.b 4 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(140, [\chi])$$:

 $$T_{3}^{2} - 3$$ T3^2 - 3 $$T_{19} + 6$$ T19 + 6

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4} + 2 T^{3} + \cdots + 4$$
$3$ $$(T^{2} - 3)^{2}$$
$5$ $$(T^{2} + 1)^{2}$$
$7$ $$T^{4} + 2T^{2} + 49$$
$11$ $$T^{4} + 14T^{2} + 1$$
$13$ $$T^{4} + 42T^{2} + 9$$
$17$ $$T^{4} + 42T^{2} + 9$$
$19$ $$(T + 6)^{4}$$
$23$ $$T^{4} + 32T^{2} + 64$$
$29$ $$(T^{2} - 2 T - 47)^{2}$$
$31$ $$(T - 6)^{4}$$
$37$ $$(T^{2} + 12 T + 24)^{2}$$
$41$ $$(T^{2} + 12)^{2}$$
$43$ $$(T^{2} + 4)^{2}$$
$47$ $$(T^{2} - 3)^{2}$$
$53$ $$(T - 2)^{4}$$
$59$ $$(T^{2} - 12)^{2}$$
$61$ $$T^{4} + 96T^{2} + 576$$
$67$ $$(T^{2} + 12)^{2}$$
$71$ $$T^{4} + 56T^{2} + 16$$
$73$ $$T^{4} + 168T^{2} + 144$$
$79$ $$T^{4} + 222T^{2} + 1521$$
$83$ $$(T^{2} + 24 T + 132)^{2}$$
$89$ $$T^{4} + 96T^{2} + 576$$
$97$ $$T^{4} + 234T^{2} + 9801$$