Defining parameters
Level: | \( N \) | \(=\) | \( 140 = 2^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 140.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(140, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 30 | 4 | 26 |
Cusp forms | 18 | 4 | 14 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(140, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
140.2.e.a | $2$ | $1.118$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+3 i q^{3}+(i-2)q^{5}-i q^{7}-6 q^{9}+\cdots\) |
140.2.e.b | $2$ | $1.118$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+(2 i+1)q^{5}+i q^{7}+3 q^{9}-4 i q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(140, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(140, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)