Properties

Label 140.2.a
Level $140$
Weight $2$
Character orbit 140.a
Rep. character $\chi_{140}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(140))\).

Total New Old
Modular forms 30 2 28
Cusp forms 19 2 17
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(5\)\(0\)\(5\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(6\)\(0\)\(6\)\(4\)\(0\)\(4\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(4\)\(1\)\(3\)\(3\)\(1\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(3\)\(1\)\(2\)\(2\)\(1\)\(1\)\(1\)\(0\)\(1\)
Plus space\(+\)\(12\)\(0\)\(12\)\(7\)\(0\)\(7\)\(5\)\(0\)\(5\)
Minus space\(-\)\(18\)\(2\)\(16\)\(12\)\(2\)\(10\)\(6\)\(0\)\(6\)

Trace form

\( 2 q + 4 q^{3} + 4 q^{9} - 2 q^{11} - 4 q^{13} - 2 q^{15} - 4 q^{17} + 8 q^{19} - 2 q^{21} + 2 q^{25} + 4 q^{27} - 18 q^{29} + 4 q^{31} - 12 q^{33} + 2 q^{35} - 8 q^{37} - 10 q^{39} - 4 q^{41} + 12 q^{43}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(140))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7
140.2.a.a 140.a 1.a $1$ $1.118$ \(\Q\) None 140.2.a.a \(0\) \(1\) \(1\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{7}-2q^{9}+3q^{11}-q^{13}+\cdots\)
140.2.a.b 140.a 1.a $1$ $1.118$ \(\Q\) None 140.2.a.b \(0\) \(3\) \(-1\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-q^{5}-q^{7}+6q^{9}-5q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(140))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(140)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)