# Properties

 Label 140.1.p.a Level $140$ Weight $1$ Character orbit 140.p Analytic conductor $0.070$ Analytic rank $0$ Dimension $2$ Projective image $D_{3}$ CM discriminant -20 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [140,1,Mod(39,140)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(140, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([3, 3, 4]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("140.39");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$140 = 2^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 140.p (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.0698691017686$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{3}$$ Projective field: Galois closure of 3.1.980.1 Artin image: $C_3\times S_3$ Artin field: Galois closure of 6.0.392000.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q - \zeta_{6} q^{2} - \zeta_{6}^{2} q^{3} + \zeta_{6}^{2} q^{4} - \zeta_{6} q^{5} - q^{6} + \zeta_{6}^{2} q^{7} + q^{8} +O(q^{10})$$ q - z * q^2 - z^2 * q^3 + z^2 * q^4 - z * q^5 - q^6 + z^2 * q^7 + q^8 $$q - \zeta_{6} q^{2} - \zeta_{6}^{2} q^{3} + \zeta_{6}^{2} q^{4} - \zeta_{6} q^{5} - q^{6} + \zeta_{6}^{2} q^{7} + q^{8} + \zeta_{6}^{2} q^{10} + \zeta_{6} q^{12} + q^{14} - q^{15} - \zeta_{6} q^{16} + q^{20} + \zeta_{6} q^{21} + \zeta_{6} q^{23} - \zeta_{6}^{2} q^{24} + \zeta_{6}^{2} q^{25} + q^{27} - \zeta_{6} q^{28} - q^{29} + \zeta_{6} q^{30} + \zeta_{6}^{2} q^{32} + q^{35} - \zeta_{6} q^{40} - q^{41} - \zeta_{6}^{2} q^{42} - q^{43} - \zeta_{6}^{2} q^{46} - 2 \zeta_{6} q^{47} - q^{48} - \zeta_{6} q^{49} + q^{50} - \zeta_{6} q^{54} + \zeta_{6}^{2} q^{56} + \zeta_{6} q^{58} - \zeta_{6}^{2} q^{60} + \zeta_{6} q^{61} + q^{64} - \zeta_{6}^{2} q^{67} + q^{69} - \zeta_{6} q^{70} + \zeta_{6} q^{75} + \zeta_{6}^{2} q^{80} - \zeta_{6}^{2} q^{81} + \zeta_{6} q^{82} - q^{83} - q^{84} + \zeta_{6} q^{86} + \zeta_{6}^{2} q^{87} + \zeta_{6} q^{89} - q^{92} + 2 \zeta_{6}^{2} q^{94} + \zeta_{6} q^{96} + \zeta_{6}^{2} q^{98} +O(q^{100})$$ q - z * q^2 - z^2 * q^3 + z^2 * q^4 - z * q^5 - q^6 + z^2 * q^7 + q^8 + z^2 * q^10 + z * q^12 + q^14 - q^15 - z * q^16 + q^20 + z * q^21 + z * q^23 - z^2 * q^24 + z^2 * q^25 + q^27 - z * q^28 - q^29 + z * q^30 + z^2 * q^32 + q^35 - z * q^40 - q^41 - z^2 * q^42 - q^43 - z^2 * q^46 - 2*z * q^47 - q^48 - z * q^49 + q^50 - z * q^54 + z^2 * q^56 + z * q^58 - z^2 * q^60 + z * q^61 + q^64 - z^2 * q^67 + q^69 - z * q^70 + z * q^75 + z^2 * q^80 - z^2 * q^81 + z * q^82 - q^83 - q^84 + z * q^86 + z^2 * q^87 + z * q^89 - q^92 + 2*z^2 * q^94 + z * q^96 + z^2 * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} + q^{3} - q^{4} - q^{5} - 2 q^{6} - q^{7} + 2 q^{8}+O(q^{10})$$ 2 * q - q^2 + q^3 - q^4 - q^5 - 2 * q^6 - q^7 + 2 * q^8 $$2 q - q^{2} + q^{3} - q^{4} - q^{5} - 2 q^{6} - q^{7} + 2 q^{8} - q^{10} + q^{12} + 2 q^{14} - 2 q^{15} - q^{16} + 2 q^{20} + q^{21} + q^{23} + q^{24} - q^{25} + 2 q^{27} - q^{28} - 2 q^{29} + q^{30} - q^{32} + 2 q^{35} - q^{40} - 2 q^{41} + q^{42} - 2 q^{43} + q^{46} - 2 q^{47} - 2 q^{48} - q^{49} + 2 q^{50} - q^{54} - q^{56} + q^{58} + q^{60} + q^{61} + 2 q^{64} + q^{67} + 2 q^{69} - q^{70} + q^{75} - q^{80} + q^{81} + q^{82} - 2 q^{83} - 2 q^{84} + q^{86} - q^{87} + q^{89} - 2 q^{92} - 2 q^{94} + q^{96} - q^{98}+O(q^{100})$$ 2 * q - q^2 + q^3 - q^4 - q^5 - 2 * q^6 - q^7 + 2 * q^8 - q^10 + q^12 + 2 * q^14 - 2 * q^15 - q^16 + 2 * q^20 + q^21 + q^23 + q^24 - q^25 + 2 * q^27 - q^28 - 2 * q^29 + q^30 - q^32 + 2 * q^35 - q^40 - 2 * q^41 + q^42 - 2 * q^43 + q^46 - 2 * q^47 - 2 * q^48 - q^49 + 2 * q^50 - q^54 - q^56 + q^58 + q^60 + q^61 + 2 * q^64 + q^67 + 2 * q^69 - q^70 + q^75 - q^80 + q^81 + q^82 - 2 * q^83 - 2 * q^84 + q^86 - q^87 + q^89 - 2 * q^92 - 2 * q^94 + q^96 - q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/140\mathbb{Z}\right)^\times$$.

 $$n$$ $$57$$ $$71$$ $$101$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
39.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i −1.00000 −0.500000 + 0.866025i 1.00000 0 −0.500000 + 0.866025i
79.1 −0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i −1.00000 −0.500000 0.866025i 1.00000 0 −0.500000 0.866025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by $$\Q(\sqrt{-5})$$
7.c even 3 1 inner
140.p odd 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.1.p.a 2
3.b odd 2 1 1260.1.ci.b 2
4.b odd 2 1 140.1.p.b yes 2
5.b even 2 1 140.1.p.b yes 2
5.c odd 4 2 700.1.u.a 4
7.b odd 2 1 980.1.p.a 2
7.c even 3 1 inner 140.1.p.a 2
7.c even 3 1 980.1.f.c 1
7.d odd 6 1 980.1.f.d 1
7.d odd 6 1 980.1.p.a 2
8.b even 2 1 2240.1.bt.a 2
8.d odd 2 1 2240.1.bt.b 2
12.b even 2 1 1260.1.ci.a 2
15.d odd 2 1 1260.1.ci.a 2
20.d odd 2 1 CM 140.1.p.a 2
20.e even 4 2 700.1.u.a 4
21.h odd 6 1 1260.1.ci.b 2
28.d even 2 1 980.1.p.b 2
28.f even 6 1 980.1.f.a 1
28.f even 6 1 980.1.p.b 2
28.g odd 6 1 140.1.p.b yes 2
28.g odd 6 1 980.1.f.b 1
35.c odd 2 1 980.1.p.b 2
35.i odd 6 1 980.1.f.a 1
35.i odd 6 1 980.1.p.b 2
35.j even 6 1 140.1.p.b yes 2
35.j even 6 1 980.1.f.b 1
35.l odd 12 2 700.1.u.a 4
40.e odd 2 1 2240.1.bt.a 2
40.f even 2 1 2240.1.bt.b 2
56.k odd 6 1 2240.1.bt.b 2
56.p even 6 1 2240.1.bt.a 2
60.h even 2 1 1260.1.ci.b 2
84.n even 6 1 1260.1.ci.a 2
105.o odd 6 1 1260.1.ci.a 2
140.c even 2 1 980.1.p.a 2
140.p odd 6 1 inner 140.1.p.a 2
140.p odd 6 1 980.1.f.c 1
140.s even 6 1 980.1.f.d 1
140.s even 6 1 980.1.p.a 2
140.w even 12 2 700.1.u.a 4
280.bf even 6 1 2240.1.bt.b 2
280.bi odd 6 1 2240.1.bt.a 2
420.ba even 6 1 1260.1.ci.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.1.p.a 2 1.a even 1 1 trivial
140.1.p.a 2 7.c even 3 1 inner
140.1.p.a 2 20.d odd 2 1 CM
140.1.p.a 2 140.p odd 6 1 inner
140.1.p.b yes 2 4.b odd 2 1
140.1.p.b yes 2 5.b even 2 1
140.1.p.b yes 2 28.g odd 6 1
140.1.p.b yes 2 35.j even 6 1
700.1.u.a 4 5.c odd 4 2
700.1.u.a 4 20.e even 4 2
700.1.u.a 4 35.l odd 12 2
700.1.u.a 4 140.w even 12 2
980.1.f.a 1 28.f even 6 1
980.1.f.a 1 35.i odd 6 1
980.1.f.b 1 28.g odd 6 1
980.1.f.b 1 35.j even 6 1
980.1.f.c 1 7.c even 3 1
980.1.f.c 1 140.p odd 6 1
980.1.f.d 1 7.d odd 6 1
980.1.f.d 1 140.s even 6 1
980.1.p.a 2 7.b odd 2 1
980.1.p.a 2 7.d odd 6 1
980.1.p.a 2 140.c even 2 1
980.1.p.a 2 140.s even 6 1
980.1.p.b 2 28.d even 2 1
980.1.p.b 2 28.f even 6 1
980.1.p.b 2 35.c odd 2 1
980.1.p.b 2 35.i odd 6 1
1260.1.ci.a 2 12.b even 2 1
1260.1.ci.a 2 15.d odd 2 1
1260.1.ci.a 2 84.n even 6 1
1260.1.ci.a 2 105.o odd 6 1
1260.1.ci.b 2 3.b odd 2 1
1260.1.ci.b 2 21.h odd 6 1
1260.1.ci.b 2 60.h even 2 1
1260.1.ci.b 2 420.ba even 6 1
2240.1.bt.a 2 8.b even 2 1
2240.1.bt.a 2 40.e odd 2 1
2240.1.bt.a 2 56.p even 6 1
2240.1.bt.a 2 280.bi odd 6 1
2240.1.bt.b 2 8.d odd 2 1
2240.1.bt.b 2 40.f even 2 1
2240.1.bt.b 2 56.k odd 6 1
2240.1.bt.b 2 280.bf even 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{2} - T_{3} + 1$$ acting on $$S_{1}^{\mathrm{new}}(140, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + T + 1$$
$3$ $$T^{2} - T + 1$$
$5$ $$T^{2} + T + 1$$
$7$ $$T^{2} + T + 1$$
$11$ $$T^{2}$$
$13$ $$T^{2}$$
$17$ $$T^{2}$$
$19$ $$T^{2}$$
$23$ $$T^{2} - T + 1$$
$29$ $$(T + 1)^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2}$$
$41$ $$(T + 1)^{2}$$
$43$ $$(T + 1)^{2}$$
$47$ $$T^{2} + 2T + 4$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$T^{2} - T + 1$$
$67$ $$T^{2} - T + 1$$
$71$ $$T^{2}$$
$73$ $$T^{2}$$
$79$ $$T^{2}$$
$83$ $$(T + 1)^{2}$$
$89$ $$T^{2} - T + 1$$
$97$ $$T^{2}$$