Properties

Label 14.8.c
Level $14$
Weight $8$
Character orbit 14.c
Rep. character $\chi_{14}(9,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $2$
Sturm bound $16$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 14.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(14, [\chi])\).

Total New Old
Modular forms 32 8 24
Cusp forms 24 8 16
Eisenstein series 8 0 8

Trace form

\( 8 q - 256 q^{4} + 252 q^{5} - 1792 q^{6} - 1680 q^{7} - 1064 q^{9} + 1792 q^{10} - 8256 q^{11} + 24080 q^{13} - 24192 q^{14} + 46576 q^{15} - 16384 q^{16} + 82740 q^{17} - 23040 q^{18} + 43456 q^{19} - 32256 q^{20}+ \cdots + 59220736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(14, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
14.8.c.a 14.c 7.c $4$ $4.373$ \(\Q(\sqrt{-3}, \sqrt{2389})\) None 14.8.c.a \(-16\) \(56\) \(238\) \(168\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\beta _{1})q^{2}+(28\beta _{1}-\beta _{2})q^{3}+\cdots\)
14.8.c.b 14.c 7.c $4$ $4.373$ \(\Q(\sqrt{-3}, \sqrt{949})\) None 14.8.c.b \(16\) \(-56\) \(14\) \(-1848\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\beta _{1}q^{2}+(-28+28\beta _{1}-\beta _{2}-\beta _{3})q^{3}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(14, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(14, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 2}\)