Properties

Label 14.8.a.c.1.2
Level $14$
Weight $8$
Character 14.1
Self dual yes
Analytic conductor $4.373$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,8,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.37339035678\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1969}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 492 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-21.6867\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +79.3734 q^{3} +64.0000 q^{4} -336.361 q^{5} +634.987 q^{6} +343.000 q^{7} +512.000 q^{8} +4113.14 q^{9} -2690.89 q^{10} -7301.05 q^{11} +5079.90 q^{12} +5187.58 q^{13} +2744.00 q^{14} -26698.1 q^{15} +4096.00 q^{16} -23229.6 q^{17} +32905.1 q^{18} -10896.3 q^{19} -21527.1 q^{20} +27225.1 q^{21} -58408.4 q^{22} +33781.9 q^{23} +40639.2 q^{24} +35013.5 q^{25} +41500.6 q^{26} +152884. q^{27} +21952.0 q^{28} +186018. q^{29} -213585. q^{30} -98163.8 q^{31} +32768.0 q^{32} -579509. q^{33} -185837. q^{34} -115372. q^{35} +263241. q^{36} +283413. q^{37} -87170.1 q^{38} +411756. q^{39} -172217. q^{40} -241537. q^{41} +217801. q^{42} +747209. q^{43} -467267. q^{44} -1.38350e6 q^{45} +270255. q^{46} +1.01668e6 q^{47} +325114. q^{48} +117649. q^{49} +280108. q^{50} -1.84381e6 q^{51} +332005. q^{52} +217877. q^{53} +1.22307e6 q^{54} +2.45579e6 q^{55} +175616. q^{56} -864873. q^{57} +1.48814e6 q^{58} -2.04271e6 q^{59} -1.70868e6 q^{60} -1.16948e6 q^{61} -785310. q^{62} +1.41081e6 q^{63} +262144. q^{64} -1.74490e6 q^{65} -4.63607e6 q^{66} +1.32624e6 q^{67} -1.48669e6 q^{68} +2.68138e6 q^{69} -922974. q^{70} -1.28248e6 q^{71} +2.10593e6 q^{72} +2.59761e6 q^{73} +2.26730e6 q^{74} +2.77914e6 q^{75} -697361. q^{76} -2.50426e6 q^{77} +3.29404e6 q^{78} -2.40172e6 q^{79} -1.37773e6 q^{80} +3.13951e6 q^{81} -1.93230e6 q^{82} -5.37289e6 q^{83} +1.74241e6 q^{84} +7.81353e6 q^{85} +5.97767e6 q^{86} +1.47649e7 q^{87} -3.73814e6 q^{88} -1.19114e7 q^{89} -1.10680e7 q^{90} +1.77934e6 q^{91} +2.16204e6 q^{92} -7.79160e6 q^{93} +8.13343e6 q^{94} +3.66507e6 q^{95} +2.60091e6 q^{96} +1.35717e6 q^{97} +941192. q^{98} -3.00302e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} + 70 q^{3} + 128 q^{4} + 126 q^{5} + 560 q^{6} + 686 q^{7} + 1024 q^{8} + 2014 q^{9} + 1008 q^{10} - 3420 q^{11} + 4480 q^{12} - 6398 q^{13} + 5488 q^{14} - 31032 q^{15} + 8192 q^{16} - 38472 q^{17}+ \cdots - 38177100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 79.3734 1.69727 0.848634 0.528980i \(-0.177425\pi\)
0.848634 + 0.528980i \(0.177425\pi\)
\(4\) 64.0000 0.500000
\(5\) −336.361 −1.20340 −0.601700 0.798722i \(-0.705510\pi\)
−0.601700 + 0.798722i \(0.705510\pi\)
\(6\) 634.987 1.20015
\(7\) 343.000 0.377964
\(8\) 512.000 0.353553
\(9\) 4113.14 1.88072
\(10\) −2690.89 −0.850933
\(11\) −7301.05 −1.65391 −0.826953 0.562271i \(-0.809928\pi\)
−0.826953 + 0.562271i \(0.809928\pi\)
\(12\) 5079.90 0.848634
\(13\) 5187.58 0.654881 0.327441 0.944872i \(-0.393814\pi\)
0.327441 + 0.944872i \(0.393814\pi\)
\(14\) 2744.00 0.267261
\(15\) −26698.1 −2.04249
\(16\) 4096.00 0.250000
\(17\) −23229.6 −1.14676 −0.573378 0.819291i \(-0.694367\pi\)
−0.573378 + 0.819291i \(0.694367\pi\)
\(18\) 32905.1 1.32987
\(19\) −10896.3 −0.364452 −0.182226 0.983257i \(-0.558330\pi\)
−0.182226 + 0.983257i \(0.558330\pi\)
\(20\) −21527.1 −0.601700
\(21\) 27225.1 0.641507
\(22\) −58408.4 −1.16949
\(23\) 33781.9 0.578944 0.289472 0.957186i \(-0.406520\pi\)
0.289472 + 0.957186i \(0.406520\pi\)
\(24\) 40639.2 0.600075
\(25\) 35013.5 0.448173
\(26\) 41500.6 0.463071
\(27\) 152884. 1.49482
\(28\) 21952.0 0.188982
\(29\) 186018. 1.41632 0.708161 0.706051i \(-0.249525\pi\)
0.708161 + 0.706051i \(0.249525\pi\)
\(30\) −213585. −1.44426
\(31\) −98163.8 −0.591814 −0.295907 0.955217i \(-0.595622\pi\)
−0.295907 + 0.955217i \(0.595622\pi\)
\(32\) 32768.0 0.176777
\(33\) −579509. −2.80712
\(34\) −185837. −0.810878
\(35\) −115372. −0.454843
\(36\) 263241. 0.940361
\(37\) 283413. 0.919842 0.459921 0.887960i \(-0.347878\pi\)
0.459921 + 0.887960i \(0.347878\pi\)
\(38\) −87170.1 −0.257706
\(39\) 411756. 1.11151
\(40\) −172217. −0.425466
\(41\) −241537. −0.547320 −0.273660 0.961827i \(-0.588234\pi\)
−0.273660 + 0.961827i \(0.588234\pi\)
\(42\) 217801. 0.453614
\(43\) 747209. 1.43319 0.716593 0.697492i \(-0.245701\pi\)
0.716593 + 0.697492i \(0.245701\pi\)
\(44\) −467267. −0.826953
\(45\) −1.38350e6 −2.26326
\(46\) 270255. 0.409375
\(47\) 1.01668e6 1.42837 0.714186 0.699956i \(-0.246797\pi\)
0.714186 + 0.699956i \(0.246797\pi\)
\(48\) 325114. 0.424317
\(49\) 117649. 0.142857
\(50\) 280108. 0.316906
\(51\) −1.84381e6 −1.94635
\(52\) 332005. 0.327441
\(53\) 217877. 0.201023 0.100511 0.994936i \(-0.467952\pi\)
0.100511 + 0.994936i \(0.467952\pi\)
\(54\) 1.22307e6 1.05700
\(55\) 2.45579e6 1.99031
\(56\) 175616. 0.133631
\(57\) −864873. −0.618572
\(58\) 1.48814e6 1.00149
\(59\) −2.04271e6 −1.29487 −0.647433 0.762123i \(-0.724157\pi\)
−0.647433 + 0.762123i \(0.724157\pi\)
\(60\) −1.70868e6 −1.02125
\(61\) −1.16948e6 −0.659689 −0.329844 0.944035i \(-0.606996\pi\)
−0.329844 + 0.944035i \(0.606996\pi\)
\(62\) −785310. −0.418476
\(63\) 1.41081e6 0.710846
\(64\) 262144. 0.125000
\(65\) −1.74490e6 −0.788085
\(66\) −4.63607e6 −1.98494
\(67\) 1.32624e6 0.538717 0.269358 0.963040i \(-0.413188\pi\)
0.269358 + 0.963040i \(0.413188\pi\)
\(68\) −1.48669e6 −0.573378
\(69\) 2.68138e6 0.982624
\(70\) −922974. −0.321622
\(71\) −1.28248e6 −0.425252 −0.212626 0.977134i \(-0.568202\pi\)
−0.212626 + 0.977134i \(0.568202\pi\)
\(72\) 2.10593e6 0.664936
\(73\) 2.59761e6 0.781527 0.390763 0.920491i \(-0.372211\pi\)
0.390763 + 0.920491i \(0.372211\pi\)
\(74\) 2.26730e6 0.650427
\(75\) 2.77914e6 0.760671
\(76\) −697361. −0.182226
\(77\) −2.50426e6 −0.625118
\(78\) 3.29404e6 0.785956
\(79\) −2.40172e6 −0.548059 −0.274030 0.961721i \(-0.588357\pi\)
−0.274030 + 0.961721i \(0.588357\pi\)
\(80\) −1.37773e6 −0.300850
\(81\) 3.13951e6 0.656393
\(82\) −1.93230e6 −0.387013
\(83\) −5.37289e6 −1.03142 −0.515708 0.856764i \(-0.672471\pi\)
−0.515708 + 0.856764i \(0.672471\pi\)
\(84\) 1.74241e6 0.320754
\(85\) 7.81353e6 1.38001
\(86\) 5.97767e6 1.01342
\(87\) 1.47649e7 2.40388
\(88\) −3.73814e6 −0.584744
\(89\) −1.19114e7 −1.79102 −0.895508 0.445046i \(-0.853187\pi\)
−0.895508 + 0.445046i \(0.853187\pi\)
\(90\) −1.10680e7 −1.60037
\(91\) 1.77934e6 0.247522
\(92\) 2.16204e6 0.289472
\(93\) −7.79160e6 −1.00447
\(94\) 8.13343e6 1.01001
\(95\) 3.66507e6 0.438581
\(96\) 2.60091e6 0.300038
\(97\) 1.35717e6 0.150984 0.0754922 0.997146i \(-0.475947\pi\)
0.0754922 + 0.997146i \(0.475947\pi\)
\(98\) 941192. 0.101015
\(99\) −3.00302e7 −3.11054
\(100\) 2.24087e6 0.224087
\(101\) −4.61311e6 −0.445522 −0.222761 0.974873i \(-0.571507\pi\)
−0.222761 + 0.974873i \(0.571507\pi\)
\(102\) −1.47505e7 −1.37628
\(103\) −1.63304e6 −0.147254 −0.0736270 0.997286i \(-0.523457\pi\)
−0.0736270 + 0.997286i \(0.523457\pi\)
\(104\) 2.65604e6 0.231536
\(105\) −9.15745e6 −0.771990
\(106\) 1.74301e6 0.142145
\(107\) 1.91481e7 1.51106 0.755530 0.655114i \(-0.227379\pi\)
0.755530 + 0.655114i \(0.227379\pi\)
\(108\) 9.78459e6 0.747411
\(109\) −7.47493e6 −0.552859 −0.276430 0.961034i \(-0.589151\pi\)
−0.276430 + 0.961034i \(0.589151\pi\)
\(110\) 1.96463e7 1.40736
\(111\) 2.24954e7 1.56122
\(112\) 1.40493e6 0.0944911
\(113\) 1.11093e6 0.0724290 0.0362145 0.999344i \(-0.488470\pi\)
0.0362145 + 0.999344i \(0.488470\pi\)
\(114\) −6.91899e6 −0.437397
\(115\) −1.13629e7 −0.696702
\(116\) 1.19051e7 0.708161
\(117\) 2.13372e7 1.23165
\(118\) −1.63417e7 −0.915608
\(119\) −7.96776e6 −0.433433
\(120\) −1.36694e7 −0.722131
\(121\) 3.38182e7 1.73541
\(122\) −9.35585e6 −0.466470
\(123\) −1.91717e7 −0.928949
\(124\) −6.28248e6 −0.295907
\(125\) 1.45010e7 0.664069
\(126\) 1.12865e7 0.502644
\(127\) −4.20574e7 −1.82192 −0.910959 0.412496i \(-0.864657\pi\)
−0.910959 + 0.412496i \(0.864657\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 5.93085e7 2.43250
\(130\) −1.39592e7 −0.557260
\(131\) 1.24851e7 0.485225 0.242612 0.970123i \(-0.421996\pi\)
0.242612 + 0.970123i \(0.421996\pi\)
\(132\) −3.70886e7 −1.40356
\(133\) −3.73742e6 −0.137750
\(134\) 1.06099e7 0.380930
\(135\) −5.14243e7 −1.79887
\(136\) −1.18936e7 −0.405439
\(137\) −4.47899e6 −0.148819 −0.0744094 0.997228i \(-0.523707\pi\)
−0.0744094 + 0.997228i \(0.523707\pi\)
\(138\) 2.14511e7 0.694820
\(139\) 2.24454e7 0.708884 0.354442 0.935078i \(-0.384671\pi\)
0.354442 + 0.935078i \(0.384671\pi\)
\(140\) −7.38379e6 −0.227421
\(141\) 8.06973e7 2.42433
\(142\) −1.02598e7 −0.300698
\(143\) −3.78748e7 −1.08311
\(144\) 1.68474e7 0.470181
\(145\) −6.25691e7 −1.70440
\(146\) 2.07809e7 0.552623
\(147\) 9.33820e6 0.242467
\(148\) 1.81384e7 0.459921
\(149\) −6.07014e7 −1.50330 −0.751651 0.659561i \(-0.770742\pi\)
−0.751651 + 0.659561i \(0.770742\pi\)
\(150\) 2.22332e7 0.537875
\(151\) −1.88146e7 −0.444709 −0.222354 0.974966i \(-0.571374\pi\)
−0.222354 + 0.974966i \(0.571374\pi\)
\(152\) −5.57889e6 −0.128853
\(153\) −9.55466e7 −2.15673
\(154\) −2.00341e7 −0.442025
\(155\) 3.30185e7 0.712190
\(156\) 2.63524e7 0.555755
\(157\) −7.64122e6 −0.157585 −0.0787923 0.996891i \(-0.525106\pi\)
−0.0787923 + 0.996891i \(0.525106\pi\)
\(158\) −1.92138e7 −0.387537
\(159\) 1.72936e7 0.341190
\(160\) −1.10219e7 −0.212733
\(161\) 1.15872e7 0.218820
\(162\) 2.51161e7 0.464140
\(163\) 9.09986e7 1.64580 0.822902 0.568184i \(-0.192354\pi\)
0.822902 + 0.568184i \(0.192354\pi\)
\(164\) −1.54584e7 −0.273660
\(165\) 1.94924e8 3.37810
\(166\) −4.29831e7 −0.729322
\(167\) 6.93101e7 1.15157 0.575783 0.817603i \(-0.304697\pi\)
0.575783 + 0.817603i \(0.304697\pi\)
\(168\) 1.39392e7 0.226807
\(169\) −3.58376e7 −0.571130
\(170\) 6.25082e7 0.975811
\(171\) −4.48178e7 −0.685432
\(172\) 4.78214e7 0.716593
\(173\) −7.73949e7 −1.13645 −0.568226 0.822872i \(-0.692370\pi\)
−0.568226 + 0.822872i \(0.692370\pi\)
\(174\) 1.18119e8 1.69980
\(175\) 1.20096e7 0.169394
\(176\) −2.99051e7 −0.413477
\(177\) −1.62137e8 −2.19773
\(178\) −9.52915e7 −1.26644
\(179\) −4.95423e7 −0.645640 −0.322820 0.946460i \(-0.604631\pi\)
−0.322820 + 0.946460i \(0.604631\pi\)
\(180\) −8.85439e7 −1.13163
\(181\) 1.39330e7 0.174650 0.0873251 0.996180i \(-0.472168\pi\)
0.0873251 + 0.996180i \(0.472168\pi\)
\(182\) 1.42347e7 0.175024
\(183\) −9.28258e7 −1.11967
\(184\) 1.72963e7 0.204688
\(185\) −9.53289e7 −1.10694
\(186\) −6.23328e7 −0.710266
\(187\) 1.69601e8 1.89663
\(188\) 6.50675e7 0.714186
\(189\) 5.24393e7 0.564990
\(190\) 2.93206e7 0.310124
\(191\) 6.78160e7 0.704231 0.352116 0.935957i \(-0.385462\pi\)
0.352116 + 0.935957i \(0.385462\pi\)
\(192\) 2.08073e7 0.212159
\(193\) −1.09345e8 −1.09484 −0.547419 0.836859i \(-0.684390\pi\)
−0.547419 + 0.836859i \(0.684390\pi\)
\(194\) 1.08573e7 0.106762
\(195\) −1.38498e8 −1.33759
\(196\) 7.52954e6 0.0714286
\(197\) 9.14828e7 0.852526 0.426263 0.904599i \(-0.359830\pi\)
0.426263 + 0.904599i \(0.359830\pi\)
\(198\) −2.40242e8 −2.19948
\(199\) 3.08493e7 0.277498 0.138749 0.990328i \(-0.455692\pi\)
0.138749 + 0.990328i \(0.455692\pi\)
\(200\) 1.79269e7 0.158453
\(201\) 1.05268e8 0.914347
\(202\) −3.69049e7 −0.315031
\(203\) 6.38042e7 0.535319
\(204\) −1.18004e8 −0.973176
\(205\) 8.12437e7 0.658645
\(206\) −1.30643e7 −0.104124
\(207\) 1.38950e8 1.08883
\(208\) 2.12483e7 0.163720
\(209\) 7.95541e7 0.602769
\(210\) −7.32596e7 −0.545880
\(211\) 1.24066e8 0.909212 0.454606 0.890693i \(-0.349780\pi\)
0.454606 + 0.890693i \(0.349780\pi\)
\(212\) 1.39441e7 0.100511
\(213\) −1.01795e8 −0.721766
\(214\) 1.53185e8 1.06848
\(215\) −2.51332e8 −1.72470
\(216\) 7.82767e7 0.528499
\(217\) −3.36702e7 −0.223685
\(218\) −5.97995e7 −0.390931
\(219\) 2.06181e8 1.32646
\(220\) 1.57170e8 0.995156
\(221\) −1.20505e8 −0.750989
\(222\) 1.79964e8 1.10395
\(223\) −8.25681e7 −0.498592 −0.249296 0.968427i \(-0.580199\pi\)
−0.249296 + 0.968427i \(0.580199\pi\)
\(224\) 1.12394e7 0.0668153
\(225\) 1.44016e8 0.842890
\(226\) 8.88744e6 0.0512150
\(227\) 3.76858e7 0.213839 0.106919 0.994268i \(-0.465901\pi\)
0.106919 + 0.994268i \(0.465901\pi\)
\(228\) −5.53519e7 −0.309286
\(229\) 1.08195e8 0.595362 0.297681 0.954665i \(-0.403787\pi\)
0.297681 + 0.954665i \(0.403787\pi\)
\(230\) −9.09032e7 −0.492643
\(231\) −1.98772e8 −1.06099
\(232\) 9.52412e7 0.500745
\(233\) −1.03320e8 −0.535104 −0.267552 0.963543i \(-0.586215\pi\)
−0.267552 + 0.963543i \(0.586215\pi\)
\(234\) 1.70698e8 0.870908
\(235\) −3.41971e8 −1.71890
\(236\) −1.30733e8 −0.647433
\(237\) −1.90633e8 −0.930204
\(238\) −6.37420e7 −0.306483
\(239\) 2.95896e8 1.40200 0.700998 0.713163i \(-0.252738\pi\)
0.700998 + 0.713163i \(0.252738\pi\)
\(240\) −1.09355e8 −0.510624
\(241\) −6.39349e7 −0.294224 −0.147112 0.989120i \(-0.546998\pi\)
−0.147112 + 0.989120i \(0.546998\pi\)
\(242\) 2.70545e8 1.22712
\(243\) −8.51643e7 −0.380746
\(244\) −7.48468e7 −0.329844
\(245\) −3.95725e7 −0.171914
\(246\) −1.53373e8 −0.656866
\(247\) −5.65252e7 −0.238673
\(248\) −5.02599e7 −0.209238
\(249\) −4.26464e8 −1.75059
\(250\) 1.16008e8 0.469567
\(251\) −1.48417e7 −0.0592414 −0.0296207 0.999561i \(-0.509430\pi\)
−0.0296207 + 0.999561i \(0.509430\pi\)
\(252\) 9.02916e7 0.355423
\(253\) −2.46643e8 −0.957519
\(254\) −3.36459e8 −1.28829
\(255\) 6.20186e8 2.34224
\(256\) 1.67772e7 0.0625000
\(257\) 9.52785e7 0.350130 0.175065 0.984557i \(-0.443986\pi\)
0.175065 + 0.984557i \(0.443986\pi\)
\(258\) 4.74468e8 1.72004
\(259\) 9.72106e7 0.347668
\(260\) −1.11673e8 −0.394042
\(261\) 7.65118e8 2.66371
\(262\) 9.98809e7 0.343106
\(263\) 2.25843e8 0.765528 0.382764 0.923846i \(-0.374972\pi\)
0.382764 + 0.923846i \(0.374972\pi\)
\(264\) −2.96709e8 −0.992468
\(265\) −7.32851e7 −0.241911
\(266\) −2.98993e7 −0.0974038
\(267\) −9.45452e8 −3.03984
\(268\) 8.48794e7 0.269358
\(269\) 2.37028e7 0.0742450 0.0371225 0.999311i \(-0.488181\pi\)
0.0371225 + 0.999311i \(0.488181\pi\)
\(270\) −4.11394e8 −1.27199
\(271\) 2.32187e8 0.708673 0.354337 0.935118i \(-0.384707\pi\)
0.354337 + 0.935118i \(0.384707\pi\)
\(272\) −9.51485e7 −0.286689
\(273\) 1.41232e8 0.420111
\(274\) −3.58319e7 −0.105231
\(275\) −2.55636e8 −0.741237
\(276\) 1.71609e8 0.491312
\(277\) 5.44889e8 1.54038 0.770192 0.637813i \(-0.220161\pi\)
0.770192 + 0.637813i \(0.220161\pi\)
\(278\) 1.79563e8 0.501257
\(279\) −4.03761e8 −1.11304
\(280\) −5.90703e7 −0.160811
\(281\) −2.72204e8 −0.731849 −0.365925 0.930644i \(-0.619247\pi\)
−0.365925 + 0.930644i \(0.619247\pi\)
\(282\) 6.45578e8 1.71426
\(283\) 3.81118e8 0.999556 0.499778 0.866154i \(-0.333415\pi\)
0.499778 + 0.866154i \(0.333415\pi\)
\(284\) −8.20786e7 −0.212626
\(285\) 2.90909e8 0.744390
\(286\) −3.02998e8 −0.765876
\(287\) −8.28474e7 −0.206867
\(288\) 1.34779e8 0.332468
\(289\) 1.29276e8 0.315047
\(290\) −5.00553e8 −1.20519
\(291\) 1.07723e8 0.256261
\(292\) 1.66247e8 0.390763
\(293\) 6.97920e8 1.62095 0.810473 0.585775i \(-0.199210\pi\)
0.810473 + 0.585775i \(0.199210\pi\)
\(294\) 7.47056e7 0.171450
\(295\) 6.87087e8 1.55824
\(296\) 1.45107e8 0.325213
\(297\) −1.11622e9 −2.47230
\(298\) −4.85611e8 −1.06300
\(299\) 1.75246e8 0.379140
\(300\) 1.77865e8 0.380335
\(301\) 2.56293e8 0.541693
\(302\) −1.50517e8 −0.314456
\(303\) −3.66158e8 −0.756170
\(304\) −4.46311e7 −0.0911129
\(305\) 3.93368e8 0.793870
\(306\) −7.64373e8 −1.52504
\(307\) −8.88578e8 −1.75272 −0.876358 0.481661i \(-0.840034\pi\)
−0.876358 + 0.481661i \(0.840034\pi\)
\(308\) −1.60273e8 −0.312559
\(309\) −1.29620e8 −0.249930
\(310\) 2.64148e8 0.503594
\(311\) 6.56861e8 1.23826 0.619130 0.785288i \(-0.287485\pi\)
0.619130 + 0.785288i \(0.287485\pi\)
\(312\) 2.10819e8 0.392978
\(313\) −1.06434e9 −1.96189 −0.980944 0.194292i \(-0.937759\pi\)
−0.980944 + 0.194292i \(0.937759\pi\)
\(314\) −6.11298e7 −0.111429
\(315\) −4.74540e8 −0.855433
\(316\) −1.53710e8 −0.274030
\(317\) −7.45589e8 −1.31459 −0.657297 0.753631i \(-0.728300\pi\)
−0.657297 + 0.753631i \(0.728300\pi\)
\(318\) 1.38349e8 0.241257
\(319\) −1.35813e9 −2.34246
\(320\) −8.81749e7 −0.150425
\(321\) 1.51985e9 2.56468
\(322\) 9.26975e7 0.154729
\(323\) 2.53116e8 0.417937
\(324\) 2.00929e8 0.328197
\(325\) 1.81635e8 0.293500
\(326\) 7.27988e8 1.16376
\(327\) −5.93311e8 −0.938351
\(328\) −1.23667e8 −0.193507
\(329\) 3.48721e8 0.539874
\(330\) 1.55939e9 2.38867
\(331\) −8.82799e8 −1.33802 −0.669012 0.743252i \(-0.733282\pi\)
−0.669012 + 0.743252i \(0.733282\pi\)
\(332\) −3.43865e8 −0.515708
\(333\) 1.16572e9 1.72997
\(334\) 5.54480e8 0.814280
\(335\) −4.46095e8 −0.648292
\(336\) 1.11514e8 0.160377
\(337\) 6.91575e8 0.984317 0.492158 0.870506i \(-0.336208\pi\)
0.492158 + 0.870506i \(0.336208\pi\)
\(338\) −2.86701e8 −0.403850
\(339\) 8.81783e7 0.122931
\(340\) 5.00066e8 0.690003
\(341\) 7.16699e8 0.978806
\(342\) −3.58543e8 −0.484674
\(343\) 4.03536e7 0.0539949
\(344\) 3.82571e8 0.506708
\(345\) −9.01913e8 −1.18249
\(346\) −6.19160e8 −0.803593
\(347\) 9.09153e8 1.16811 0.584055 0.811714i \(-0.301465\pi\)
0.584055 + 0.811714i \(0.301465\pi\)
\(348\) 9.44952e8 1.20194
\(349\) −2.66615e8 −0.335734 −0.167867 0.985810i \(-0.553688\pi\)
−0.167867 + 0.985810i \(0.553688\pi\)
\(350\) 9.60772e7 0.119779
\(351\) 7.93099e8 0.978931
\(352\) −2.39241e8 −0.292372
\(353\) −5.81098e8 −0.703134 −0.351567 0.936163i \(-0.614351\pi\)
−0.351567 + 0.936163i \(0.614351\pi\)
\(354\) −1.29709e9 −1.55403
\(355\) 4.31376e8 0.511748
\(356\) −7.62332e8 −0.895508
\(357\) −6.32428e8 −0.735652
\(358\) −3.96338e8 −0.456536
\(359\) 4.07067e8 0.464339 0.232169 0.972675i \(-0.425418\pi\)
0.232169 + 0.972675i \(0.425418\pi\)
\(360\) −7.08351e8 −0.800184
\(361\) −7.75143e8 −0.867175
\(362\) 1.11464e8 0.123496
\(363\) 2.68426e9 2.94545
\(364\) 1.13878e8 0.123761
\(365\) −8.73734e8 −0.940490
\(366\) −7.42606e8 −0.791726
\(367\) −1.13161e9 −1.19499 −0.597497 0.801871i \(-0.703838\pi\)
−0.597497 + 0.801871i \(0.703838\pi\)
\(368\) 1.38371e8 0.144736
\(369\) −9.93477e8 −1.02936
\(370\) −7.62631e8 −0.782724
\(371\) 7.47317e7 0.0759794
\(372\) −4.98662e8 −0.502234
\(373\) 4.02614e8 0.401706 0.200853 0.979621i \(-0.435629\pi\)
0.200853 + 0.979621i \(0.435629\pi\)
\(374\) 1.35680e9 1.34112
\(375\) 1.15099e9 1.12710
\(376\) 5.20540e8 0.505006
\(377\) 9.64982e8 0.927523
\(378\) 4.19514e8 0.399508
\(379\) −1.10601e9 −1.04358 −0.521788 0.853075i \(-0.674735\pi\)
−0.521788 + 0.853075i \(0.674735\pi\)
\(380\) 2.34565e8 0.219291
\(381\) −3.33824e9 −3.09229
\(382\) 5.42528e8 0.497967
\(383\) −4.53921e8 −0.412843 −0.206421 0.978463i \(-0.566182\pi\)
−0.206421 + 0.978463i \(0.566182\pi\)
\(384\) 1.66458e8 0.150019
\(385\) 8.42335e8 0.752267
\(386\) −8.74763e8 −0.774167
\(387\) 3.07337e9 2.69542
\(388\) 8.68587e7 0.0754922
\(389\) −9.60495e8 −0.827316 −0.413658 0.910432i \(-0.635749\pi\)
−0.413658 + 0.910432i \(0.635749\pi\)
\(390\) −1.10799e9 −0.945820
\(391\) −7.84740e8 −0.663907
\(392\) 6.02363e7 0.0505076
\(393\) 9.90986e8 0.823557
\(394\) 7.31863e8 0.602827
\(395\) 8.07845e8 0.659535
\(396\) −1.92194e9 −1.55527
\(397\) 1.12291e9 0.900697 0.450348 0.892853i \(-0.351300\pi\)
0.450348 + 0.892853i \(0.351300\pi\)
\(398\) 2.46795e8 0.196221
\(399\) −2.96652e8 −0.233798
\(400\) 1.43415e8 0.112043
\(401\) −1.76041e9 −1.36336 −0.681678 0.731652i \(-0.738750\pi\)
−0.681678 + 0.731652i \(0.738750\pi\)
\(402\) 8.42146e8 0.646541
\(403\) −5.09232e8 −0.387568
\(404\) −2.95239e8 −0.222761
\(405\) −1.05601e9 −0.789904
\(406\) 5.10433e8 0.378528
\(407\) −2.06921e9 −1.52133
\(408\) −9.44032e8 −0.688139
\(409\) 2.11281e9 1.52697 0.763484 0.645827i \(-0.223487\pi\)
0.763484 + 0.645827i \(0.223487\pi\)
\(410\) 6.49950e8 0.465732
\(411\) −3.55513e8 −0.252586
\(412\) −1.04515e8 −0.0736270
\(413\) −7.00649e8 −0.489413
\(414\) 1.11160e9 0.769921
\(415\) 1.80723e9 1.24121
\(416\) 1.69986e8 0.115768
\(417\) 1.78157e9 1.20317
\(418\) 6.36433e8 0.426222
\(419\) 2.60472e9 1.72987 0.864933 0.501888i \(-0.167361\pi\)
0.864933 + 0.501888i \(0.167361\pi\)
\(420\) −5.86077e8 −0.385995
\(421\) 2.12220e9 1.38612 0.693058 0.720882i \(-0.256263\pi\)
0.693058 + 0.720882i \(0.256263\pi\)
\(422\) 9.92531e8 0.642910
\(423\) 4.18174e9 2.68637
\(424\) 1.11553e8 0.0710723
\(425\) −8.13351e8 −0.513945
\(426\) −8.14358e8 −0.510366
\(427\) −4.01132e8 −0.249339
\(428\) 1.22548e9 0.755530
\(429\) −3.00625e9 −1.83833
\(430\) −2.01065e9 −1.21954
\(431\) −1.95548e9 −1.17647 −0.588237 0.808689i \(-0.700178\pi\)
−0.588237 + 0.808689i \(0.700178\pi\)
\(432\) 6.26214e8 0.373706
\(433\) −2.66286e9 −1.57630 −0.788152 0.615480i \(-0.788962\pi\)
−0.788152 + 0.615480i \(0.788962\pi\)
\(434\) −2.69361e8 −0.158169
\(435\) −4.96633e9 −2.89283
\(436\) −4.78396e8 −0.276430
\(437\) −3.68096e8 −0.210997
\(438\) 1.64945e9 0.937950
\(439\) −6.85269e8 −0.386576 −0.193288 0.981142i \(-0.561915\pi\)
−0.193288 + 0.981142i \(0.561915\pi\)
\(440\) 1.25736e9 0.703682
\(441\) 4.83907e8 0.268675
\(442\) −9.64043e8 −0.531029
\(443\) −5.97929e8 −0.326766 −0.163383 0.986563i \(-0.552241\pi\)
−0.163383 + 0.986563i \(0.552241\pi\)
\(444\) 1.43971e9 0.780610
\(445\) 4.00654e9 2.15531
\(446\) −6.60545e8 −0.352558
\(447\) −4.81807e9 −2.55151
\(448\) 8.99154e7 0.0472456
\(449\) 1.99499e9 1.04011 0.520054 0.854133i \(-0.325912\pi\)
0.520054 + 0.854133i \(0.325912\pi\)
\(450\) 1.15212e9 0.596013
\(451\) 1.76348e9 0.905215
\(452\) 7.10995e7 0.0362145
\(453\) −1.49338e9 −0.754790
\(454\) 3.01486e8 0.151207
\(455\) −5.98500e8 −0.297868
\(456\) −4.42815e8 −0.218698
\(457\) 1.90956e9 0.935896 0.467948 0.883756i \(-0.344994\pi\)
0.467948 + 0.883756i \(0.344994\pi\)
\(458\) 8.65556e8 0.420985
\(459\) −3.55144e9 −1.71419
\(460\) −7.27226e8 −0.348351
\(461\) −2.16216e9 −1.02786 −0.513931 0.857832i \(-0.671811\pi\)
−0.513931 + 0.857832i \(0.671811\pi\)
\(462\) −1.59017e9 −0.750235
\(463\) 2.71501e9 1.27127 0.635634 0.771990i \(-0.280739\pi\)
0.635634 + 0.771990i \(0.280739\pi\)
\(464\) 7.61930e8 0.354080
\(465\) 2.62079e9 1.20878
\(466\) −8.26560e8 −0.378376
\(467\) 2.47856e9 1.12613 0.563067 0.826411i \(-0.309621\pi\)
0.563067 + 0.826411i \(0.309621\pi\)
\(468\) 1.36558e9 0.615825
\(469\) 4.54900e8 0.203616
\(470\) −2.73577e9 −1.21545
\(471\) −6.06510e8 −0.267464
\(472\) −1.04587e9 −0.457804
\(473\) −5.45541e9 −2.37035
\(474\) −1.52506e9 −0.657754
\(475\) −3.81517e8 −0.163338
\(476\) −5.09936e8 −0.216716
\(477\) 8.96157e8 0.378068
\(478\) 2.36717e9 0.991361
\(479\) −1.60708e8 −0.0668135 −0.0334068 0.999442i \(-0.510636\pi\)
−0.0334068 + 0.999442i \(0.510636\pi\)
\(480\) −8.74843e8 −0.361065
\(481\) 1.47023e9 0.602388
\(482\) −5.11479e8 −0.208048
\(483\) 9.19715e8 0.371397
\(484\) 2.16436e9 0.867703
\(485\) −4.56498e8 −0.181695
\(486\) −6.81314e8 −0.269228
\(487\) −2.42367e9 −0.950871 −0.475435 0.879751i \(-0.657709\pi\)
−0.475435 + 0.879751i \(0.657709\pi\)
\(488\) −5.98775e8 −0.233235
\(489\) 7.22287e9 2.79337
\(490\) −3.16580e8 −0.121562
\(491\) −1.20070e9 −0.457772 −0.228886 0.973453i \(-0.573508\pi\)
−0.228886 + 0.973453i \(0.573508\pi\)
\(492\) −1.22699e9 −0.464474
\(493\) −4.32112e9 −1.62417
\(494\) −4.52201e8 −0.168767
\(495\) 1.01010e10 3.74322
\(496\) −4.02079e8 −0.147954
\(497\) −4.39890e8 −0.160730
\(498\) −3.41171e9 −1.23786
\(499\) 3.49146e9 1.25793 0.628963 0.777435i \(-0.283480\pi\)
0.628963 + 0.777435i \(0.283480\pi\)
\(500\) 9.28064e8 0.332034
\(501\) 5.50138e9 1.95452
\(502\) −1.18733e8 −0.0418900
\(503\) 3.28614e9 1.15133 0.575663 0.817687i \(-0.304744\pi\)
0.575663 + 0.817687i \(0.304744\pi\)
\(504\) 7.22333e8 0.251322
\(505\) 1.55167e9 0.536141
\(506\) −1.97315e9 −0.677068
\(507\) −2.84455e9 −0.969362
\(508\) −2.69167e9 −0.910959
\(509\) −3.22801e9 −1.08498 −0.542492 0.840061i \(-0.682519\pi\)
−0.542492 + 0.840061i \(0.682519\pi\)
\(510\) 4.96149e9 1.65621
\(511\) 8.90980e8 0.295389
\(512\) 1.34218e8 0.0441942
\(513\) −1.66587e9 −0.544790
\(514\) 7.62228e8 0.247579
\(515\) 5.49292e8 0.177206
\(516\) 3.79575e9 1.21625
\(517\) −7.42283e9 −2.36239
\(518\) 7.77685e8 0.245838
\(519\) −6.14310e9 −1.92887
\(520\) −8.93387e8 −0.278630
\(521\) 4.36929e9 1.35356 0.676782 0.736183i \(-0.263374\pi\)
0.676782 + 0.736183i \(0.263374\pi\)
\(522\) 6.12094e9 1.88353
\(523\) −1.17386e9 −0.358806 −0.179403 0.983776i \(-0.557417\pi\)
−0.179403 + 0.983776i \(0.557417\pi\)
\(524\) 7.99047e8 0.242612
\(525\) 9.53247e8 0.287507
\(526\) 1.80674e9 0.541310
\(527\) 2.28031e9 0.678666
\(528\) −2.37367e9 −0.701781
\(529\) −2.26361e9 −0.664824
\(530\) −5.86281e8 −0.171057
\(531\) −8.40195e9 −2.43528
\(532\) −2.39195e8 −0.0688749
\(533\) −1.25299e9 −0.358429
\(534\) −7.56361e9 −2.14949
\(535\) −6.44066e9 −1.81841
\(536\) 6.79035e8 0.190465
\(537\) −3.93234e9 −1.09582
\(538\) 1.89623e8 0.0524992
\(539\) −8.58961e8 −0.236272
\(540\) −3.29115e9 −0.899435
\(541\) 4.81764e9 1.30811 0.654054 0.756448i \(-0.273067\pi\)
0.654054 + 0.756448i \(0.273067\pi\)
\(542\) 1.85750e9 0.501108
\(543\) 1.10591e9 0.296428
\(544\) −7.61188e8 −0.202720
\(545\) 2.51427e9 0.665311
\(546\) 1.12986e9 0.297064
\(547\) 3.75203e9 0.980192 0.490096 0.871668i \(-0.336962\pi\)
0.490096 + 0.871668i \(0.336962\pi\)
\(548\) −2.86655e8 −0.0744094
\(549\) −4.81024e9 −1.24069
\(550\) −2.04509e9 −0.524134
\(551\) −2.02690e9 −0.516181
\(552\) 1.37287e9 0.347410
\(553\) −8.23790e8 −0.207147
\(554\) 4.35911e9 1.08922
\(555\) −7.56658e9 −1.87877
\(556\) 1.43650e9 0.354442
\(557\) 7.46410e9 1.83014 0.915070 0.403296i \(-0.132135\pi\)
0.915070 + 0.403296i \(0.132135\pi\)
\(558\) −3.23009e9 −0.787037
\(559\) 3.87620e9 0.938567
\(560\) −4.72563e8 −0.113711
\(561\) 1.34618e10 3.21908
\(562\) −2.17763e9 −0.517496
\(563\) 2.15093e9 0.507980 0.253990 0.967207i \(-0.418257\pi\)
0.253990 + 0.967207i \(0.418257\pi\)
\(564\) 5.16463e9 1.21217
\(565\) −3.73673e8 −0.0871611
\(566\) 3.04895e9 0.706793
\(567\) 1.07685e9 0.248093
\(568\) −6.56629e8 −0.150349
\(569\) 3.41171e9 0.776390 0.388195 0.921577i \(-0.373099\pi\)
0.388195 + 0.921577i \(0.373099\pi\)
\(570\) 2.32728e9 0.526364
\(571\) −3.38481e9 −0.760865 −0.380432 0.924809i \(-0.624225\pi\)
−0.380432 + 0.924809i \(0.624225\pi\)
\(572\) −2.42398e9 −0.541556
\(573\) 5.38279e9 1.19527
\(574\) −6.62779e8 −0.146277
\(575\) 1.18282e9 0.259467
\(576\) 1.07823e9 0.235090
\(577\) −7.98376e9 −1.73018 −0.865091 0.501614i \(-0.832740\pi\)
−0.865091 + 0.501614i \(0.832740\pi\)
\(578\) 1.03421e9 0.222772
\(579\) −8.67912e9 −1.85823
\(580\) −4.00442e9 −0.852201
\(581\) −1.84290e9 −0.389839
\(582\) 8.61784e8 0.181204
\(583\) −1.59073e9 −0.332473
\(584\) 1.32998e9 0.276311
\(585\) −7.17700e9 −1.48217
\(586\) 5.58336e9 1.14618
\(587\) −2.58389e9 −0.527280 −0.263640 0.964621i \(-0.584923\pi\)
−0.263640 + 0.964621i \(0.584923\pi\)
\(588\) 5.97645e8 0.121233
\(589\) 1.06962e9 0.215688
\(590\) 5.49670e9 1.10184
\(591\) 7.26131e9 1.44697
\(592\) 1.16086e9 0.229961
\(593\) −9.30932e8 −0.183327 −0.0916635 0.995790i \(-0.529218\pi\)
−0.0916635 + 0.995790i \(0.529218\pi\)
\(594\) −8.92972e9 −1.74818
\(595\) 2.68004e9 0.521593
\(596\) −3.88489e9 −0.751651
\(597\) 2.44862e9 0.470989
\(598\) 1.40197e9 0.268092
\(599\) 7.05476e9 1.34118 0.670592 0.741827i \(-0.266040\pi\)
0.670592 + 0.741827i \(0.266040\pi\)
\(600\) 1.42292e9 0.268938
\(601\) −2.65816e8 −0.0499483 −0.0249742 0.999688i \(-0.507950\pi\)
−0.0249742 + 0.999688i \(0.507950\pi\)
\(602\) 2.05034e9 0.383035
\(603\) 5.45501e9 1.01318
\(604\) −1.20413e9 −0.222354
\(605\) −1.13751e10 −2.08839
\(606\) −2.92926e9 −0.534693
\(607\) −5.73526e9 −1.04086 −0.520431 0.853904i \(-0.674229\pi\)
−0.520431 + 0.853904i \(0.674229\pi\)
\(608\) −3.57049e8 −0.0644265
\(609\) 5.06435e9 0.908581
\(610\) 3.14694e9 0.561351
\(611\) 5.27410e9 0.935415
\(612\) −6.11498e9 −1.07836
\(613\) 3.09475e9 0.542643 0.271321 0.962489i \(-0.412539\pi\)
0.271321 + 0.962489i \(0.412539\pi\)
\(614\) −7.10863e9 −1.23936
\(615\) 6.44859e9 1.11790
\(616\) −1.28218e9 −0.221013
\(617\) −4.45734e9 −0.763973 −0.381986 0.924168i \(-0.624760\pi\)
−0.381986 + 0.924168i \(0.624760\pi\)
\(618\) −1.03696e9 −0.176727
\(619\) 6.56511e9 1.11256 0.556282 0.830994i \(-0.312227\pi\)
0.556282 + 0.830994i \(0.312227\pi\)
\(620\) 2.11318e9 0.356095
\(621\) 5.16472e9 0.865418
\(622\) 5.25489e9 0.875582
\(623\) −4.08562e9 −0.676940
\(624\) 1.68655e9 0.277878
\(625\) −7.61300e9 −1.24731
\(626\) −8.51470e9 −1.38726
\(627\) 6.31448e9 1.02306
\(628\) −4.89038e8 −0.0787923
\(629\) −6.58357e9 −1.05483
\(630\) −3.79632e9 −0.604882
\(631\) −9.00692e9 −1.42716 −0.713581 0.700573i \(-0.752928\pi\)
−0.713581 + 0.700573i \(0.752928\pi\)
\(632\) −1.22968e9 −0.193768
\(633\) 9.84757e9 1.54318
\(634\) −5.96471e9 −0.929559
\(635\) 1.41464e10 2.19250
\(636\) 1.10679e9 0.170595
\(637\) 6.10313e8 0.0935545
\(638\) −1.08650e10 −1.65637
\(639\) −5.27501e9 −0.799780
\(640\) −7.05400e8 −0.106367
\(641\) −9.44807e9 −1.41690 −0.708452 0.705759i \(-0.750606\pi\)
−0.708452 + 0.705759i \(0.750606\pi\)
\(642\) 1.21588e10 1.81350
\(643\) −4.93538e9 −0.732120 −0.366060 0.930591i \(-0.619293\pi\)
−0.366060 + 0.930591i \(0.619293\pi\)
\(644\) 7.41580e8 0.109410
\(645\) −1.99491e10 −2.92727
\(646\) 2.02493e9 0.295526
\(647\) 3.64554e9 0.529172 0.264586 0.964362i \(-0.414765\pi\)
0.264586 + 0.964362i \(0.414765\pi\)
\(648\) 1.60743e9 0.232070
\(649\) 1.49139e10 2.14159
\(650\) 1.45308e9 0.207536
\(651\) −2.67252e9 −0.379653
\(652\) 5.82391e9 0.822902
\(653\) −1.22716e10 −1.72466 −0.862332 0.506344i \(-0.830997\pi\)
−0.862332 + 0.506344i \(0.830997\pi\)
\(654\) −4.74649e9 −0.663514
\(655\) −4.19950e9 −0.583920
\(656\) −9.89337e8 −0.136830
\(657\) 1.06843e10 1.46983
\(658\) 2.78977e9 0.381749
\(659\) 5.59468e9 0.761511 0.380755 0.924676i \(-0.375664\pi\)
0.380755 + 0.924676i \(0.375664\pi\)
\(660\) 1.24751e10 1.68905
\(661\) 2.59747e8 0.0349821 0.0174910 0.999847i \(-0.494432\pi\)
0.0174910 + 0.999847i \(0.494432\pi\)
\(662\) −7.06239e9 −0.946126
\(663\) −9.56492e9 −1.27463
\(664\) −2.75092e9 −0.364661
\(665\) 1.25712e9 0.165768
\(666\) 9.32573e9 1.22327
\(667\) 6.28404e9 0.819971
\(668\) 4.43584e9 0.575783
\(669\) −6.55371e9 −0.846244
\(670\) −3.56876e9 −0.458412
\(671\) 8.53844e9 1.09106
\(672\) 8.92111e8 0.113404
\(673\) −1.35567e10 −1.71436 −0.857179 0.515018i \(-0.827785\pi\)
−0.857179 + 0.515018i \(0.827785\pi\)
\(674\) 5.53260e9 0.696017
\(675\) 5.35302e9 0.669940
\(676\) −2.29360e9 −0.285565
\(677\) 1.04549e10 1.29497 0.647485 0.762078i \(-0.275821\pi\)
0.647485 + 0.762078i \(0.275821\pi\)
\(678\) 7.05427e8 0.0869257
\(679\) 4.65508e8 0.0570667
\(680\) 4.00053e9 0.487906
\(681\) 2.99125e9 0.362942
\(682\) 5.73359e9 0.692120
\(683\) 8.53262e9 1.02473 0.512365 0.858768i \(-0.328769\pi\)
0.512365 + 0.858768i \(0.328769\pi\)
\(684\) −2.86834e9 −0.342716
\(685\) 1.50656e9 0.179089
\(686\) 3.22829e8 0.0381802
\(687\) 8.58777e9 1.01049
\(688\) 3.06057e9 0.358296
\(689\) 1.13025e9 0.131646
\(690\) −7.21530e9 −0.836147
\(691\) −5.91850e9 −0.682400 −0.341200 0.939991i \(-0.610833\pi\)
−0.341200 + 0.939991i \(0.610833\pi\)
\(692\) −4.95328e9 −0.568226
\(693\) −1.03004e10 −1.17567
\(694\) 7.27322e9 0.825979
\(695\) −7.54975e9 −0.853072
\(696\) 7.55962e9 0.849899
\(697\) 5.61082e9 0.627642
\(698\) −2.13292e9 −0.237400
\(699\) −8.20086e9 −0.908216
\(700\) 7.68617e8 0.0846968
\(701\) 3.37718e9 0.370289 0.185145 0.982711i \(-0.440725\pi\)
0.185145 + 0.982711i \(0.440725\pi\)
\(702\) 6.34479e9 0.692209
\(703\) −3.08814e9 −0.335238
\(704\) −1.91393e9 −0.206738
\(705\) −2.71434e10 −2.91744
\(706\) −4.64879e9 −0.497191
\(707\) −1.58230e9 −0.168391
\(708\) −1.03768e10 −1.09887
\(709\) 1.18000e10 1.24343 0.621714 0.783244i \(-0.286437\pi\)
0.621714 + 0.783244i \(0.286437\pi\)
\(710\) 3.45100e9 0.361861
\(711\) −9.87861e9 −1.03075
\(712\) −6.09866e9 −0.633220
\(713\) −3.31616e9 −0.342627
\(714\) −5.05942e9 −0.520184
\(715\) 1.27396e10 1.30342
\(716\) −3.17071e9 −0.322820
\(717\) 2.34863e10 2.37956
\(718\) 3.25653e9 0.328337
\(719\) 1.33183e10 1.33628 0.668142 0.744034i \(-0.267090\pi\)
0.668142 + 0.744034i \(0.267090\pi\)
\(720\) −5.66681e9 −0.565816
\(721\) −5.60134e8 −0.0556568
\(722\) −6.20115e9 −0.613185
\(723\) −5.07473e9 −0.499377
\(724\) 8.91711e8 0.0873251
\(725\) 6.51315e9 0.634758
\(726\) 2.14741e10 2.08275
\(727\) −1.02572e10 −0.990048 −0.495024 0.868879i \(-0.664841\pi\)
−0.495024 + 0.868879i \(0.664841\pi\)
\(728\) 9.11021e8 0.0875122
\(729\) −1.36259e10 −1.30262
\(730\) −6.98987e9 −0.665027
\(731\) −1.73574e10 −1.64351
\(732\) −5.94085e9 −0.559835
\(733\) 8.94962e9 0.839345 0.419673 0.907676i \(-0.362145\pi\)
0.419673 + 0.907676i \(0.362145\pi\)
\(734\) −9.05288e9 −0.844988
\(735\) −3.14100e9 −0.291785
\(736\) 1.10697e9 0.102344
\(737\) −9.68295e9 −0.890987
\(738\) −7.94782e9 −0.727865
\(739\) 8.25850e9 0.752741 0.376370 0.926469i \(-0.377172\pi\)
0.376370 + 0.926469i \(0.377172\pi\)
\(740\) −6.10105e9 −0.553469
\(741\) −4.48660e9 −0.405092
\(742\) 5.97853e8 0.0537256
\(743\) 6.90080e9 0.617218 0.308609 0.951189i \(-0.400136\pi\)
0.308609 + 0.951189i \(0.400136\pi\)
\(744\) −3.98930e9 −0.355133
\(745\) 2.04176e10 1.80908
\(746\) 3.22091e9 0.284049
\(747\) −2.20994e10 −1.93981
\(748\) 1.08544e10 0.948313
\(749\) 6.56779e9 0.571127
\(750\) 9.20795e9 0.796982
\(751\) 4.65872e9 0.401353 0.200677 0.979658i \(-0.435686\pi\)
0.200677 + 0.979658i \(0.435686\pi\)
\(752\) 4.16432e9 0.357093
\(753\) −1.17803e9 −0.100549
\(754\) 7.71986e9 0.655858
\(755\) 6.32849e9 0.535163
\(756\) 3.35611e9 0.282495
\(757\) −1.55423e10 −1.30221 −0.651103 0.758990i \(-0.725693\pi\)
−0.651103 + 0.758990i \(0.725693\pi\)
\(758\) −8.84812e9 −0.737919
\(759\) −1.95769e10 −1.62517
\(760\) 1.87652e9 0.155062
\(761\) −6.53914e9 −0.537866 −0.268933 0.963159i \(-0.586671\pi\)
−0.268933 + 0.963159i \(0.586671\pi\)
\(762\) −2.67059e10 −2.18658
\(763\) −2.56390e9 −0.208961
\(764\) 4.34022e9 0.352116
\(765\) 3.21381e10 2.59541
\(766\) −3.63137e9 −0.291924
\(767\) −1.05967e10 −0.847983
\(768\) 1.33166e9 0.106079
\(769\) 1.21454e10 0.963099 0.481549 0.876419i \(-0.340074\pi\)
0.481549 + 0.876419i \(0.340074\pi\)
\(770\) 6.73868e9 0.531933
\(771\) 7.56258e9 0.594264
\(772\) −6.99811e9 −0.547419
\(773\) 1.58915e10 1.23748 0.618739 0.785596i \(-0.287644\pi\)
0.618739 + 0.785596i \(0.287644\pi\)
\(774\) 2.45870e10 1.90595
\(775\) −3.43706e9 −0.265235
\(776\) 6.94869e8 0.0533810
\(777\) 7.71594e9 0.590086
\(778\) −7.68396e9 −0.585001
\(779\) 2.63186e9 0.199472
\(780\) −8.86390e9 −0.668796
\(781\) 9.36344e9 0.703326
\(782\) −6.27792e9 −0.469453
\(783\) 2.84392e10 2.11715
\(784\) 4.81890e8 0.0357143
\(785\) 2.57021e9 0.189638
\(786\) 7.92789e9 0.582343
\(787\) 2.21461e10 1.61952 0.809758 0.586763i \(-0.199598\pi\)
0.809758 + 0.586763i \(0.199598\pi\)
\(788\) 5.85490e9 0.426263
\(789\) 1.79259e10 1.29931
\(790\) 6.46276e9 0.466362
\(791\) 3.81049e8 0.0273756
\(792\) −1.53755e10 −1.09974
\(793\) −6.06677e9 −0.432018
\(794\) 8.98329e9 0.636889
\(795\) −5.81689e9 −0.410588
\(796\) 1.97436e9 0.138749
\(797\) 1.99270e10 1.39424 0.697120 0.716954i \(-0.254464\pi\)
0.697120 + 0.716954i \(0.254464\pi\)
\(798\) −2.37321e9 −0.165320
\(799\) −2.36171e10 −1.63799
\(800\) 1.14732e9 0.0792266
\(801\) −4.89934e10 −3.36840
\(802\) −1.40833e10 −0.964039
\(803\) −1.89653e10 −1.29257
\(804\) 6.73717e9 0.457174
\(805\) −3.89748e9 −0.263329
\(806\) −4.07386e9 −0.274052
\(807\) 1.88138e9 0.126014
\(808\) −2.36191e9 −0.157516
\(809\) −1.55211e10 −1.03063 −0.515313 0.857002i \(-0.672324\pi\)
−0.515313 + 0.857002i \(0.672324\pi\)
\(810\) −8.44806e9 −0.558547
\(811\) 5.22078e9 0.343686 0.171843 0.985124i \(-0.445028\pi\)
0.171843 + 0.985124i \(0.445028\pi\)
\(812\) 4.08347e9 0.267660
\(813\) 1.84295e10 1.20281
\(814\) −1.65537e10 −1.07575
\(815\) −3.06083e10 −1.98056
\(816\) −7.55226e9 −0.486588
\(817\) −8.14178e9 −0.522327
\(818\) 1.69025e10 1.07973
\(819\) 7.31867e9 0.465520
\(820\) 5.19960e9 0.329322
\(821\) −1.97215e10 −1.24377 −0.621883 0.783110i \(-0.713632\pi\)
−0.621883 + 0.783110i \(0.713632\pi\)
\(822\) −2.84410e9 −0.178605
\(823\) 1.27286e10 0.795944 0.397972 0.917398i \(-0.369714\pi\)
0.397972 + 0.917398i \(0.369714\pi\)
\(824\) −8.36118e8 −0.0520622
\(825\) −2.02907e10 −1.25808
\(826\) −5.60520e9 −0.346067
\(827\) 4.32638e9 0.265984 0.132992 0.991117i \(-0.457542\pi\)
0.132992 + 0.991117i \(0.457542\pi\)
\(828\) 8.89278e9 0.544416
\(829\) −2.39465e10 −1.45982 −0.729912 0.683541i \(-0.760439\pi\)
−0.729912 + 0.683541i \(0.760439\pi\)
\(830\) 1.44578e10 0.877667
\(831\) 4.32497e10 2.61444
\(832\) 1.35989e9 0.0818602
\(833\) −2.73294e9 −0.163822
\(834\) 1.42525e10 0.850767
\(835\) −2.33132e10 −1.38579
\(836\) 5.09147e9 0.301384
\(837\) −1.50077e10 −0.884657
\(838\) 2.08378e10 1.22320
\(839\) −2.67007e10 −1.56083 −0.780414 0.625263i \(-0.784992\pi\)
−0.780414 + 0.625263i \(0.784992\pi\)
\(840\) −4.68861e9 −0.272940
\(841\) 1.73528e10 1.00597
\(842\) 1.69776e10 0.980132
\(843\) −2.16057e10 −1.24215
\(844\) 7.94024e9 0.454606
\(845\) 1.20544e10 0.687299
\(846\) 3.34539e10 1.89955
\(847\) 1.15996e10 0.655922
\(848\) 8.92423e8 0.0502557
\(849\) 3.02506e10 1.69652
\(850\) −6.50681e9 −0.363414
\(851\) 9.57422e9 0.532537
\(852\) −6.51486e9 −0.360883
\(853\) −3.26804e10 −1.80288 −0.901439 0.432906i \(-0.857488\pi\)
−0.901439 + 0.432906i \(0.857488\pi\)
\(854\) −3.20906e9 −0.176309
\(855\) 1.50750e10 0.824850
\(856\) 9.80381e9 0.534241
\(857\) 1.36792e10 0.742383 0.371191 0.928556i \(-0.378949\pi\)
0.371191 + 0.928556i \(0.378949\pi\)
\(858\) −2.40500e10 −1.29990
\(859\) −3.58563e10 −1.93014 −0.965070 0.261991i \(-0.915621\pi\)
−0.965070 + 0.261991i \(0.915621\pi\)
\(860\) −1.60852e10 −0.862348
\(861\) −6.57588e9 −0.351110
\(862\) −1.56438e10 −0.831892
\(863\) −1.19390e10 −0.632309 −0.316154 0.948708i \(-0.602392\pi\)
−0.316154 + 0.948708i \(0.602392\pi\)
\(864\) 5.00971e9 0.264250
\(865\) 2.60326e10 1.36761
\(866\) −2.13029e10 −1.11462
\(867\) 1.02611e10 0.534720
\(868\) −2.15489e9 −0.111842
\(869\) 1.75351e10 0.906439
\(870\) −3.97306e10 −2.04554
\(871\) 6.87997e9 0.352796
\(872\) −3.82717e9 −0.195465
\(873\) 5.58221e9 0.283960
\(874\) −2.94477e9 −0.149197
\(875\) 4.97384e9 0.250994
\(876\) 1.31956e10 0.663230
\(877\) −2.49676e10 −1.24991 −0.624953 0.780662i \(-0.714882\pi\)
−0.624953 + 0.780662i \(0.714882\pi\)
\(878\) −5.48215e9 −0.273351
\(879\) 5.53963e10 2.75118
\(880\) 1.00589e10 0.497578
\(881\) −2.30202e10 −1.13421 −0.567106 0.823645i \(-0.691937\pi\)
−0.567106 + 0.823645i \(0.691937\pi\)
\(882\) 3.87125e9 0.189982
\(883\) −3.66045e9 −0.178925 −0.0894627 0.995990i \(-0.528515\pi\)
−0.0894627 + 0.995990i \(0.528515\pi\)
\(884\) −7.71234e9 −0.375494
\(885\) 5.45365e10 2.64476
\(886\) −4.78344e9 −0.231058
\(887\) 1.36071e10 0.654685 0.327342 0.944906i \(-0.393847\pi\)
0.327342 + 0.944906i \(0.393847\pi\)
\(888\) 1.15177e10 0.551975
\(889\) −1.44257e10 −0.688621
\(890\) 3.20523e10 1.52403
\(891\) −2.29217e10 −1.08561
\(892\) −5.28436e9 −0.249296
\(893\) −1.10780e10 −0.520573
\(894\) −3.85446e10 −1.80419
\(895\) 1.66641e10 0.776964
\(896\) 7.19323e8 0.0334077
\(897\) 1.39099e10 0.643502
\(898\) 1.59599e10 0.735468
\(899\) −1.82602e10 −0.838199
\(900\) 9.21700e9 0.421445
\(901\) −5.06119e9 −0.230524
\(902\) 1.41078e10 0.640084
\(903\) 2.03428e10 0.919399
\(904\) 5.68796e8 0.0256075
\(905\) −4.68651e9 −0.210174
\(906\) −1.19470e10 −0.533717
\(907\) −1.79942e10 −0.800771 −0.400385 0.916347i \(-0.631124\pi\)
−0.400385 + 0.916347i \(0.631124\pi\)
\(908\) 2.41189e9 0.106919
\(909\) −1.89744e10 −0.837902
\(910\) −4.78800e9 −0.210625
\(911\) 2.77433e10 1.21575 0.607875 0.794033i \(-0.292022\pi\)
0.607875 + 0.794033i \(0.292022\pi\)
\(912\) −3.54252e9 −0.154643
\(913\) 3.92277e10 1.70587
\(914\) 1.52765e10 0.661778
\(915\) 3.12229e10 1.34741
\(916\) 6.92445e9 0.297681
\(917\) 4.28239e9 0.183398
\(918\) −2.84115e10 −1.21212
\(919\) 8.80141e9 0.374066 0.187033 0.982354i \(-0.440113\pi\)
0.187033 + 0.982354i \(0.440113\pi\)
\(920\) −5.81781e9 −0.246321
\(921\) −7.05295e10 −2.97483
\(922\) −1.72973e10 −0.726808
\(923\) −6.65296e9 −0.278489
\(924\) −1.27214e10 −0.530497
\(925\) 9.92329e9 0.412249
\(926\) 2.17201e10 0.898923
\(927\) −6.71693e9 −0.276944
\(928\) 6.09544e9 0.250373
\(929\) 4.45563e10 1.82328 0.911642 0.410984i \(-0.134815\pi\)
0.911642 + 0.410984i \(0.134815\pi\)
\(930\) 2.09663e10 0.854735
\(931\) −1.28193e9 −0.0520645
\(932\) −6.61248e9 −0.267552
\(933\) 5.21373e10 2.10166
\(934\) 1.98285e10 0.796298
\(935\) −5.70470e10 −2.28240
\(936\) 1.09247e10 0.435454
\(937\) 1.31838e10 0.523544 0.261772 0.965130i \(-0.415693\pi\)
0.261772 + 0.965130i \(0.415693\pi\)
\(938\) 3.63920e9 0.143978
\(939\) −8.44801e10 −3.32985
\(940\) −2.18861e10 −0.859452
\(941\) −1.06709e10 −0.417481 −0.208741 0.977971i \(-0.566936\pi\)
−0.208741 + 0.977971i \(0.566936\pi\)
\(942\) −4.85208e9 −0.189125
\(943\) −8.15959e9 −0.316867
\(944\) −8.36694e9 −0.323716
\(945\) −1.76385e10 −0.679909
\(946\) −4.36433e10 −1.67609
\(947\) 4.13633e10 1.58267 0.791334 0.611384i \(-0.209387\pi\)
0.791334 + 0.611384i \(0.209387\pi\)
\(948\) −1.22005e10 −0.465102
\(949\) 1.34753e10 0.511807
\(950\) −3.05213e9 −0.115497
\(951\) −5.91799e10 −2.23122
\(952\) −4.07949e9 −0.153242
\(953\) −1.95469e10 −0.731564 −0.365782 0.930701i \(-0.619198\pi\)
−0.365782 + 0.930701i \(0.619198\pi\)
\(954\) 7.16925e9 0.267334
\(955\) −2.28106e10 −0.847472
\(956\) 1.89374e10 0.700998
\(957\) −1.07799e11 −3.97579
\(958\) −1.28567e9 −0.0472443
\(959\) −1.53629e9 −0.0562482
\(960\) −6.99875e9 −0.255312
\(961\) −1.78765e10 −0.649756
\(962\) 1.17618e10 0.425952
\(963\) 7.87587e10 2.84188
\(964\) −4.09183e9 −0.147112
\(965\) 3.67795e10 1.31753
\(966\) 7.35772e9 0.262617
\(967\) 1.61106e10 0.572952 0.286476 0.958087i \(-0.407516\pi\)
0.286476 + 0.958087i \(0.407516\pi\)
\(968\) 1.73149e10 0.613559
\(969\) 2.00907e10 0.709351
\(970\) −3.65198e9 −0.128478
\(971\) 3.31578e10 1.16230 0.581151 0.813796i \(-0.302603\pi\)
0.581151 + 0.813796i \(0.302603\pi\)
\(972\) −5.45051e9 −0.190373
\(973\) 7.69877e9 0.267933
\(974\) −1.93893e10 −0.672367
\(975\) 1.44170e10 0.498149
\(976\) −4.79020e9 −0.164922
\(977\) 1.84221e10 0.631989 0.315994 0.948761i \(-0.397662\pi\)
0.315994 + 0.948761i \(0.397662\pi\)
\(978\) 5.77829e10 1.97521
\(979\) 8.69660e10 2.96217
\(980\) −2.53264e9 −0.0859572
\(981\) −3.07454e10 −1.03977
\(982\) −9.60561e9 −0.323694
\(983\) −7.35533e9 −0.246982 −0.123491 0.992346i \(-0.539409\pi\)
−0.123491 + 0.992346i \(0.539409\pi\)
\(984\) −9.81589e9 −0.328433
\(985\) −3.07712e10 −1.02593
\(986\) −3.45690e10 −1.14846
\(987\) 2.76792e10 0.916311
\(988\) −3.61761e9 −0.119336
\(989\) 2.52421e10 0.829734
\(990\) 8.08079e10 2.64686
\(991\) −4.71378e10 −1.53855 −0.769275 0.638918i \(-0.779382\pi\)
−0.769275 + 0.638918i \(0.779382\pi\)
\(992\) −3.21663e9 −0.104619
\(993\) −7.00708e10 −2.27099
\(994\) −3.51912e9 −0.113653
\(995\) −1.03765e10 −0.333941
\(996\) −2.72937e10 −0.875296
\(997\) 4.17584e9 0.133448 0.0667238 0.997771i \(-0.478745\pi\)
0.0667238 + 0.997771i \(0.478745\pi\)
\(998\) 2.79317e10 0.889488
\(999\) 4.33293e10 1.37500
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.8.a.c.1.2 2
3.2 odd 2 126.8.a.i.1.2 2
4.3 odd 2 112.8.a.g.1.1 2
5.2 odd 4 350.8.c.k.99.3 4
5.3 odd 4 350.8.c.k.99.2 4
5.4 even 2 350.8.a.j.1.1 2
7.2 even 3 98.8.c.g.67.1 4
7.3 odd 6 98.8.c.k.79.2 4
7.4 even 3 98.8.c.g.79.1 4
7.5 odd 6 98.8.c.k.67.2 4
7.6 odd 2 98.8.a.g.1.1 2
8.3 odd 2 448.8.a.s.1.2 2
8.5 even 2 448.8.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.8.a.c.1.2 2 1.1 even 1 trivial
98.8.a.g.1.1 2 7.6 odd 2
98.8.c.g.67.1 4 7.2 even 3
98.8.c.g.79.1 4 7.4 even 3
98.8.c.k.67.2 4 7.5 odd 6
98.8.c.k.79.2 4 7.3 odd 6
112.8.a.g.1.1 2 4.3 odd 2
126.8.a.i.1.2 2 3.2 odd 2
350.8.a.j.1.1 2 5.4 even 2
350.8.c.k.99.2 4 5.3 odd 4
350.8.c.k.99.3 4 5.2 odd 4
448.8.a.l.1.1 2 8.5 even 2
448.8.a.s.1.2 2 8.3 odd 2