Properties

Label 14.8.a
Level $14$
Weight $8$
Character orbit 14.a
Rep. character $\chi_{14}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $3$
Sturm bound $16$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(16\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(14))\).

Total New Old
Modular forms 16 4 12
Cusp forms 12 4 8
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(3\)
Minus space\(-\)\(1\)

Trace form

\( 4 q + 16 q^{2} - 78 q^{3} + 256 q^{4} + 174 q^{5} + 688 q^{6} + 1024 q^{8} + 8720 q^{9} - 5776 q^{10} - 972 q^{11} - 4992 q^{12} - 3734 q^{13} + 5488 q^{14} - 41368 q^{15} + 16384 q^{16} + 516 q^{17} - 2832 q^{18}+ \cdots - 27165244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
14.8.a.a 14.a 1.a $1$ $4.373$ \(\Q\) None 14.8.a.a \(-8\) \(-82\) \(448\) \(-343\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}-82q^{3}+2^{6}q^{4}+448q^{5}+\cdots\)
14.8.a.b 14.a 1.a $1$ $4.373$ \(\Q\) None 14.8.a.b \(8\) \(-66\) \(-400\) \(-343\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}-66q^{3}+2^{6}q^{4}-20^{2}q^{5}+\cdots\)
14.8.a.c 14.a 1.a $2$ $4.373$ \(\Q(\sqrt{1969}) \) None 14.8.a.c \(16\) \(70\) \(126\) \(686\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(35-\beta )q^{3}+2^{6}q^{4}+(63+9\beta )q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)