Defining parameters
Level: | \( N \) | \(=\) | \( 14 = 2 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 14.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(14))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 4 | 12 |
Cusp forms | 12 | 4 | 8 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
14.8.a.a | $1$ | $4.373$ | \(\Q\) | None | \(-8\) | \(-82\) | \(448\) | \(-343\) | $+$ | $+$ | \(q-8q^{2}-82q^{3}+2^{6}q^{4}+448q^{5}+\cdots\) | |
14.8.a.b | $1$ | $4.373$ | \(\Q\) | None | \(8\) | \(-66\) | \(-400\) | \(-343\) | $-$ | $+$ | \(q+8q^{2}-66q^{3}+2^{6}q^{4}-20^{2}q^{5}+\cdots\) | |
14.8.a.c | $2$ | $4.373$ | \(\Q(\sqrt{1969}) \) | None | \(16\) | \(70\) | \(126\) | \(686\) | $-$ | $-$ | \(q+8q^{2}+(35-\beta )q^{3}+2^{6}q^{4}+(63+9\beta )q^{5}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)