Properties

Label 14.8
Level 14
Weight 8
Dimension 12
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 96
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 14 = 2 \cdot 7 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(96\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(14))\).

Total New Old
Modular forms 48 12 36
Cusp forms 36 12 24
Eisenstein series 12 0 12

Trace form

\( 12 q + 16 q^{2} - 78 q^{3} + 426 q^{5} - 1104 q^{6} - 1680 q^{7} + 1024 q^{8} + 7656 q^{9} - 3984 q^{10} - 9228 q^{11} - 4992 q^{12} + 20346 q^{13} - 18704 q^{14} + 5208 q^{15} + 83256 q^{17} - 25872 q^{18}+ \cdots + 32055492 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(14))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
14.8.a \(\chi_{14}(1, \cdot)\) 14.8.a.a 1 1
14.8.a.b 1
14.8.a.c 2
14.8.c \(\chi_{14}(9, \cdot)\) 14.8.c.a 4 2
14.8.c.b 4

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(14))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(14)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 1}\)