Defining parameters
| Level: | \( N \) | \(=\) | \( 14 = 2 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 14.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(12\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(14))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 12 | 2 | 10 |
| Cusp forms | 8 | 2 | 6 |
| Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(5\) | \(0\) | \(5\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | ||||
| Minus space | \(-\) | \(7\) | \(2\) | \(5\) | \(5\) | \(2\) | \(3\) | \(2\) | \(0\) | \(2\) | ||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
| 14.6.a.a | $1$ | $2.245$ | \(\Q\) | None | \(-4\) | \(10\) | \(84\) | \(49\) | $+$ | $-$ | \(q-4q^{2}+10q^{3}+2^{4}q^{4}+84q^{5}-40q^{6}+\cdots\) | |
| 14.6.a.b | $1$ | $2.245$ | \(\Q\) | None | \(4\) | \(8\) | \(10\) | \(-49\) | $-$ | $+$ | \(q+4q^{2}+8q^{3}+2^{4}q^{4}+10q^{5}+2^{5}q^{6}+\cdots\) | |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)