Properties

Label 14.4.c.b.9.1
Level 14
Weight 4
Character 14.9
Analytic conductor 0.826
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 14.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.826026740080\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 14.9
Dual form 14.4.c.b.11.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(-3.50000 + 6.06218i) q^{5} +2.00000 q^{6} +(-10.0000 + 15.5885i) q^{7} -8.00000 q^{8} +(13.0000 - 22.5167i) q^{9} +O(q^{10})\) \(q+(1.00000 - 1.73205i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(-3.50000 + 6.06218i) q^{5} +2.00000 q^{6} +(-10.0000 + 15.5885i) q^{7} -8.00000 q^{8} +(13.0000 - 22.5167i) q^{9} +(7.00000 + 12.1244i) q^{10} +(-17.5000 - 30.3109i) q^{11} +(2.00000 - 3.46410i) q^{12} +66.0000 q^{13} +(17.0000 + 32.9090i) q^{14} -7.00000 q^{15} +(-8.00000 + 13.8564i) q^{16} +(-29.5000 - 51.0955i) q^{17} +(-26.0000 - 45.0333i) q^{18} +(-68.5000 + 118.645i) q^{19} +28.0000 q^{20} +(-18.5000 - 0.866025i) q^{21} -70.0000 q^{22} +(3.50000 - 6.06218i) q^{23} +(-4.00000 - 6.92820i) q^{24} +(38.0000 + 65.8179i) q^{25} +(66.0000 - 114.315i) q^{26} +53.0000 q^{27} +(74.0000 + 3.46410i) q^{28} +106.000 q^{29} +(-7.00000 + 12.1244i) q^{30} +(-37.5000 - 64.9519i) q^{31} +(16.0000 + 27.7128i) q^{32} +(17.5000 - 30.3109i) q^{33} -118.000 q^{34} +(-59.5000 - 115.181i) q^{35} -104.000 q^{36} +(-5.50000 + 9.52628i) q^{37} +(137.000 + 237.291i) q^{38} +(33.0000 + 57.1577i) q^{39} +(28.0000 - 48.4974i) q^{40} -498.000 q^{41} +(-20.0000 + 31.1769i) q^{42} +260.000 q^{43} +(-70.0000 + 121.244i) q^{44} +(91.0000 + 157.617i) q^{45} +(-7.00000 - 12.1244i) q^{46} +(85.5000 - 148.090i) q^{47} -16.0000 q^{48} +(-143.000 - 311.769i) q^{49} +152.000 q^{50} +(29.5000 - 51.0955i) q^{51} +(-132.000 - 228.631i) q^{52} +(208.500 + 361.133i) q^{53} +(53.0000 - 91.7987i) q^{54} +245.000 q^{55} +(80.0000 - 124.708i) q^{56} -137.000 q^{57} +(106.000 - 183.597i) q^{58} +(8.50000 + 14.7224i) q^{59} +(14.0000 + 24.2487i) q^{60} +(-25.5000 + 44.1673i) q^{61} -150.000 q^{62} +(221.000 + 427.817i) q^{63} +64.0000 q^{64} +(-231.000 + 400.104i) q^{65} +(-35.0000 - 60.6218i) q^{66} +(-219.500 - 380.185i) q^{67} +(-118.000 + 204.382i) q^{68} +7.00000 q^{69} +(-259.000 - 12.1244i) q^{70} -784.000 q^{71} +(-104.000 + 180.133i) q^{72} +(-147.500 - 255.477i) q^{73} +(11.0000 + 19.0526i) q^{74} +(-38.0000 + 65.8179i) q^{75} +548.000 q^{76} +(647.500 + 30.3109i) q^{77} +132.000 q^{78} +(247.500 - 428.683i) q^{79} +(-56.0000 - 96.9948i) q^{80} +(-324.500 - 562.050i) q^{81} +(-498.000 + 862.561i) q^{82} +932.000 q^{83} +(34.0000 + 65.8179i) q^{84} +413.000 q^{85} +(260.000 - 450.333i) q^{86} +(53.0000 + 91.7987i) q^{87} +(140.000 + 242.487i) q^{88} +(436.500 - 756.040i) q^{89} +364.000 q^{90} +(-660.000 + 1028.84i) q^{91} -28.0000 q^{92} +(37.5000 - 64.9519i) q^{93} +(-171.000 - 296.181i) q^{94} +(-479.500 - 830.518i) q^{95} +(-16.0000 + 27.7128i) q^{96} -290.000 q^{97} +(-683.000 - 64.0859i) q^{98} -910.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + q^{3} - 4q^{4} - 7q^{5} + 4q^{6} - 20q^{7} - 16q^{8} + 26q^{9} + O(q^{10}) \) \( 2q + 2q^{2} + q^{3} - 4q^{4} - 7q^{5} + 4q^{6} - 20q^{7} - 16q^{8} + 26q^{9} + 14q^{10} - 35q^{11} + 4q^{12} + 132q^{13} + 34q^{14} - 14q^{15} - 16q^{16} - 59q^{17} - 52q^{18} - 137q^{19} + 56q^{20} - 37q^{21} - 140q^{22} + 7q^{23} - 8q^{24} + 76q^{25} + 132q^{26} + 106q^{27} + 148q^{28} + 212q^{29} - 14q^{30} - 75q^{31} + 32q^{32} + 35q^{33} - 236q^{34} - 119q^{35} - 208q^{36} - 11q^{37} + 274q^{38} + 66q^{39} + 56q^{40} - 996q^{41} - 40q^{42} + 520q^{43} - 140q^{44} + 182q^{45} - 14q^{46} + 171q^{47} - 32q^{48} - 286q^{49} + 304q^{50} + 59q^{51} - 264q^{52} + 417q^{53} + 106q^{54} + 490q^{55} + 160q^{56} - 274q^{57} + 212q^{58} + 17q^{59} + 28q^{60} - 51q^{61} - 300q^{62} + 442q^{63} + 128q^{64} - 462q^{65} - 70q^{66} - 439q^{67} - 236q^{68} + 14q^{69} - 518q^{70} - 1568q^{71} - 208q^{72} - 295q^{73} + 22q^{74} - 76q^{75} + 1096q^{76} + 1295q^{77} + 264q^{78} + 495q^{79} - 112q^{80} - 649q^{81} - 996q^{82} + 1864q^{83} + 68q^{84} + 826q^{85} + 520q^{86} + 106q^{87} + 280q^{88} + 873q^{89} + 728q^{90} - 1320q^{91} - 56q^{92} + 75q^{93} - 342q^{94} - 959q^{95} - 32q^{96} - 580q^{97} - 1366q^{98} - 1820q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/14\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0.500000 + 0.866025i 0.0962250 + 0.166667i 0.910119 0.414346i \(-0.135990\pi\)
−0.813894 + 0.581013i \(0.802656\pi\)
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −3.50000 + 6.06218i −0.313050 + 0.542218i −0.979021 0.203760i \(-0.934684\pi\)
0.665971 + 0.745977i \(0.268017\pi\)
\(6\) 2.00000 0.136083
\(7\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(8\) −8.00000 −0.353553
\(9\) 13.0000 22.5167i 0.481481 0.833950i
\(10\) 7.00000 + 12.1244i 0.221359 + 0.383406i
\(11\) −17.5000 30.3109i −0.479677 0.830825i 0.520051 0.854135i \(-0.325913\pi\)
−0.999728 + 0.0233099i \(0.992580\pi\)
\(12\) 2.00000 3.46410i 0.0481125 0.0833333i
\(13\) 66.0000 1.40809 0.704043 0.710158i \(-0.251376\pi\)
0.704043 + 0.710158i \(0.251376\pi\)
\(14\) 17.0000 + 32.9090i 0.324532 + 0.628235i
\(15\) −7.00000 −0.120493
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −29.5000 51.0955i −0.420871 0.728969i 0.575154 0.818045i \(-0.304942\pi\)
−0.996025 + 0.0890757i \(0.971609\pi\)
\(18\) −26.0000 45.0333i −0.340459 0.589692i
\(19\) −68.5000 + 118.645i −0.827104 + 1.43259i 0.0731965 + 0.997318i \(0.476680\pi\)
−0.900301 + 0.435269i \(0.856653\pi\)
\(20\) 28.0000 0.313050
\(21\) −18.5000 0.866025i −0.192240 0.00899915i
\(22\) −70.0000 −0.678366
\(23\) 3.50000 6.06218i 0.0317305 0.0549588i −0.849724 0.527228i \(-0.823232\pi\)
0.881455 + 0.472269i \(0.156565\pi\)
\(24\) −4.00000 6.92820i −0.0340207 0.0589256i
\(25\) 38.0000 + 65.8179i 0.304000 + 0.526543i
\(26\) 66.0000 114.315i 0.497833 0.862273i
\(27\) 53.0000 0.377772
\(28\) 74.0000 + 3.46410i 0.499453 + 0.0233805i
\(29\) 106.000 0.678748 0.339374 0.940651i \(-0.389785\pi\)
0.339374 + 0.940651i \(0.389785\pi\)
\(30\) −7.00000 + 12.1244i −0.0426006 + 0.0737865i
\(31\) −37.5000 64.9519i −0.217264 0.376313i 0.736706 0.676213i \(-0.236380\pi\)
−0.953971 + 0.299900i \(0.903047\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 17.5000 30.3109i 0.0923139 0.159892i
\(34\) −118.000 −0.595201
\(35\) −59.5000 115.181i −0.287352 0.556263i
\(36\) −104.000 −0.481481
\(37\) −5.50000 + 9.52628i −0.0244377 + 0.0423273i −0.877986 0.478687i \(-0.841113\pi\)
0.853548 + 0.521014i \(0.174446\pi\)
\(38\) 137.000 + 237.291i 0.584851 + 1.01299i
\(39\) 33.0000 + 57.1577i 0.135493 + 0.234681i
\(40\) 28.0000 48.4974i 0.110680 0.191703i
\(41\) −498.000 −1.89694 −0.948470 0.316867i \(-0.897369\pi\)
−0.948470 + 0.316867i \(0.897369\pi\)
\(42\) −20.0000 + 31.1769i −0.0734778 + 0.114541i
\(43\) 260.000 0.922084 0.461042 0.887378i \(-0.347476\pi\)
0.461042 + 0.887378i \(0.347476\pi\)
\(44\) −70.0000 + 121.244i −0.239839 + 0.415413i
\(45\) 91.0000 + 157.617i 0.301455 + 0.522136i
\(46\) −7.00000 12.1244i −0.0224368 0.0388617i
\(47\) 85.5000 148.090i 0.265350 0.459600i −0.702305 0.711876i \(-0.747846\pi\)
0.967655 + 0.252276i \(0.0811791\pi\)
\(48\) −16.0000 −0.0481125
\(49\) −143.000 311.769i −0.416910 0.908948i
\(50\) 152.000 0.429921
\(51\) 29.5000 51.0955i 0.0809966 0.140290i
\(52\) −132.000 228.631i −0.352021 0.609719i
\(53\) 208.500 + 361.133i 0.540371 + 0.935951i 0.998883 + 0.0472619i \(0.0150495\pi\)
−0.458511 + 0.888689i \(0.651617\pi\)
\(54\) 53.0000 91.7987i 0.133563 0.231337i
\(55\) 245.000 0.600651
\(56\) 80.0000 124.708i 0.190901 0.297585i
\(57\) −137.000 −0.318353
\(58\) 106.000 183.597i 0.239974 0.415647i
\(59\) 8.50000 + 14.7224i 0.0187560 + 0.0324864i 0.875251 0.483669i \(-0.160696\pi\)
−0.856495 + 0.516155i \(0.827363\pi\)
\(60\) 14.0000 + 24.2487i 0.0301232 + 0.0521749i
\(61\) −25.5000 + 44.1673i −0.0535236 + 0.0927056i −0.891546 0.452930i \(-0.850379\pi\)
0.838022 + 0.545636i \(0.183712\pi\)
\(62\) −150.000 −0.307258
\(63\) 221.000 + 427.817i 0.441958 + 0.855553i
\(64\) 64.0000 0.125000
\(65\) −231.000 + 400.104i −0.440800 + 0.763489i
\(66\) −35.0000 60.6218i −0.0652758 0.113061i
\(67\) −219.500 380.185i −0.400242 0.693239i 0.593513 0.804824i \(-0.297740\pi\)
−0.993755 + 0.111585i \(0.964407\pi\)
\(68\) −118.000 + 204.382i −0.210435 + 0.364485i
\(69\) 7.00000 0.0122131
\(70\) −259.000 12.1244i −0.442235 0.0207020i
\(71\) −784.000 −1.31047 −0.655237 0.755423i \(-0.727431\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(72\) −104.000 + 180.133i −0.170229 + 0.294846i
\(73\) −147.500 255.477i −0.236487 0.409608i 0.723217 0.690621i \(-0.242663\pi\)
−0.959704 + 0.281013i \(0.909329\pi\)
\(74\) 11.0000 + 19.0526i 0.0172801 + 0.0299299i
\(75\) −38.0000 + 65.8179i −0.0585048 + 0.101333i
\(76\) 548.000 0.827104
\(77\) 647.500 + 30.3109i 0.958305 + 0.0448603i
\(78\) 132.000 0.191616
\(79\) 247.500 428.683i 0.352480 0.610513i −0.634203 0.773166i \(-0.718672\pi\)
0.986683 + 0.162653i \(0.0520051\pi\)
\(80\) −56.0000 96.9948i −0.0782624 0.135554i
\(81\) −324.500 562.050i −0.445130 0.770988i
\(82\) −498.000 + 862.561i −0.670670 + 1.16163i
\(83\) 932.000 1.23253 0.616267 0.787537i \(-0.288644\pi\)
0.616267 + 0.787537i \(0.288644\pi\)
\(84\) 34.0000 + 65.8179i 0.0441631 + 0.0854920i
\(85\) 413.000 0.527013
\(86\) 260.000 450.333i 0.326006 0.564659i
\(87\) 53.0000 + 91.7987i 0.0653126 + 0.113125i
\(88\) 140.000 + 242.487i 0.169591 + 0.293741i
\(89\) 436.500 756.040i 0.519875 0.900451i −0.479858 0.877346i \(-0.659312\pi\)
0.999733 0.0231042i \(-0.00735495\pi\)
\(90\) 364.000 0.426322
\(91\) −660.000 + 1028.84i −0.760294 + 1.18518i
\(92\) −28.0000 −0.0317305
\(93\) 37.5000 64.9519i 0.0418126 0.0724215i
\(94\) −171.000 296.181i −0.187631 0.324986i
\(95\) −479.500 830.518i −0.517849 0.896941i
\(96\) −16.0000 + 27.7128i −0.0170103 + 0.0294628i
\(97\) −290.000 −0.303557 −0.151779 0.988415i \(-0.548500\pi\)
−0.151779 + 0.988415i \(0.548500\pi\)
\(98\) −683.000 64.0859i −0.704014 0.0660577i
\(99\) −910.000 −0.923823
\(100\) 152.000 263.272i 0.152000 0.263272i
\(101\) 542.500 + 939.638i 0.534463 + 0.925717i 0.999189 + 0.0402627i \(0.0128195\pi\)
−0.464726 + 0.885454i \(0.653847\pi\)
\(102\) −59.0000 102.191i −0.0572732 0.0992002i
\(103\) −776.500 + 1344.94i −0.742823 + 1.28661i 0.208381 + 0.978048i \(0.433181\pi\)
−0.951205 + 0.308560i \(0.900153\pi\)
\(104\) −528.000 −0.497833
\(105\) 70.0000 109.119i 0.0650600 0.101419i
\(106\) 834.000 0.764200
\(107\) −64.5000 + 111.717i −0.0582752 + 0.100936i −0.893691 0.448682i \(-0.851893\pi\)
0.835416 + 0.549618i \(0.185227\pi\)
\(108\) −106.000 183.597i −0.0944431 0.163580i
\(109\) 482.500 + 835.715i 0.423992 + 0.734376i 0.996326 0.0856452i \(-0.0272952\pi\)
−0.572334 + 0.820021i \(0.693962\pi\)
\(110\) 245.000 424.352i 0.212362 0.367822i
\(111\) −11.0000 −0.00940607
\(112\) −136.000 263.272i −0.114739 0.222115i
\(113\) −50.0000 −0.0416248 −0.0208124 0.999783i \(-0.506625\pi\)
−0.0208124 + 0.999783i \(0.506625\pi\)
\(114\) −137.000 + 237.291i −0.112555 + 0.194950i
\(115\) 24.5000 + 42.4352i 0.0198664 + 0.0344096i
\(116\) −212.000 367.195i −0.169687 0.293907i
\(117\) 858.000 1486.10i 0.677967 1.17427i
\(118\) 34.0000 0.0265250
\(119\) 1091.50 + 51.0955i 0.840821 + 0.0393606i
\(120\) 56.0000 0.0426006
\(121\) 53.0000 91.7987i 0.0398197 0.0689697i
\(122\) 51.0000 + 88.3346i 0.0378469 + 0.0655528i
\(123\) −249.000 431.281i −0.182533 0.316157i
\(124\) −150.000 + 259.808i −0.108632 + 0.188157i
\(125\) −1407.00 −1.00677
\(126\) 962.000 + 45.0333i 0.680173 + 0.0318404i
\(127\) 936.000 0.653989 0.326994 0.945026i \(-0.393964\pi\)
0.326994 + 0.945026i \(0.393964\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 130.000 + 225.167i 0.0887276 + 0.153681i
\(130\) 462.000 + 800.207i 0.311693 + 0.539868i
\(131\) 377.500 653.849i 0.251773 0.436084i −0.712241 0.701935i \(-0.752320\pi\)
0.964014 + 0.265851i \(0.0856529\pi\)
\(132\) −140.000 −0.0923139
\(133\) −1164.50 2254.26i −0.759210 1.46970i
\(134\) −878.000 −0.566027
\(135\) −185.500 + 321.295i −0.118261 + 0.204835i
\(136\) 236.000 + 408.764i 0.148800 + 0.257730i
\(137\) 1178.50 + 2041.22i 0.734935 + 1.27294i 0.954752 + 0.297403i \(0.0961205\pi\)
−0.219817 + 0.975541i \(0.570546\pi\)
\(138\) 7.00000 12.1244i 0.00431797 0.00747894i
\(139\) 28.0000 0.0170858 0.00854291 0.999964i \(-0.497281\pi\)
0.00854291 + 0.999964i \(0.497281\pi\)
\(140\) −280.000 + 436.477i −0.169031 + 0.263493i
\(141\) 171.000 0.102133
\(142\) −784.000 + 1357.93i −0.463323 + 0.802498i
\(143\) −1155.00 2000.52i −0.675426 1.16987i
\(144\) 208.000 + 360.267i 0.120370 + 0.208488i
\(145\) −371.000 + 642.591i −0.212482 + 0.368029i
\(146\) −590.000 −0.334443
\(147\) 198.500 279.726i 0.111374 0.156948i
\(148\) 44.0000 0.0244377
\(149\) −1147.50 + 1987.53i −0.630919 + 1.09278i 0.356446 + 0.934316i \(0.383988\pi\)
−0.987364 + 0.158467i \(0.949345\pi\)
\(150\) 76.0000 + 131.636i 0.0413692 + 0.0716535i
\(151\) 554.500 + 960.422i 0.298838 + 0.517603i 0.975870 0.218350i \(-0.0700676\pi\)
−0.677032 + 0.735953i \(0.736734\pi\)
\(152\) 548.000 949.164i 0.292425 0.506496i
\(153\) −1534.00 −0.810566
\(154\) 700.000 1091.19i 0.366283 0.570979i
\(155\) 525.000 0.272058
\(156\) 132.000 228.631i 0.0677465 0.117340i
\(157\) −779.500 1350.13i −0.396248 0.686321i 0.597012 0.802232i \(-0.296354\pi\)
−0.993260 + 0.115911i \(0.963021\pi\)
\(158\) −495.000 857.365i −0.249241 0.431698i
\(159\) −208.500 + 361.133i −0.103995 + 0.180124i
\(160\) −224.000 −0.110680
\(161\) 59.5000 + 115.181i 0.0291258 + 0.0563824i
\(162\) −1298.00 −0.629509
\(163\) 1125.50 1949.42i 0.540834 0.936752i −0.458022 0.888941i \(-0.651442\pi\)
0.998856 0.0478115i \(-0.0152247\pi\)
\(164\) 996.000 + 1725.12i 0.474235 + 0.821399i
\(165\) 122.500 + 212.176i 0.0577976 + 0.100108i
\(166\) 932.000 1614.27i 0.435766 0.754770i
\(167\) 2788.00 1.29187 0.645934 0.763393i \(-0.276468\pi\)
0.645934 + 0.763393i \(0.276468\pi\)
\(168\) 148.000 + 6.92820i 0.0679670 + 0.00318168i
\(169\) 2159.00 0.982704
\(170\) 413.000 715.337i 0.186327 0.322728i
\(171\) 1781.00 + 3084.78i 0.796471 + 1.37953i
\(172\) −520.000 900.666i −0.230521 0.399274i
\(173\) −789.500 + 1367.45i −0.346963 + 0.600957i −0.985708 0.168461i \(-0.946120\pi\)
0.638746 + 0.769418i \(0.279454\pi\)
\(174\) 212.000 0.0923660
\(175\) −1406.00 65.8179i −0.607335 0.0284307i
\(176\) 560.000 0.239839
\(177\) −8.50000 + 14.7224i −0.00360960 + 0.00625201i
\(178\) −873.000 1512.08i −0.367607 0.636715i
\(179\) −1225.50 2122.63i −0.511722 0.886328i −0.999908 0.0135883i \(-0.995675\pi\)
0.488186 0.872740i \(-0.337659\pi\)
\(180\) 364.000 630.466i 0.150728 0.261068i
\(181\) −1170.00 −0.480472 −0.240236 0.970715i \(-0.577225\pi\)
−0.240236 + 0.970715i \(0.577225\pi\)
\(182\) 1122.00 + 2171.99i 0.456968 + 0.884608i
\(183\) −51.0000 −0.0206012
\(184\) −28.0000 + 48.4974i −0.0112184 + 0.0194309i
\(185\) −38.5000 66.6840i −0.0153004 0.0265011i
\(186\) −75.0000 129.904i −0.0295660 0.0512097i
\(187\) −1032.50 + 1788.34i −0.403764 + 0.699340i
\(188\) −684.000 −0.265350
\(189\) −530.000 + 826.188i −0.203978 + 0.317970i
\(190\) −1918.00 −0.732349
\(191\) 637.500 1104.18i 0.241507 0.418303i −0.719637 0.694351i \(-0.755692\pi\)
0.961144 + 0.276048i \(0.0890249\pi\)
\(192\) 32.0000 + 55.4256i 0.0120281 + 0.0208333i
\(193\) −17.5000 30.3109i −0.00652683 0.0113048i 0.862744 0.505642i \(-0.168744\pi\)
−0.869270 + 0.494337i \(0.835411\pi\)
\(194\) −290.000 + 502.295i −0.107324 + 0.185890i
\(195\) −462.000 −0.169664
\(196\) −794.000 + 1118.90i −0.289359 + 0.407764i
\(197\) −2734.00 −0.988779 −0.494389 0.869241i \(-0.664608\pi\)
−0.494389 + 0.869241i \(0.664608\pi\)
\(198\) −910.000 + 1576.17i −0.326621 + 0.565724i
\(199\) −1121.50 1942.49i −0.399503 0.691959i 0.594162 0.804345i \(-0.297484\pi\)
−0.993665 + 0.112387i \(0.964151\pi\)
\(200\) −304.000 526.543i −0.107480 0.186161i
\(201\) 219.500 380.185i 0.0770265 0.133414i
\(202\) 2170.00 0.755845
\(203\) −1060.00 + 1652.38i −0.366490 + 0.571301i
\(204\) −236.000 −0.0809966
\(205\) 1743.00 3018.96i 0.593836 1.02855i
\(206\) 1553.00 + 2689.87i 0.525256 + 0.909769i
\(207\) −91.0000 157.617i −0.0305553 0.0529232i
\(208\) −528.000 + 914.523i −0.176011 + 0.304859i
\(209\) 4795.00 1.58697
\(210\) −119.000 230.363i −0.0391037 0.0756978i
\(211\) 1172.00 0.382388 0.191194 0.981552i \(-0.438764\pi\)
0.191194 + 0.981552i \(0.438764\pi\)
\(212\) 834.000 1444.53i 0.270186 0.467975i
\(213\) −392.000 678.964i −0.126100 0.218412i
\(214\) 129.000 + 223.435i 0.0412068 + 0.0713723i
\(215\) −910.000 + 1576.17i −0.288658 + 0.499970i
\(216\) −424.000 −0.133563
\(217\) 1387.50 + 64.9519i 0.434054 + 0.0203190i
\(218\) 1930.00 0.599615
\(219\) 147.500 255.477i 0.0455120 0.0788291i
\(220\) −490.000 848.705i −0.150163 0.260089i
\(221\) −1947.00 3372.30i −0.592622 1.02645i
\(222\) −11.0000 + 19.0526i −0.00332555 + 0.00576002i
\(223\) 2024.00 0.607790 0.303895 0.952706i \(-0.401713\pi\)
0.303895 + 0.952706i \(0.401713\pi\)
\(224\) −592.000 27.7128i −0.176583 0.00826625i
\(225\) 1976.00 0.585481
\(226\) −50.0000 + 86.6025i −0.0147166 + 0.0254899i
\(227\) −1285.50 2226.55i −0.375866 0.651019i 0.614590 0.788847i \(-0.289321\pi\)
−0.990456 + 0.137827i \(0.955988\pi\)
\(228\) 274.000 + 474.582i 0.0795881 + 0.137851i
\(229\) −447.500 + 775.093i −0.129134 + 0.223666i −0.923341 0.383980i \(-0.874553\pi\)
0.794207 + 0.607647i \(0.207886\pi\)
\(230\) 98.0000 0.0280953
\(231\) 297.500 + 575.907i 0.0847362 + 0.164034i
\(232\) −848.000 −0.239974
\(233\) −893.500 + 1547.59i −0.251224 + 0.435132i −0.963863 0.266398i \(-0.914166\pi\)
0.712639 + 0.701531i \(0.247500\pi\)
\(234\) −1716.00 2972.20i −0.479395 0.830336i
\(235\) 598.500 + 1036.63i 0.166135 + 0.287755i
\(236\) 34.0000 58.8897i 0.00937801 0.0162432i
\(237\) 495.000 0.135670
\(238\) 1180.00 1839.44i 0.321378 0.500979i
\(239\) −5100.00 −1.38030 −0.690150 0.723667i \(-0.742455\pi\)
−0.690150 + 0.723667i \(0.742455\pi\)
\(240\) 56.0000 96.9948i 0.0150616 0.0260875i
\(241\) 2088.50 + 3617.39i 0.558225 + 0.966873i 0.997645 + 0.0685917i \(0.0218506\pi\)
−0.439420 + 0.898282i \(0.644816\pi\)
\(242\) −106.000 183.597i −0.0281568 0.0487690i
\(243\) 1040.00 1801.33i 0.274552 0.475537i
\(244\) 204.000 0.0535236
\(245\) 2390.50 + 224.301i 0.623361 + 0.0584900i
\(246\) −996.000 −0.258141
\(247\) −4521.00 + 7830.60i −1.16463 + 2.01720i
\(248\) 300.000 + 519.615i 0.0768146 + 0.133047i
\(249\) 466.000 + 807.136i 0.118601 + 0.205422i
\(250\) −1407.00 + 2437.00i −0.355946 + 0.616517i
\(251\) −4680.00 −1.17689 −0.588444 0.808538i \(-0.700259\pi\)
−0.588444 + 0.808538i \(0.700259\pi\)
\(252\) 1040.00 1621.20i 0.259976 0.405262i
\(253\) −245.000 −0.0608815
\(254\) 936.000 1621.20i 0.231220 0.400485i
\(255\) 206.500 + 357.668i 0.0507119 + 0.0878356i
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 874.500 1514.68i 0.212256 0.367638i −0.740164 0.672426i \(-0.765252\pi\)
0.952420 + 0.304788i \(0.0985856\pi\)
\(258\) 520.000 0.125480
\(259\) −93.5000 180.999i −0.0224317 0.0434237i
\(260\) 1848.00 0.440800
\(261\) 1378.00 2386.77i 0.326805 0.566043i
\(262\) −755.000 1307.70i −0.178031 0.308358i
\(263\) 2236.50 + 3873.73i 0.524367 + 0.908230i 0.999598 + 0.0283689i \(0.00903130\pi\)
−0.475231 + 0.879861i \(0.657635\pi\)
\(264\) −140.000 + 242.487i −0.0326379 + 0.0565305i
\(265\) −2919.00 −0.676652
\(266\) −5069.00 237.291i −1.16842 0.0546964i
\(267\) 873.000 0.200100
\(268\) −878.000 + 1520.74i −0.200121 + 0.346619i
\(269\) −987.500 1710.40i −0.223825 0.387676i 0.732141 0.681153i \(-0.238521\pi\)
−0.955966 + 0.293476i \(0.905188\pi\)
\(270\) 371.000 + 642.591i 0.0836235 + 0.144840i
\(271\) 4219.50 7308.39i 0.945817 1.63820i 0.191710 0.981452i \(-0.438597\pi\)
0.754107 0.656751i \(-0.228070\pi\)
\(272\) 944.000 0.210435
\(273\) −1221.00 57.1577i −0.270690 0.0126716i
\(274\) 4714.00 1.03935
\(275\) 1330.00 2303.63i 0.291644 0.505142i
\(276\) −14.0000 24.2487i −0.00305326 0.00528841i
\(277\) −263.500 456.395i −0.0571559 0.0989969i 0.836032 0.548681i \(-0.184870\pi\)
−0.893188 + 0.449684i \(0.851537\pi\)
\(278\) 28.0000 48.4974i 0.00604075 0.0104629i
\(279\) −1950.00 −0.418435
\(280\) 476.000 + 921.451i 0.101594 + 0.196669i
\(281\) −202.000 −0.0428837 −0.0214418 0.999770i \(-0.506826\pi\)
−0.0214418 + 0.999770i \(0.506826\pi\)
\(282\) 171.000 296.181i 0.0361096 0.0625436i
\(283\) 3974.50 + 6884.04i 0.834839 + 1.44598i 0.894161 + 0.447745i \(0.147773\pi\)
−0.0593220 + 0.998239i \(0.518894\pi\)
\(284\) 1568.00 + 2715.86i 0.327619 + 0.567452i
\(285\) 479.500 830.518i 0.0996601 0.172616i
\(286\) −4620.00 −0.955197
\(287\) 4980.00 7763.05i 1.02425 1.59665i
\(288\) 832.000 0.170229
\(289\) 716.000 1240.15i 0.145736 0.252422i
\(290\) 742.000 + 1285.18i 0.150247 + 0.260236i
\(291\) −145.000 251.147i −0.0292098 0.0505929i
\(292\) −590.000 + 1021.91i −0.118244 + 0.204804i
\(293\) 318.000 0.0634053 0.0317027 0.999497i \(-0.489907\pi\)
0.0317027 + 0.999497i \(0.489907\pi\)
\(294\) −286.000 623.538i −0.0567342 0.123692i
\(295\) −119.000 −0.0234863
\(296\) 44.0000 76.2102i 0.00864003 0.0149650i
\(297\) −927.500 1606.48i −0.181209 0.313863i
\(298\) 2295.00 + 3975.06i 0.446127 + 0.772714i
\(299\) 231.000 400.104i 0.0446792 0.0773866i
\(300\) 304.000 0.0585048
\(301\) −2600.00 + 4053.00i −0.497879 + 0.776116i
\(302\) 2218.00 0.422621
\(303\) −542.500 + 939.638i −0.102857 + 0.178154i
\(304\) −1096.00 1898.33i −0.206776 0.358147i
\(305\) −178.500 309.171i −0.0335111 0.0580429i
\(306\) −1534.00 + 2656.97i −0.286578 + 0.496368i
\(307\) −8132.00 −1.51178 −0.755892 0.654696i \(-0.772797\pi\)
−0.755892 + 0.654696i \(0.772797\pi\)
\(308\) −1190.00 2303.63i −0.220151 0.426173i
\(309\) −1553.00 −0.285913
\(310\) 525.000 909.327i 0.0961871 0.166601i
\(311\) 464.500 + 804.538i 0.0846925 + 0.146692i 0.905260 0.424858i \(-0.139676\pi\)
−0.820568 + 0.571549i \(0.806343\pi\)
\(312\) −264.000 457.261i −0.0479040 0.0829722i
\(313\) 104.500 180.999i 0.0188712 0.0326859i −0.856436 0.516254i \(-0.827326\pi\)
0.875307 + 0.483568i \(0.160659\pi\)
\(314\) −3118.00 −0.560379
\(315\) −3367.00 157.617i −0.602251 0.0281927i
\(316\) −1980.00 −0.352480
\(317\) −3565.50 + 6175.63i −0.631730 + 1.09419i 0.355468 + 0.934689i \(0.384322\pi\)
−0.987198 + 0.159500i \(0.949012\pi\)
\(318\) 417.000 + 722.265i 0.0735352 + 0.127367i
\(319\) −1855.00 3212.95i −0.325580 0.563921i
\(320\) −224.000 + 387.979i −0.0391312 + 0.0677772i
\(321\) −129.000 −0.0224301
\(322\) 259.000 + 12.1244i 0.0448246 + 0.00209834i
\(323\) 8083.00 1.39242
\(324\) −1298.00 + 2248.20i −0.222565 + 0.385494i
\(325\) 2508.00 + 4343.98i 0.428058 + 0.741418i
\(326\) −2251.00 3898.85i −0.382427 0.662384i
\(327\) −482.500 + 835.715i −0.0815973 + 0.141331i
\(328\) 3984.00 0.670670
\(329\) 1453.50 + 2813.72i 0.243569 + 0.471505i
\(330\) 490.000 0.0817382
\(331\) 3285.50 5690.65i 0.545581 0.944975i −0.452989 0.891516i \(-0.649642\pi\)
0.998570 0.0534583i \(-0.0170244\pi\)
\(332\) −1864.00 3228.54i −0.308133 0.533703i
\(333\) 143.000 + 247.683i 0.0235326 + 0.0407596i
\(334\) 2788.00 4828.96i 0.456744 0.791104i
\(335\) 3073.00 0.501182
\(336\) 160.000 249.415i 0.0259783 0.0404962i
\(337\) −11466.0 −1.85339 −0.926696 0.375813i \(-0.877364\pi\)
−0.926696 + 0.375813i \(0.877364\pi\)
\(338\) 2159.00 3739.50i 0.347438 0.601781i
\(339\) −25.0000 43.3013i −0.00400535 0.00693747i
\(340\) −826.000 1430.67i −0.131753 0.228203i
\(341\) −1312.50 + 2273.32i −0.208434 + 0.361018i
\(342\) 7124.00 1.12638
\(343\) 6290.00 + 888.542i 0.990169 + 0.139874i
\(344\) −2080.00 −0.326006
\(345\) −24.5000 + 42.4352i −0.00382329 + 0.00662214i
\(346\) 1579.00 + 2734.91i 0.245340 + 0.424941i
\(347\) 4888.50 + 8467.13i 0.756278 + 1.30991i 0.944737 + 0.327831i \(0.106318\pi\)
−0.188459 + 0.982081i \(0.560349\pi\)
\(348\) 212.000 367.195i 0.0326563 0.0565624i
\(349\) 11914.0 1.82734 0.913670 0.406456i \(-0.133236\pi\)
0.913670 + 0.406456i \(0.133236\pi\)
\(350\) −1520.00 + 2369.45i −0.232135 + 0.361863i
\(351\) 3498.00 0.531936
\(352\) 560.000 969.948i 0.0847957 0.146871i
\(353\) −4561.50 7900.75i −0.687774 1.19126i −0.972556 0.232667i \(-0.925255\pi\)
0.284783 0.958592i \(-0.408079\pi\)
\(354\) 17.0000 + 29.4449i 0.00255237 + 0.00442084i
\(355\) 2744.00 4752.75i 0.410243 0.710562i
\(356\) −3492.00 −0.519875
\(357\) 501.500 + 970.814i 0.0743479 + 0.143924i
\(358\) −4902.00 −0.723684
\(359\) −4074.50 + 7057.24i −0.599008 + 1.03751i 0.393960 + 0.919128i \(0.371105\pi\)
−0.992968 + 0.118385i \(0.962228\pi\)
\(360\) −728.000 1260.93i −0.106580 0.184603i
\(361\) −5955.00 10314.4i −0.868202 1.50377i
\(362\) −1170.00 + 2026.50i −0.169872 + 0.294228i
\(363\) 106.000 0.0153266
\(364\) 4884.00 + 228.631i 0.703272 + 0.0329217i
\(365\) 2065.00 0.296129
\(366\) −51.0000 + 88.3346i −0.00728364 + 0.0126156i
\(367\) −4835.50 8375.33i −0.687769 1.19125i −0.972558 0.232660i \(-0.925257\pi\)
0.284790 0.958590i \(-0.408076\pi\)
\(368\) 56.0000 + 96.9948i 0.00793261 + 0.0137397i
\(369\) −6474.00 + 11213.3i −0.913341 + 1.58195i
\(370\) −154.000 −0.0216381
\(371\) −7714.50 361.133i −1.07956 0.0505366i
\(372\) −300.000 −0.0418126
\(373\) 2054.50 3558.50i 0.285196 0.493973i −0.687461 0.726221i \(-0.741275\pi\)
0.972657 + 0.232248i \(0.0746081\pi\)
\(374\) 2065.00 + 3576.68i 0.285504 + 0.494508i
\(375\) −703.500 1218.50i −0.0968762 0.167795i
\(376\) −684.000 + 1184.72i −0.0938154 + 0.162493i
\(377\) 6996.00 0.955736
\(378\) 901.000 + 1744.18i 0.122599 + 0.237330i
\(379\) −3488.00 −0.472735 −0.236367 0.971664i \(-0.575957\pi\)
−0.236367 + 0.971664i \(0.575957\pi\)
\(380\) −1918.00 + 3322.07i −0.258925 + 0.448470i
\(381\) 468.000 + 810.600i 0.0629301 + 0.108998i
\(382\) −1275.00 2208.36i −0.170771 0.295785i
\(383\) −4358.50 + 7549.14i −0.581485 + 1.00716i 0.413818 + 0.910360i \(0.364195\pi\)
−0.995304 + 0.0968028i \(0.969138\pi\)
\(384\) 128.000 0.0170103
\(385\) −2450.00 + 3819.17i −0.324321 + 0.505566i
\(386\) −70.0000 −0.00923033
\(387\) 3380.00 5854.33i 0.443967 0.768973i
\(388\) 580.000 + 1004.59i 0.0758893 + 0.131444i
\(389\) −81.5000 141.162i −0.0106227 0.0183990i 0.860665 0.509171i \(-0.170048\pi\)
−0.871288 + 0.490772i \(0.836715\pi\)
\(390\) −462.000 + 800.207i −0.0599853 + 0.103898i
\(391\) −413.000 −0.0534177
\(392\) 1144.00 + 2494.15i 0.147400 + 0.321362i
\(393\) 755.000 0.0969077
\(394\) −2734.00 + 4735.43i −0.349586 + 0.605501i
\(395\) 1732.50 + 3000.78i 0.220687 + 0.382242i
\(396\) 1820.00 + 3152.33i 0.230956 + 0.400027i
\(397\) −499.500 + 865.159i −0.0631466 + 0.109373i −0.895870 0.444316i \(-0.853447\pi\)
0.832724 + 0.553689i \(0.186780\pi\)
\(398\) −4486.00 −0.564982
\(399\) 1370.00 2135.62i 0.171894 0.267957i
\(400\) −1216.00 −0.152000
\(401\) 7378.50 12779.9i 0.918865 1.59152i 0.117722 0.993047i \(-0.462441\pi\)
0.801143 0.598474i \(-0.204226\pi\)
\(402\) −439.000 760.370i −0.0544660 0.0943379i
\(403\) −2475.00 4286.83i −0.305927 0.529881i
\(404\) 2170.00 3758.55i 0.267232 0.462859i
\(405\) 4543.00 0.557391
\(406\) 1802.00 + 3488.35i 0.220275 + 0.426414i
\(407\) 385.000 0.0468888
\(408\) −236.000 + 408.764i −0.0286366 + 0.0496001i
\(409\) 66.5000 + 115.181i 0.00803964 + 0.0139251i 0.870017 0.493021i \(-0.164108\pi\)
−0.861978 + 0.506946i \(0.830774\pi\)
\(410\) −3486.00 6037.93i −0.419906 0.727298i
\(411\) −1178.50 + 2041.22i −0.141438 + 0.244978i
\(412\) 6212.00 0.742823
\(413\) −314.500 14.7224i −0.0374710 0.00175410i
\(414\) −364.000 −0.0432117
\(415\) −3262.00 + 5649.95i −0.385844 + 0.668302i
\(416\) 1056.00 + 1829.05i 0.124458 + 0.215568i
\(417\) 14.0000 + 24.2487i 0.00164408 + 0.00284764i
\(418\) 4795.00 8305.18i 0.561079 0.971818i
\(419\) −6420.00 −0.748538 −0.374269 0.927320i \(-0.622106\pi\)
−0.374269 + 0.927320i \(0.622106\pi\)
\(420\) −518.000 24.2487i −0.0601805 0.00281718i
\(421\) 10266.0 1.18844 0.594221 0.804302i \(-0.297460\pi\)
0.594221 + 0.804302i \(0.297460\pi\)
\(422\) 1172.00 2029.96i 0.135194 0.234164i
\(423\) −2223.00 3850.35i −0.255522 0.442578i
\(424\) −1668.00 2889.06i −0.191050 0.330908i
\(425\) 2242.00 3883.26i 0.255889 0.443213i
\(426\) −1568.00 −0.178333
\(427\) −433.500 839.179i −0.0491301 0.0951070i
\(428\) 516.000 0.0582752
\(429\) 1155.00 2000.52i 0.129986 0.225142i
\(430\) 1820.00 + 3152.33i 0.204112 + 0.353532i
\(431\) 7606.50 + 13174.8i 0.850098 + 1.47241i 0.881119 + 0.472894i \(0.156791\pi\)
−0.0310213 + 0.999519i \(0.509876\pi\)
\(432\) −424.000 + 734.390i −0.0472215 + 0.0817901i
\(433\) −1378.00 −0.152939 −0.0764693 0.997072i \(-0.524365\pi\)
−0.0764693 + 0.997072i \(0.524365\pi\)
\(434\) 1500.00 2338.27i 0.165904 0.258619i
\(435\) −742.000 −0.0817843
\(436\) 1930.00 3342.86i 0.211996 0.367188i
\(437\) 479.500 + 830.518i 0.0524888 + 0.0909132i
\(438\) −295.000 510.955i −0.0321818 0.0557406i
\(439\) 1381.50 2392.83i 0.150195 0.260145i −0.781104 0.624401i \(-0.785343\pi\)
0.931299 + 0.364256i \(0.118677\pi\)
\(440\) −1960.00 −0.212362
\(441\) −8879.00 833.116i −0.958752 0.0899597i
\(442\) −7788.00 −0.838094
\(443\) −2924.50 + 5065.38i −0.313651 + 0.543259i −0.979150 0.203140i \(-0.934885\pi\)
0.665499 + 0.746399i \(0.268219\pi\)
\(444\) 22.0000 + 38.1051i 0.00235152 + 0.00407295i
\(445\) 3055.50 + 5292.28i 0.325493 + 0.563771i
\(446\) 2024.00 3505.67i 0.214886 0.372194i
\(447\) −2295.00 −0.242841
\(448\) −640.000 + 997.661i −0.0674937 + 0.105212i
\(449\) 4582.00 0.481599 0.240799 0.970575i \(-0.422590\pi\)
0.240799 + 0.970575i \(0.422590\pi\)
\(450\) 1976.00 3422.53i 0.206999 0.358533i
\(451\) 8715.00 + 15094.8i 0.909919 + 1.57603i
\(452\) 100.000 + 173.205i 0.0104062 + 0.0180241i
\(453\) −554.500 + 960.422i −0.0575114 + 0.0996127i
\(454\) −5142.00 −0.531555
\(455\) −3927.00 7601.97i −0.404617 0.783266i
\(456\) 1096.00 0.112555
\(457\) −5775.50 + 10003.5i −0.591174 + 1.02394i 0.402901 + 0.915244i \(0.368002\pi\)
−0.994075 + 0.108700i \(0.965331\pi\)
\(458\) 895.000 + 1550.19i 0.0913114 + 0.158156i
\(459\) −1563.50 2708.06i −0.158993 0.275384i
\(460\) 98.0000 169.741i 0.00993320 0.0172048i
\(461\) −9494.00 −0.959175 −0.479587 0.877494i \(-0.659214\pi\)
−0.479587 + 0.877494i \(0.659214\pi\)
\(462\) 1295.00 + 60.6218i 0.130409 + 0.00610472i
\(463\) −10160.0 −1.01982 −0.509908 0.860229i \(-0.670321\pi\)
−0.509908 + 0.860229i \(0.670321\pi\)
\(464\) −848.000 + 1468.78i −0.0848436 + 0.146953i
\(465\) 262.500 + 454.663i 0.0261788 + 0.0453430i
\(466\) 1787.00 + 3095.17i 0.177642 + 0.307685i
\(467\) 653.500 1131.90i 0.0647545 0.112158i −0.831831 0.555030i \(-0.812707\pi\)
0.896585 + 0.442872i \(0.146040\pi\)
\(468\) −6864.00 −0.677967
\(469\) 8121.50 + 380.185i 0.799608 + 0.0374314i
\(470\) 2394.00 0.234951
\(471\) 779.500 1350.13i 0.0762579 0.132083i
\(472\) −68.0000 117.779i −0.00663126 0.0114857i
\(473\) −4550.00 7880.83i −0.442303 0.766091i
\(474\) 495.000 857.365i 0.0479665 0.0830803i
\(475\) −10412.0 −1.00576
\(476\) −2006.00 3883.26i −0.193161 0.373926i
\(477\) 10842.0 1.04072
\(478\) −5100.00 + 8833.46i −0.488010 + 0.845257i
\(479\) −9143.50 15837.0i −0.872186 1.51067i −0.859730 0.510748i \(-0.829368\pi\)
−0.0124559 0.999922i \(-0.503965\pi\)
\(480\) −112.000 193.990i −0.0106502 0.0184466i
\(481\) −363.000 + 628.734i −0.0344103 + 0.0596005i
\(482\) 8354.00 0.789449
\(483\) −70.0000 + 109.119i −0.00659443 + 0.0102797i
\(484\) −424.000 −0.0398197
\(485\) 1015.00 1758.03i 0.0950284 0.164594i
\(486\) −2080.00 3602.67i −0.194137 0.336256i
\(487\) 7476.50 + 12949.7i 0.695673 + 1.20494i 0.969953 + 0.243291i \(0.0782269\pi\)
−0.274281 + 0.961650i \(0.588440\pi\)
\(488\) 204.000 353.338i 0.0189235 0.0327764i
\(489\) 2251.00 0.208167
\(490\) 2779.00 3916.17i 0.256209 0.361050i
\(491\) 14352.0 1.31914 0.659569 0.751644i \(-0.270739\pi\)
0.659569 + 0.751644i \(0.270739\pi\)
\(492\) −996.000 + 1725.12i −0.0912666 + 0.158078i
\(493\) −3127.00 5416.12i −0.285665 0.494787i
\(494\) 9042.00 + 15661.2i 0.823520 + 1.42638i
\(495\) 3185.00 5516.58i 0.289202 0.500913i
\(496\) 1200.00 0.108632
\(497\) 7840.00 12221.4i 0.707590 1.10302i
\(498\) 1864.00 0.167727
\(499\) 2765.50 4789.99i 0.248098 0.429718i −0.714900 0.699226i \(-0.753528\pi\)
0.962998 + 0.269509i \(0.0868612\pi\)
\(500\) 2814.00 + 4873.99i 0.251692 + 0.435943i
\(501\) 1394.00 + 2414.48i 0.124310 + 0.215311i
\(502\) −4680.00 + 8106.00i −0.416093 + 0.720694i
\(503\) 8400.00 0.744607 0.372304 0.928111i \(-0.378568\pi\)
0.372304 + 0.928111i \(0.378568\pi\)
\(504\) −1768.00 3422.53i −0.156256 0.302484i
\(505\) −7595.00 −0.669254
\(506\) −245.000 + 424.352i −0.0215249 + 0.0372821i
\(507\) 1079.50 + 1869.75i 0.0945607 + 0.163784i
\(508\) −1872.00 3242.40i −0.163497 0.283185i
\(509\) 1192.50 2065.47i 0.103844 0.179863i −0.809421 0.587228i \(-0.800219\pi\)
0.913265 + 0.407365i \(0.133552\pi\)
\(510\) 826.000 0.0717174
\(511\) 5457.50 + 255.477i 0.472457 + 0.0221167i
\(512\) −512.000 −0.0441942
\(513\) −3630.50 + 6288.21i −0.312457 + 0.541192i
\(514\) −1749.00 3029.36i −0.150088 0.259960i
\(515\) −5435.50 9414.56i −0.465081 0.805544i
\(516\) 520.000 900.666i 0.0443638 0.0768404i
\(517\) −5985.00 −0.509130
\(518\) −407.000 19.0526i −0.0345223 0.00161606i
\(519\) −1579.00 −0.133546
\(520\) 1848.00 3200.83i 0.155846 0.269934i
\(521\) 4576.50 + 7926.73i 0.384837 + 0.666557i 0.991747 0.128214i \(-0.0409243\pi\)
−0.606910 + 0.794771i \(0.707591\pi\)
\(522\) −2756.00 4773.53i −0.231086 0.400253i
\(523\) 6903.50 11957.2i 0.577187 0.999718i −0.418613 0.908165i \(-0.637484\pi\)
0.995800 0.0915530i \(-0.0291831\pi\)
\(524\) −3020.00 −0.251773
\(525\) −646.000 1250.54i −0.0537024 0.103958i
\(526\) 8946.00 0.741567
\(527\) −2212.50 + 3832.16i −0.182880 + 0.316758i
\(528\) 280.000 + 484.974i 0.0230785 + 0.0399731i
\(529\) 6059.00 + 10494.5i 0.497986 + 0.862538i
\(530\) −2919.00 + 5055.86i −0.239233 + 0.414363i
\(531\) 442.000 0.0361227
\(532\) −5480.00 + 8542.47i −0.446594 + 0.696172i
\(533\) −32868.0 −2.67105
\(534\) 873.000 1512.08i 0.0707461 0.122536i
\(535\) −451.500 782.021i −0.0364861 0.0631957i
\(536\) 1756.00 + 3041.48i 0.141507 + 0.245097i
\(537\) 1225.50 2122.63i 0.0984809 0.170574i
\(538\) −3950.00 −0.316536
\(539\) −6947.50 + 9790.42i −0.555195 + 0.782381i
\(540\) 1484.00 0.118261
\(541\) −4087.50 + 7079.76i −0.324834 + 0.562629i −0.981479 0.191571i \(-0.938642\pi\)
0.656645 + 0.754200i \(0.271975\pi\)
\(542\) −8439.00 14616.8i −0.668794 1.15838i
\(543\) −585.000 1013.25i −0.0462334 0.0800787i
\(544\) 944.000 1635.06i 0.0744001 0.128865i
\(545\) −6755.00 −0.530922
\(546\) −1320.00 + 2057.68i −0.103463 + 0.161283i
\(547\) 4656.00 0.363942 0.181971 0.983304i \(-0.441752\pi\)
0.181971 + 0.983304i \(0.441752\pi\)
\(548\) 4714.00 8164.89i 0.367467 0.636472i
\(549\) 663.000 + 1148.35i 0.0515413 + 0.0892721i
\(550\) −2660.00 4607.26i −0.206223 0.357189i
\(551\) −7261.00 + 12576.4i −0.561396 + 0.972366i
\(552\) −56.0000 −0.00431797
\(553\) 4207.50 + 8144.97i 0.323546 + 0.626328i
\(554\) −1054.00 −0.0808306
\(555\) 38.5000 66.6840i 0.00294457 0.00510014i
\(556\) −56.0000 96.9948i −0.00427146 0.00739838i
\(557\) −3501.50 6064.78i −0.266361 0.461352i 0.701558 0.712612i \(-0.252488\pi\)
−0.967919 + 0.251261i \(0.919155\pi\)
\(558\) −1950.00 + 3377.50i −0.147939 + 0.256238i
\(559\) 17160.0 1.29837
\(560\) 2072.00 + 96.9948i 0.156354 + 0.00731925i
\(561\) −2065.00 −0.155409
\(562\) −202.000 + 349.874i −0.0151617 + 0.0262608i
\(563\) 9876.50 + 17106.6i 0.739334 + 1.28056i 0.952796 + 0.303612i \(0.0981927\pi\)
−0.213462 + 0.976951i \(0.568474\pi\)
\(564\) −342.000 592.361i −0.0255333 0.0442250i
\(565\) 175.000 303.109i 0.0130306 0.0225697i
\(566\) 15898.0 1.18064
\(567\) 12006.5 + 562.050i 0.889287 + 0.0416295i
\(568\) 6272.00 0.463323
\(569\) 3448.50 5972.98i 0.254075 0.440071i −0.710569 0.703628i \(-0.751562\pi\)
0.964644 + 0.263557i \(0.0848957\pi\)
\(570\) −959.000 1661.04i −0.0704703 0.122058i
\(571\) −12457.5 21577.0i −0.913013 1.58138i −0.809785 0.586726i \(-0.800416\pi\)
−0.103227 0.994658i \(-0.532917\pi\)
\(572\) −4620.00 + 8002.07i −0.337713 + 0.584936i
\(573\) 1275.00 0.0929562
\(574\) −8466.00 16388.7i −0.615617 1.19172i
\(575\) 532.000 0.0385842
\(576\) 832.000 1441.07i 0.0601852 0.104244i
\(577\) −63.5000 109.985i −0.00458152 0.00793543i 0.863726 0.503962i \(-0.168125\pi\)
−0.868307 + 0.496027i \(0.834792\pi\)
\(578\) −1432.00 2480.30i −0.103051 0.178489i
\(579\) 17.5000 30.3109i 0.00125609 0.00217561i
\(580\) 2968.00 0.212482
\(581\) −9320.00 + 14528.4i −0.665506 + 1.03742i
\(582\) −580.000 −0.0413089
\(583\) 7297.50 12639.6i 0.518407 0.897908i
\(584\) 1180.00 + 2043.82i 0.0836109 + 0.144818i
\(585\) 6006.00 + 10402.7i 0.424474 + 0.735211i
\(586\) 318.000 550.792i 0.0224172 0.0388277i
\(587\) 9044.00 0.635921 0.317961 0.948104i \(-0.397002\pi\)
0.317961 + 0.948104i \(0.397002\pi\)
\(588\) −1366.00 128.172i −0.0958042 0.00898931i
\(589\) 10275.0 0.718801
\(590\) −119.000 + 206.114i −0.00830365 + 0.0143823i
\(591\) −1367.00 2367.71i −0.0951453 0.164796i
\(592\) −88.0000 152.420i −0.00610942 0.0105818i
\(593\) 5350.50 9267.34i 0.370521 0.641760i −0.619125 0.785292i \(-0.712513\pi\)
0.989646 + 0.143532i \(0.0458460\pi\)
\(594\) −3710.00 −0.256268
\(595\) −4130.00 + 6438.03i −0.284560 + 0.443586i
\(596\) 9180.00 0.630919
\(597\) 1121.50 1942.49i 0.0768843 0.133168i
\(598\) −462.000 800.207i −0.0315930 0.0547206i
\(599\) −10399.5 18012.5i −0.709369 1.22866i −0.965091 0.261913i \(-0.915647\pi\)
0.255722 0.966750i \(-0.417687\pi\)
\(600\) 304.000 526.543i 0.0206846 0.0358267i
\(601\) −1402.00 −0.0951560 −0.0475780 0.998868i \(-0.515150\pi\)
−0.0475780 + 0.998868i \(0.515150\pi\)
\(602\) 4420.00 + 8556.33i 0.299245 + 0.579286i
\(603\) −11414.0 −0.770836
\(604\) 2218.00 3841.69i 0.149419 0.258801i
\(605\) 371.000 + 642.591i 0.0249311 + 0.0431819i
\(606\) 1085.00 + 1879.28i 0.0727312 + 0.125974i
\(607\) −3262.50 + 5650.82i −0.218156 + 0.377858i −0.954244 0.299028i \(-0.903338\pi\)
0.736088 + 0.676886i \(0.236671\pi\)
\(608\) −4384.00 −0.292425
\(609\) −1961.00 91.7987i −0.130482 0.00610816i
\(610\) −714.000 −0.0473918
\(611\) 5643.00 9773.96i 0.373636 0.647156i
\(612\) 3068.00 + 5313.93i 0.202641 + 0.350985i
\(613\) −7525.50 13034.5i −0.495844 0.858826i 0.504145 0.863619i \(-0.331808\pi\)
−0.999989 + 0.00479285i \(0.998474\pi\)
\(614\) −8132.00 + 14085.0i −0.534496 + 0.925775i
\(615\) 3486.00 0.228568
\(616\) −5180.00 242.487i −0.338812 0.0158605i
\(617\) 11150.0 0.727524 0.363762 0.931492i \(-0.381492\pi\)
0.363762 + 0.931492i \(0.381492\pi\)
\(618\) −1553.00 + 2689.87i −0.101085 + 0.175085i
\(619\) −1707.50 2957.48i −0.110873 0.192037i 0.805250 0.592936i \(-0.202031\pi\)
−0.916122 + 0.400899i \(0.868698\pi\)
\(620\) −1050.00 1818.65i −0.0680145 0.117805i
\(621\) 185.500 321.295i 0.0119869 0.0207619i
\(622\) 1858.00 0.119773
\(623\) 7420.50 + 14364.8i 0.477201 + 0.923775i
\(624\) −1056.00 −0.0677465
\(625\) 174.500 302.243i 0.0111680 0.0193435i
\(626\) −209.000 361.999i −0.0133440 0.0231124i
\(627\) 2397.50 + 4152.59i 0.152706 + 0.264495i
\(628\) −3118.00 + 5400.53i −0.198124 + 0.343160i
\(629\) 649.000 0.0411404
\(630\) −3640.00 + 5674.20i −0.230192 + 0.358834i
\(631\) −21184.0 −1.33648 −0.668242 0.743944i \(-0.732953\pi\)
−0.668242 + 0.743944i \(0.732953\pi\)
\(632\) −1980.00 + 3429.46i −0.124621 + 0.215849i
\(633\) 586.000 + 1014.98i 0.0367953 + 0.0637313i
\(634\) 7131.00 + 12351.3i 0.446701 + 0.773708i
\(635\) −3276.00 + 5674.20i −0.204731 + 0.354604i
\(636\) 1668.00 0.103995
\(637\) −9438.00 20576.8i −0.587044 1.27988i
\(638\) −7420.00 −0.460440
\(639\) −10192.0 + 17653.1i −0.630969 + 1.09287i
\(640\) 448.000 + 775.959i 0.0276699 + 0.0479257i
\(641\) 5352.50 + 9270.80i 0.329814 + 0.571255i 0.982475 0.186395i \(-0.0596805\pi\)
−0.652660 + 0.757651i \(0.726347\pi\)
\(642\) −129.000 + 223.435i −0.00793026 + 0.0137356i
\(643\) 6860.00 0.420734 0.210367 0.977622i \(-0.432534\pi\)
0.210367 + 0.977622i \(0.432534\pi\)
\(644\) 280.000 436.477i 0.0171328 0.0267074i
\(645\) −1820.00 −0.111105
\(646\) 8083.00 14000.2i 0.492293 0.852677i
\(647\) −7231.50 12525.3i −0.439412 0.761084i 0.558232 0.829685i \(-0.311480\pi\)
−0.997644 + 0.0686008i \(0.978147\pi\)
\(648\) 2596.00 + 4496.40i 0.157377 + 0.272586i
\(649\) 297.500 515.285i 0.0179937 0.0311660i
\(650\) 10032.0 0.605365
\(651\) 637.500 + 1234.09i 0.0383803 + 0.0742975i
\(652\) −9004.00 −0.540834
\(653\) −2989.50 + 5177.97i −0.179155 + 0.310305i −0.941591 0.336758i \(-0.890670\pi\)
0.762436 + 0.647063i \(0.224003\pi\)
\(654\) 965.000 + 1671.43i 0.0576980 + 0.0999359i
\(655\) 2642.50 + 4576.94i 0.157635 + 0.273032i
\(656\) 3984.00 6900.49i 0.237117 0.410700i
\(657\) −7670.00 −0.455457
\(658\) 6327.00 + 296.181i 0.374851 + 0.0175476i
\(659\) −6940.00 −0.410234 −0.205117 0.978737i \(-0.565757\pi\)
−0.205117 + 0.978737i \(0.565757\pi\)
\(660\) 490.000 848.705i 0.0288988 0.0500542i
\(661\) −6699.50 11603.9i −0.394221 0.682812i 0.598780 0.800914i \(-0.295652\pi\)
−0.993001 + 0.118102i \(0.962319\pi\)
\(662\) −6571.00 11381.3i −0.385784 0.668198i
\(663\) 1947.00 3372.30i 0.114050 0.197541i
\(664\) −7456.00 −0.435766
\(665\) 17741.5 + 830.518i 1.03457 + 0.0484303i
\(666\) 572.000 0.0332801
\(667\) 371.000 642.591i 0.0215370 0.0373032i
\(668\) −5576.00 9657.92i −0.322967 0.559395i
\(669\) 1012.00 + 1752.84i 0.0584846 + 0.101298i
\(670\) 3073.00 5322.59i 0.177195 0.306910i
\(671\) 1785.00 0.102696
\(672\) −272.000 526.543i −0.0156140 0.0302260i
\(673\) 29510.0 1.69023 0.845117 0.534582i \(-0.179531\pi\)
0.845117 + 0.534582i \(0.179531\pi\)
\(674\) −11466.0 + 19859.7i −0.655273 + 1.13497i
\(675\) 2014.00 + 3488.35i 0.114843 + 0.198914i
\(676\) −4318.00 7479.00i −0.245676 0.425523i
\(677\) 13000.5 22517.5i 0.738035 1.27831i −0.215344 0.976538i \(-0.569087\pi\)
0.953379 0.301776i \(-0.0975795\pi\)
\(678\) −100.000 −0.00566442
\(679\) 2900.00 4520.65i 0.163905 0.255503i
\(680\) −3304.00 −0.186327
\(681\) 1285.50 2226.55i 0.0723355 0.125289i
\(682\) 2625.00 + 4546.63i 0.147385 + 0.255278i
\(683\) 4402.50 + 7625.35i 0.246643 + 0.427198i 0.962592 0.270954i \(-0.0873393\pi\)
−0.715949 + 0.698152i \(0.754006\pi\)
\(684\) 7124.00 12339.1i 0.398235 0.689764i
\(685\) −16499.0 −0.920284
\(686\) 7829.00 10006.1i 0.435733 0.556899i
\(687\) −895.000 −0.0497036
\(688\) −2080.00 + 3602.67i −0.115261 + 0.199637i
\(689\) 13761.0 + 23834.8i 0.760889 + 1.31790i
\(690\) 49.0000 + 84.8705i 0.00270348 + 0.00468256i
\(691\) −14342.5 + 24841.9i −0.789601 + 1.36763i 0.136610 + 0.990625i \(0.456379\pi\)
−0.926211 + 0.377004i \(0.876954\pi\)
\(692\) 6316.00 0.346963
\(693\) 9100.00 14185.5i 0.498817 0.777579i
\(694\) 19554.0 1.06954
\(695\) −98.0000 + 169.741i −0.00534871 + 0.00926423i
\(696\) −424.000 734.390i −0.0230915 0.0399956i
\(697\) 14691.0 + 25445.6i 0.798366 + 1.38281i
\(698\) 11914.0 20635.7i 0.646062 1.11901i
\(699\) −1787.00 −0.0966961
\(700\) 2584.00 + 5002.16i 0.139523 + 0.270091i
\(701\) −3146.00 −0.169505 −0.0847523 0.996402i \(-0.527010\pi\)
−0.0847523 + 0.996402i \(0.527010\pi\)
\(702\) 3498.00 6058.71i 0.188068 0.325743i
\(703\) −753.500 1305.10i −0.0404250 0.0700182i
\(704\) −1120.00 1939.90i −0.0599596 0.103853i
\(705\) −598.500 + 1036.63i −0.0319728 + 0.0553785i
\(706\) −18246.0 −0.972659
\(707\) −20072.5 939.638i −1.06776 0.0499840i
\(708\) 68.0000 0.00360960
\(709\) −629.500 + 1090.33i −0.0333447 + 0.0577547i −0.882216 0.470845i \(-0.843949\pi\)
0.848871 + 0.528599i \(0.177283\pi\)
\(710\) −5488.00 9505.49i −0.290086 0.502443i
\(711\) −6435.00 11145.7i −0.339425 0.587902i
\(712\) −3492.00 + 6048.32i −0.183804 + 0.318357i
\(713\) −525.000 −0.0275756
\(714\) 2183.00 + 102.191i 0.114421 + 0.00535631i
\(715\) 16170.0 0.845767
\(716\) −4902.00 + 8490.51i −0.255861 + 0.443164i
\(717\) −2550.00 4416.73i −0.132819 0.230050i
\(718\) 8149.00 + 14114.5i 0.423563 + 0.733632i
\(719\) −8212.50 + 14224.5i −0.425973 + 0.737807i −0.996511 0.0834645i \(-0.973401\pi\)
0.570538 + 0.821271i \(0.306735\pi\)
\(720\) −2912.00 −0.150728
\(721\) −13200.5 25553.8i −0.681848 1.31994i
\(722\) −23820.0 −1.22782
\(723\) −2088.50 + 3617.39i −0.107430 + 0.186075i
\(724\) 2340.00 + 4053.00i 0.120118 + 0.208050i
\(725\) 4028.00 + 6976.70i 0.206340 + 0.357391i
\(726\) 106.000 183.597i 0.00541877 0.00938559i
\(727\) −6032.00 −0.307723 −0.153861 0.988092i \(-0.549171\pi\)
−0.153861 + 0.988092i \(0.549171\pi\)
\(728\) 5280.00 8230.71i 0.268805 0.419025i
\(729\) −15443.0 −0.784586
\(730\) 2065.00 3576.68i 0.104697 0.181341i
\(731\) −7670.00 13284.8i −0.388078 0.672171i
\(732\) 102.000 + 176.669i 0.00515031 + 0.00892060i
\(733\) −7621.50 + 13200.8i −0.384047 + 0.665189i −0.991636 0.129062i \(-0.958803\pi\)
0.607589 + 0.794251i \(0.292137\pi\)
\(734\) −19342.0 −0.972652
\(735\) 1001.00 + 2182.38i 0.0502346 + 0.109522i
\(736\) 224.000 0.0112184
\(737\) −7682.50 + 13306.5i −0.383974 + 0.665062i
\(738\) 12948.0 + 22426.6i 0.645830 + 1.11861i
\(739\) 5026.50 + 8706.15i 0.250207 + 0.433371i 0.963583 0.267411i \(-0.0861681\pi\)
−0.713376 + 0.700782i \(0.752835\pi\)
\(740\) −154.000 + 266.736i −0.00765021 + 0.0132505i
\(741\) −9042.00 −0.448267
\(742\) −8340.00 + 13000.8i −0.412629 + 0.643226i
\(743\) 24384.0 1.20399 0.601993 0.798501i \(-0.294373\pi\)
0.601993 + 0.798501i \(0.294373\pi\)
\(744\) −300.000 + 519.615i −0.0147830 + 0.0256049i
\(745\) −8032.50 13912.7i −0.395017 0.684190i
\(746\) −4109.00 7117.00i −0.201664 0.349292i
\(747\) 12116.0 20985.5i 0.593442 1.02787i
\(748\) 8260.00 0.403764
\(749\) −1096.50 2122.63i −0.0534916 0.103550i
\(750\) −2814.00 −0.137004
\(751\) −5794.50 + 10036.4i −0.281550 + 0.487660i −0.971767 0.235943i \(-0.924182\pi\)
0.690216 + 0.723603i \(0.257515\pi\)
\(752\) 1368.00 + 2369.45i 0.0663375 + 0.114900i
\(753\) −2340.00 4053.00i −0.113246 0.196148i
\(754\) 6996.00 12117.4i 0.337904 0.585266i
\(755\) −7763.00 −0.374205
\(756\) 3922.00 + 183.597i 0.188680 + 0.00883250i
\(757\) 14562.0 0.699161 0.349581 0.936906i \(-0.386324\pi\)
0.349581 + 0.936906i \(0.386324\pi\)
\(758\) −3488.00 + 6041.39i −0.167137 + 0.289490i
\(759\) −122.500 212.176i −0.00585832 0.0101469i
\(760\) 3836.00 + 6644.15i 0.183087 + 0.317116i
\(761\) 11382.5 19715.1i 0.542201 0.939120i −0.456576 0.889684i \(-0.650924\pi\)
0.998777 0.0494360i \(-0.0157424\pi\)
\(762\) 1872.00 0.0889966
\(763\) −17852.5 835.715i −0.847056 0.0396526i
\(764\) −5100.00 −0.241507
\(765\) 5369.00 9299.38i 0.253747 0.439503i
\(766\) 8717.00 + 15098.3i 0.411172 + 0.712171i
\(767\) 561.000 + 971.681i 0.0264101 + 0.0457436i
\(768\) 128.000 221.703i 0.00601407 0.0104167i
\(769\) 3766.00 0.176600 0.0883000 0.996094i \(-0.471857\pi\)
0.0883000 + 0.996094i \(0.471857\pi\)
\(770\) 4165.00 + 8062.70i 0.194930 + 0.377350i
\(771\) 1749.00 0.0816974
\(772\) −70.0000 + 121.244i −0.00326341 + 0.00565240i
\(773\) 13430.5 + 23262.3i 0.624918 + 1.08239i 0.988557 + 0.150849i \(0.0482009\pi\)
−0.363639 + 0.931540i \(0.618466\pi\)
\(774\) −6760.00 11708.7i −0.313932 0.543746i
\(775\) 2850.00 4936.34i 0.132097 0.228798i
\(776\) 2320.00 0.107324
\(777\) 110.000 171.473i 0.00507880 0.00791707i
\(778\) −326.000 −0.0150227
\(779\) 34113.0 59085.4i 1.56897 2.71753i
\(780\) 924.000 + 1600.41i 0.0424160 + 0.0734667i
\(781\) 13720.0 + 23763.7i 0.628605 + 1.08878i
\(782\) −413.000 + 715.337i −0.0188860 + 0.0327115i
\(783\) 5618.00 0.256412
\(784\) 5464.00 + 512.687i 0.248907 + 0.0233549i
\(785\) 10913.0 0.496180
\(786\) 755.000 1307.70i 0.0342620 0.0593436i
\(787\) 1048.50 + 1816.06i 0.0474905 + 0.0822559i 0.888793 0.458308i \(-0.151544\pi\)
−0.841303 + 0.540564i \(0.818211\pi\)
\(788\) 5468.00 + 9470.85i 0.247195 + 0.428154i