Properties

Label 14.4.c.b.11.1
Level 14
Weight 4
Character 14.11
Analytic conductor 0.826
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 14.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.826026740080\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 11.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 14.11
Dual form 14.4.c.b.9.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(-3.50000 - 6.06218i) q^{5} +2.00000 q^{6} +(-10.0000 - 15.5885i) q^{7} -8.00000 q^{8} +(13.0000 + 22.5167i) q^{9} +O(q^{10})\) \(q+(1.00000 + 1.73205i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(-3.50000 - 6.06218i) q^{5} +2.00000 q^{6} +(-10.0000 - 15.5885i) q^{7} -8.00000 q^{8} +(13.0000 + 22.5167i) q^{9} +(7.00000 - 12.1244i) q^{10} +(-17.5000 + 30.3109i) q^{11} +(2.00000 + 3.46410i) q^{12} +66.0000 q^{13} +(17.0000 - 32.9090i) q^{14} -7.00000 q^{15} +(-8.00000 - 13.8564i) q^{16} +(-29.5000 + 51.0955i) q^{17} +(-26.0000 + 45.0333i) q^{18} +(-68.5000 - 118.645i) q^{19} +28.0000 q^{20} +(-18.5000 + 0.866025i) q^{21} -70.0000 q^{22} +(3.50000 + 6.06218i) q^{23} +(-4.00000 + 6.92820i) q^{24} +(38.0000 - 65.8179i) q^{25} +(66.0000 + 114.315i) q^{26} +53.0000 q^{27} +(74.0000 - 3.46410i) q^{28} +106.000 q^{29} +(-7.00000 - 12.1244i) q^{30} +(-37.5000 + 64.9519i) q^{31} +(16.0000 - 27.7128i) q^{32} +(17.5000 + 30.3109i) q^{33} -118.000 q^{34} +(-59.5000 + 115.181i) q^{35} -104.000 q^{36} +(-5.50000 - 9.52628i) q^{37} +(137.000 - 237.291i) q^{38} +(33.0000 - 57.1577i) q^{39} +(28.0000 + 48.4974i) q^{40} -498.000 q^{41} +(-20.0000 - 31.1769i) q^{42} +260.000 q^{43} +(-70.0000 - 121.244i) q^{44} +(91.0000 - 157.617i) q^{45} +(-7.00000 + 12.1244i) q^{46} +(85.5000 + 148.090i) q^{47} -16.0000 q^{48} +(-143.000 + 311.769i) q^{49} +152.000 q^{50} +(29.5000 + 51.0955i) q^{51} +(-132.000 + 228.631i) q^{52} +(208.500 - 361.133i) q^{53} +(53.0000 + 91.7987i) q^{54} +245.000 q^{55} +(80.0000 + 124.708i) q^{56} -137.000 q^{57} +(106.000 + 183.597i) q^{58} +(8.50000 - 14.7224i) q^{59} +(14.0000 - 24.2487i) q^{60} +(-25.5000 - 44.1673i) q^{61} -150.000 q^{62} +(221.000 - 427.817i) q^{63} +64.0000 q^{64} +(-231.000 - 400.104i) q^{65} +(-35.0000 + 60.6218i) q^{66} +(-219.500 + 380.185i) q^{67} +(-118.000 - 204.382i) q^{68} +7.00000 q^{69} +(-259.000 + 12.1244i) q^{70} -784.000 q^{71} +(-104.000 - 180.133i) q^{72} +(-147.500 + 255.477i) q^{73} +(11.0000 - 19.0526i) q^{74} +(-38.0000 - 65.8179i) q^{75} +548.000 q^{76} +(647.500 - 30.3109i) q^{77} +132.000 q^{78} +(247.500 + 428.683i) q^{79} +(-56.0000 + 96.9948i) q^{80} +(-324.500 + 562.050i) q^{81} +(-498.000 - 862.561i) q^{82} +932.000 q^{83} +(34.0000 - 65.8179i) q^{84} +413.000 q^{85} +(260.000 + 450.333i) q^{86} +(53.0000 - 91.7987i) q^{87} +(140.000 - 242.487i) q^{88} +(436.500 + 756.040i) q^{89} +364.000 q^{90} +(-660.000 - 1028.84i) q^{91} -28.0000 q^{92} +(37.5000 + 64.9519i) q^{93} +(-171.000 + 296.181i) q^{94} +(-479.500 + 830.518i) q^{95} +(-16.0000 - 27.7128i) q^{96} -290.000 q^{97} +(-683.000 + 64.0859i) q^{98} -910.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + q^{3} - 4q^{4} - 7q^{5} + 4q^{6} - 20q^{7} - 16q^{8} + 26q^{9} + O(q^{10}) \) \( 2q + 2q^{2} + q^{3} - 4q^{4} - 7q^{5} + 4q^{6} - 20q^{7} - 16q^{8} + 26q^{9} + 14q^{10} - 35q^{11} + 4q^{12} + 132q^{13} + 34q^{14} - 14q^{15} - 16q^{16} - 59q^{17} - 52q^{18} - 137q^{19} + 56q^{20} - 37q^{21} - 140q^{22} + 7q^{23} - 8q^{24} + 76q^{25} + 132q^{26} + 106q^{27} + 148q^{28} + 212q^{29} - 14q^{30} - 75q^{31} + 32q^{32} + 35q^{33} - 236q^{34} - 119q^{35} - 208q^{36} - 11q^{37} + 274q^{38} + 66q^{39} + 56q^{40} - 996q^{41} - 40q^{42} + 520q^{43} - 140q^{44} + 182q^{45} - 14q^{46} + 171q^{47} - 32q^{48} - 286q^{49} + 304q^{50} + 59q^{51} - 264q^{52} + 417q^{53} + 106q^{54} + 490q^{55} + 160q^{56} - 274q^{57} + 212q^{58} + 17q^{59} + 28q^{60} - 51q^{61} - 300q^{62} + 442q^{63} + 128q^{64} - 462q^{65} - 70q^{66} - 439q^{67} - 236q^{68} + 14q^{69} - 518q^{70} - 1568q^{71} - 208q^{72} - 295q^{73} + 22q^{74} - 76q^{75} + 1096q^{76} + 1295q^{77} + 264q^{78} + 495q^{79} - 112q^{80} - 649q^{81} - 996q^{82} + 1864q^{83} + 68q^{84} + 826q^{85} + 520q^{86} + 106q^{87} + 280q^{88} + 873q^{89} + 728q^{90} - 1320q^{91} - 56q^{92} + 75q^{93} - 342q^{94} - 959q^{95} - 32q^{96} - 580q^{97} - 1366q^{98} - 1820q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/14\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) 0.500000 0.866025i 0.0962250 0.166667i −0.813894 0.581013i \(-0.802656\pi\)
0.910119 + 0.414346i \(0.135990\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −3.50000 6.06218i −0.313050 0.542218i 0.665971 0.745977i \(-0.268017\pi\)
−0.979021 + 0.203760i \(0.934684\pi\)
\(6\) 2.00000 0.136083
\(7\) −10.0000 15.5885i −0.539949 0.841698i
\(8\) −8.00000 −0.353553
\(9\) 13.0000 + 22.5167i 0.481481 + 0.833950i
\(10\) 7.00000 12.1244i 0.221359 0.383406i
\(11\) −17.5000 + 30.3109i −0.479677 + 0.830825i −0.999728 0.0233099i \(-0.992580\pi\)
0.520051 + 0.854135i \(0.325913\pi\)
\(12\) 2.00000 + 3.46410i 0.0481125 + 0.0833333i
\(13\) 66.0000 1.40809 0.704043 0.710158i \(-0.251376\pi\)
0.704043 + 0.710158i \(0.251376\pi\)
\(14\) 17.0000 32.9090i 0.324532 0.628235i
\(15\) −7.00000 −0.120493
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −29.5000 + 51.0955i −0.420871 + 0.728969i −0.996025 0.0890757i \(-0.971609\pi\)
0.575154 + 0.818045i \(0.304942\pi\)
\(18\) −26.0000 + 45.0333i −0.340459 + 0.589692i
\(19\) −68.5000 118.645i −0.827104 1.43259i −0.900301 0.435269i \(-0.856653\pi\)
0.0731965 0.997318i \(-0.476680\pi\)
\(20\) 28.0000 0.313050
\(21\) −18.5000 + 0.866025i −0.192240 + 0.00899915i
\(22\) −70.0000 −0.678366
\(23\) 3.50000 + 6.06218i 0.0317305 + 0.0549588i 0.881455 0.472269i \(-0.156565\pi\)
−0.849724 + 0.527228i \(0.823232\pi\)
\(24\) −4.00000 + 6.92820i −0.0340207 + 0.0589256i
\(25\) 38.0000 65.8179i 0.304000 0.526543i
\(26\) 66.0000 + 114.315i 0.497833 + 0.862273i
\(27\) 53.0000 0.377772
\(28\) 74.0000 3.46410i 0.499453 0.0233805i
\(29\) 106.000 0.678748 0.339374 0.940651i \(-0.389785\pi\)
0.339374 + 0.940651i \(0.389785\pi\)
\(30\) −7.00000 12.1244i −0.0426006 0.0737865i
\(31\) −37.5000 + 64.9519i −0.217264 + 0.376313i −0.953971 0.299900i \(-0.903047\pi\)
0.736706 + 0.676213i \(0.236380\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) 17.5000 + 30.3109i 0.0923139 + 0.159892i
\(34\) −118.000 −0.595201
\(35\) −59.5000 + 115.181i −0.287352 + 0.556263i
\(36\) −104.000 −0.481481
\(37\) −5.50000 9.52628i −0.0244377 0.0423273i 0.853548 0.521014i \(-0.174446\pi\)
−0.877986 + 0.478687i \(0.841113\pi\)
\(38\) 137.000 237.291i 0.584851 1.01299i
\(39\) 33.0000 57.1577i 0.135493 0.234681i
\(40\) 28.0000 + 48.4974i 0.110680 + 0.191703i
\(41\) −498.000 −1.89694 −0.948470 0.316867i \(-0.897369\pi\)
−0.948470 + 0.316867i \(0.897369\pi\)
\(42\) −20.0000 31.1769i −0.0734778 0.114541i
\(43\) 260.000 0.922084 0.461042 0.887378i \(-0.347476\pi\)
0.461042 + 0.887378i \(0.347476\pi\)
\(44\) −70.0000 121.244i −0.239839 0.415413i
\(45\) 91.0000 157.617i 0.301455 0.522136i
\(46\) −7.00000 + 12.1244i −0.0224368 + 0.0388617i
\(47\) 85.5000 + 148.090i 0.265350 + 0.459600i 0.967655 0.252276i \(-0.0811791\pi\)
−0.702305 + 0.711876i \(0.747846\pi\)
\(48\) −16.0000 −0.0481125
\(49\) −143.000 + 311.769i −0.416910 + 0.908948i
\(50\) 152.000 0.429921
\(51\) 29.5000 + 51.0955i 0.0809966 + 0.140290i
\(52\) −132.000 + 228.631i −0.352021 + 0.609719i
\(53\) 208.500 361.133i 0.540371 0.935951i −0.458511 0.888689i \(-0.651617\pi\)
0.998883 0.0472619i \(-0.0150495\pi\)
\(54\) 53.0000 + 91.7987i 0.133563 + 0.231337i
\(55\) 245.000 0.600651
\(56\) 80.0000 + 124.708i 0.190901 + 0.297585i
\(57\) −137.000 −0.318353
\(58\) 106.000 + 183.597i 0.239974 + 0.415647i
\(59\) 8.50000 14.7224i 0.0187560 0.0324864i −0.856495 0.516155i \(-0.827363\pi\)
0.875251 + 0.483669i \(0.160696\pi\)
\(60\) 14.0000 24.2487i 0.0301232 0.0521749i
\(61\) −25.5000 44.1673i −0.0535236 0.0927056i 0.838022 0.545636i \(-0.183712\pi\)
−0.891546 + 0.452930i \(0.850379\pi\)
\(62\) −150.000 −0.307258
\(63\) 221.000 427.817i 0.441958 0.855553i
\(64\) 64.0000 0.125000
\(65\) −231.000 400.104i −0.440800 0.763489i
\(66\) −35.0000 + 60.6218i −0.0652758 + 0.113061i
\(67\) −219.500 + 380.185i −0.400242 + 0.693239i −0.993755 0.111585i \(-0.964407\pi\)
0.593513 + 0.804824i \(0.297740\pi\)
\(68\) −118.000 204.382i −0.210435 0.364485i
\(69\) 7.00000 0.0122131
\(70\) −259.000 + 12.1244i −0.442235 + 0.0207020i
\(71\) −784.000 −1.31047 −0.655237 0.755423i \(-0.727431\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(72\) −104.000 180.133i −0.170229 0.294846i
\(73\) −147.500 + 255.477i −0.236487 + 0.409608i −0.959704 0.281013i \(-0.909329\pi\)
0.723217 + 0.690621i \(0.242663\pi\)
\(74\) 11.0000 19.0526i 0.0172801 0.0299299i
\(75\) −38.0000 65.8179i −0.0585048 0.101333i
\(76\) 548.000 0.827104
\(77\) 647.500 30.3109i 0.958305 0.0448603i
\(78\) 132.000 0.191616
\(79\) 247.500 + 428.683i 0.352480 + 0.610513i 0.986683 0.162653i \(-0.0520051\pi\)
−0.634203 + 0.773166i \(0.718672\pi\)
\(80\) −56.0000 + 96.9948i −0.0782624 + 0.135554i
\(81\) −324.500 + 562.050i −0.445130 + 0.770988i
\(82\) −498.000 862.561i −0.670670 1.16163i
\(83\) 932.000 1.23253 0.616267 0.787537i \(-0.288644\pi\)
0.616267 + 0.787537i \(0.288644\pi\)
\(84\) 34.0000 65.8179i 0.0441631 0.0854920i
\(85\) 413.000 0.527013
\(86\) 260.000 + 450.333i 0.326006 + 0.564659i
\(87\) 53.0000 91.7987i 0.0653126 0.113125i
\(88\) 140.000 242.487i 0.169591 0.293741i
\(89\) 436.500 + 756.040i 0.519875 + 0.900451i 0.999733 + 0.0231042i \(0.00735495\pi\)
−0.479858 + 0.877346i \(0.659312\pi\)
\(90\) 364.000 0.426322
\(91\) −660.000 1028.84i −0.760294 1.18518i
\(92\) −28.0000 −0.0317305
\(93\) 37.5000 + 64.9519i 0.0418126 + 0.0724215i
\(94\) −171.000 + 296.181i −0.187631 + 0.324986i
\(95\) −479.500 + 830.518i −0.517849 + 0.896941i
\(96\) −16.0000 27.7128i −0.0170103 0.0294628i
\(97\) −290.000 −0.303557 −0.151779 0.988415i \(-0.548500\pi\)
−0.151779 + 0.988415i \(0.548500\pi\)
\(98\) −683.000 + 64.0859i −0.704014 + 0.0660577i
\(99\) −910.000 −0.923823
\(100\) 152.000 + 263.272i 0.152000 + 0.263272i
\(101\) 542.500 939.638i 0.534463 0.925717i −0.464726 0.885454i \(-0.653847\pi\)
0.999189 0.0402627i \(-0.0128195\pi\)
\(102\) −59.0000 + 102.191i −0.0572732 + 0.0992002i
\(103\) −776.500 1344.94i −0.742823 1.28661i −0.951205 0.308560i \(-0.900153\pi\)
0.208381 0.978048i \(-0.433181\pi\)
\(104\) −528.000 −0.497833
\(105\) 70.0000 + 109.119i 0.0650600 + 0.101419i
\(106\) 834.000 0.764200
\(107\) −64.5000 111.717i −0.0582752 0.100936i 0.835416 0.549618i \(-0.185227\pi\)
−0.893691 + 0.448682i \(0.851893\pi\)
\(108\) −106.000 + 183.597i −0.0944431 + 0.163580i
\(109\) 482.500 835.715i 0.423992 0.734376i −0.572334 0.820021i \(-0.693962\pi\)
0.996326 + 0.0856452i \(0.0272952\pi\)
\(110\) 245.000 + 424.352i 0.212362 + 0.367822i
\(111\) −11.0000 −0.00940607
\(112\) −136.000 + 263.272i −0.114739 + 0.222115i
\(113\) −50.0000 −0.0416248 −0.0208124 0.999783i \(-0.506625\pi\)
−0.0208124 + 0.999783i \(0.506625\pi\)
\(114\) −137.000 237.291i −0.112555 0.194950i
\(115\) 24.5000 42.4352i 0.0198664 0.0344096i
\(116\) −212.000 + 367.195i −0.169687 + 0.293907i
\(117\) 858.000 + 1486.10i 0.677967 + 1.17427i
\(118\) 34.0000 0.0265250
\(119\) 1091.50 51.0955i 0.840821 0.0393606i
\(120\) 56.0000 0.0426006
\(121\) 53.0000 + 91.7987i 0.0398197 + 0.0689697i
\(122\) 51.0000 88.3346i 0.0378469 0.0655528i
\(123\) −249.000 + 431.281i −0.182533 + 0.316157i
\(124\) −150.000 259.808i −0.108632 0.188157i
\(125\) −1407.00 −1.00677
\(126\) 962.000 45.0333i 0.680173 0.0318404i
\(127\) 936.000 0.653989 0.326994 0.945026i \(-0.393964\pi\)
0.326994 + 0.945026i \(0.393964\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) 130.000 225.167i 0.0887276 0.153681i
\(130\) 462.000 800.207i 0.311693 0.539868i
\(131\) 377.500 + 653.849i 0.251773 + 0.436084i 0.964014 0.265851i \(-0.0856529\pi\)
−0.712241 + 0.701935i \(0.752320\pi\)
\(132\) −140.000 −0.0923139
\(133\) −1164.50 + 2254.26i −0.759210 + 1.46970i
\(134\) −878.000 −0.566027
\(135\) −185.500 321.295i −0.118261 0.204835i
\(136\) 236.000 408.764i 0.148800 0.257730i
\(137\) 1178.50 2041.22i 0.734935 1.27294i −0.219817 0.975541i \(-0.570546\pi\)
0.954752 0.297403i \(-0.0961205\pi\)
\(138\) 7.00000 + 12.1244i 0.00431797 + 0.00747894i
\(139\) 28.0000 0.0170858 0.00854291 0.999964i \(-0.497281\pi\)
0.00854291 + 0.999964i \(0.497281\pi\)
\(140\) −280.000 436.477i −0.169031 0.263493i
\(141\) 171.000 0.102133
\(142\) −784.000 1357.93i −0.463323 0.802498i
\(143\) −1155.00 + 2000.52i −0.675426 + 1.16987i
\(144\) 208.000 360.267i 0.120370 0.208488i
\(145\) −371.000 642.591i −0.212482 0.368029i
\(146\) −590.000 −0.334443
\(147\) 198.500 + 279.726i 0.111374 + 0.156948i
\(148\) 44.0000 0.0244377
\(149\) −1147.50 1987.53i −0.630919 1.09278i −0.987364 0.158467i \(-0.949345\pi\)
0.356446 0.934316i \(-0.383988\pi\)
\(150\) 76.0000 131.636i 0.0413692 0.0716535i
\(151\) 554.500 960.422i 0.298838 0.517603i −0.677032 0.735953i \(-0.736734\pi\)
0.975870 + 0.218350i \(0.0700676\pi\)
\(152\) 548.000 + 949.164i 0.292425 + 0.506496i
\(153\) −1534.00 −0.810566
\(154\) 700.000 + 1091.19i 0.366283 + 0.570979i
\(155\) 525.000 0.272058
\(156\) 132.000 + 228.631i 0.0677465 + 0.117340i
\(157\) −779.500 + 1350.13i −0.396248 + 0.686321i −0.993260 0.115911i \(-0.963021\pi\)
0.597012 + 0.802232i \(0.296354\pi\)
\(158\) −495.000 + 857.365i −0.249241 + 0.431698i
\(159\) −208.500 361.133i −0.103995 0.180124i
\(160\) −224.000 −0.110680
\(161\) 59.5000 115.181i 0.0291258 0.0563824i
\(162\) −1298.00 −0.629509
\(163\) 1125.50 + 1949.42i 0.540834 + 0.936752i 0.998856 + 0.0478115i \(0.0152247\pi\)
−0.458022 + 0.888941i \(0.651442\pi\)
\(164\) 996.000 1725.12i 0.474235 0.821399i
\(165\) 122.500 212.176i 0.0577976 0.100108i
\(166\) 932.000 + 1614.27i 0.435766 + 0.754770i
\(167\) 2788.00 1.29187 0.645934 0.763393i \(-0.276468\pi\)
0.645934 + 0.763393i \(0.276468\pi\)
\(168\) 148.000 6.92820i 0.0679670 0.00318168i
\(169\) 2159.00 0.982704
\(170\) 413.000 + 715.337i 0.186327 + 0.322728i
\(171\) 1781.00 3084.78i 0.796471 1.37953i
\(172\) −520.000 + 900.666i −0.230521 + 0.399274i
\(173\) −789.500 1367.45i −0.346963 0.600957i 0.638746 0.769418i \(-0.279454\pi\)
−0.985708 + 0.168461i \(0.946120\pi\)
\(174\) 212.000 0.0923660
\(175\) −1406.00 + 65.8179i −0.607335 + 0.0284307i
\(176\) 560.000 0.239839
\(177\) −8.50000 14.7224i −0.00360960 0.00625201i
\(178\) −873.000 + 1512.08i −0.367607 + 0.636715i
\(179\) −1225.50 + 2122.63i −0.511722 + 0.886328i 0.488186 + 0.872740i \(0.337659\pi\)
−0.999908 + 0.0135883i \(0.995675\pi\)
\(180\) 364.000 + 630.466i 0.150728 + 0.261068i
\(181\) −1170.00 −0.480472 −0.240236 0.970715i \(-0.577225\pi\)
−0.240236 + 0.970715i \(0.577225\pi\)
\(182\) 1122.00 2171.99i 0.456968 0.884608i
\(183\) −51.0000 −0.0206012
\(184\) −28.0000 48.4974i −0.0112184 0.0194309i
\(185\) −38.5000 + 66.6840i −0.0153004 + 0.0265011i
\(186\) −75.0000 + 129.904i −0.0295660 + 0.0512097i
\(187\) −1032.50 1788.34i −0.403764 0.699340i
\(188\) −684.000 −0.265350
\(189\) −530.000 826.188i −0.203978 0.317970i
\(190\) −1918.00 −0.732349
\(191\) 637.500 + 1104.18i 0.241507 + 0.418303i 0.961144 0.276048i \(-0.0890249\pi\)
−0.719637 + 0.694351i \(0.755692\pi\)
\(192\) 32.0000 55.4256i 0.0120281 0.0208333i
\(193\) −17.5000 + 30.3109i −0.00652683 + 0.0113048i −0.869270 0.494337i \(-0.835411\pi\)
0.862744 + 0.505642i \(0.168744\pi\)
\(194\) −290.000 502.295i −0.107324 0.185890i
\(195\) −462.000 −0.169664
\(196\) −794.000 1118.90i −0.289359 0.407764i
\(197\) −2734.00 −0.988779 −0.494389 0.869241i \(-0.664608\pi\)
−0.494389 + 0.869241i \(0.664608\pi\)
\(198\) −910.000 1576.17i −0.326621 0.565724i
\(199\) −1121.50 + 1942.49i −0.399503 + 0.691959i −0.993665 0.112387i \(-0.964151\pi\)
0.594162 + 0.804345i \(0.297484\pi\)
\(200\) −304.000 + 526.543i −0.107480 + 0.186161i
\(201\) 219.500 + 380.185i 0.0770265 + 0.133414i
\(202\) 2170.00 0.755845
\(203\) −1060.00 1652.38i −0.366490 0.571301i
\(204\) −236.000 −0.0809966
\(205\) 1743.00 + 3018.96i 0.593836 + 1.02855i
\(206\) 1553.00 2689.87i 0.525256 0.909769i
\(207\) −91.0000 + 157.617i −0.0305553 + 0.0529232i
\(208\) −528.000 914.523i −0.176011 0.304859i
\(209\) 4795.00 1.58697
\(210\) −119.000 + 230.363i −0.0391037 + 0.0756978i
\(211\) 1172.00 0.382388 0.191194 0.981552i \(-0.438764\pi\)
0.191194 + 0.981552i \(0.438764\pi\)
\(212\) 834.000 + 1444.53i 0.270186 + 0.467975i
\(213\) −392.000 + 678.964i −0.126100 + 0.218412i
\(214\) 129.000 223.435i 0.0412068 0.0713723i
\(215\) −910.000 1576.17i −0.288658 0.499970i
\(216\) −424.000 −0.133563
\(217\) 1387.50 64.9519i 0.434054 0.0203190i
\(218\) 1930.00 0.599615
\(219\) 147.500 + 255.477i 0.0455120 + 0.0788291i
\(220\) −490.000 + 848.705i −0.150163 + 0.260089i
\(221\) −1947.00 + 3372.30i −0.592622 + 1.02645i
\(222\) −11.0000 19.0526i −0.00332555 0.00576002i
\(223\) 2024.00 0.607790 0.303895 0.952706i \(-0.401713\pi\)
0.303895 + 0.952706i \(0.401713\pi\)
\(224\) −592.000 + 27.7128i −0.176583 + 0.00826625i
\(225\) 1976.00 0.585481
\(226\) −50.0000 86.6025i −0.0147166 0.0254899i
\(227\) −1285.50 + 2226.55i −0.375866 + 0.651019i −0.990456 0.137827i \(-0.955988\pi\)
0.614590 + 0.788847i \(0.289321\pi\)
\(228\) 274.000 474.582i 0.0795881 0.137851i
\(229\) −447.500 775.093i −0.129134 0.223666i 0.794207 0.607647i \(-0.207886\pi\)
−0.923341 + 0.383980i \(0.874553\pi\)
\(230\) 98.0000 0.0280953
\(231\) 297.500 575.907i 0.0847362 0.164034i
\(232\) −848.000 −0.239974
\(233\) −893.500 1547.59i −0.251224 0.435132i 0.712639 0.701531i \(-0.247500\pi\)
−0.963863 + 0.266398i \(0.914166\pi\)
\(234\) −1716.00 + 2972.20i −0.479395 + 0.830336i
\(235\) 598.500 1036.63i 0.166135 0.287755i
\(236\) 34.0000 + 58.8897i 0.00937801 + 0.0162432i
\(237\) 495.000 0.135670
\(238\) 1180.00 + 1839.44i 0.321378 + 0.500979i
\(239\) −5100.00 −1.38030 −0.690150 0.723667i \(-0.742455\pi\)
−0.690150 + 0.723667i \(0.742455\pi\)
\(240\) 56.0000 + 96.9948i 0.0150616 + 0.0260875i
\(241\) 2088.50 3617.39i 0.558225 0.966873i −0.439420 0.898282i \(-0.644816\pi\)
0.997645 0.0685917i \(-0.0218506\pi\)
\(242\) −106.000 + 183.597i −0.0281568 + 0.0487690i
\(243\) 1040.00 + 1801.33i 0.274552 + 0.475537i
\(244\) 204.000 0.0535236
\(245\) 2390.50 224.301i 0.623361 0.0584900i
\(246\) −996.000 −0.258141
\(247\) −4521.00 7830.60i −1.16463 2.01720i
\(248\) 300.000 519.615i 0.0768146 0.133047i
\(249\) 466.000 807.136i 0.118601 0.205422i
\(250\) −1407.00 2437.00i −0.355946 0.616517i
\(251\) −4680.00 −1.17689 −0.588444 0.808538i \(-0.700259\pi\)
−0.588444 + 0.808538i \(0.700259\pi\)
\(252\) 1040.00 + 1621.20i 0.259976 + 0.405262i
\(253\) −245.000 −0.0608815
\(254\) 936.000 + 1621.20i 0.231220 + 0.400485i
\(255\) 206.500 357.668i 0.0507119 0.0878356i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 874.500 + 1514.68i 0.212256 + 0.367638i 0.952420 0.304788i \(-0.0985856\pi\)
−0.740164 + 0.672426i \(0.765252\pi\)
\(258\) 520.000 0.125480
\(259\) −93.5000 + 180.999i −0.0224317 + 0.0434237i
\(260\) 1848.00 0.440800
\(261\) 1378.00 + 2386.77i 0.326805 + 0.566043i
\(262\) −755.000 + 1307.70i −0.178031 + 0.308358i
\(263\) 2236.50 3873.73i 0.524367 0.908230i −0.475231 0.879861i \(-0.657635\pi\)
0.999598 0.0283689i \(-0.00903130\pi\)
\(264\) −140.000 242.487i −0.0326379 0.0565305i
\(265\) −2919.00 −0.676652
\(266\) −5069.00 + 237.291i −1.16842 + 0.0546964i
\(267\) 873.000 0.200100
\(268\) −878.000 1520.74i −0.200121 0.346619i
\(269\) −987.500 + 1710.40i −0.223825 + 0.387676i −0.955966 0.293476i \(-0.905188\pi\)
0.732141 + 0.681153i \(0.238521\pi\)
\(270\) 371.000 642.591i 0.0836235 0.144840i
\(271\) 4219.50 + 7308.39i 0.945817 + 1.63820i 0.754107 + 0.656751i \(0.228070\pi\)
0.191710 + 0.981452i \(0.438597\pi\)
\(272\) 944.000 0.210435
\(273\) −1221.00 + 57.1577i −0.270690 + 0.0126716i
\(274\) 4714.00 1.03935
\(275\) 1330.00 + 2303.63i 0.291644 + 0.505142i
\(276\) −14.0000 + 24.2487i −0.00305326 + 0.00528841i
\(277\) −263.500 + 456.395i −0.0571559 + 0.0989969i −0.893188 0.449684i \(-0.851537\pi\)
0.836032 + 0.548681i \(0.184870\pi\)
\(278\) 28.0000 + 48.4974i 0.00604075 + 0.0104629i
\(279\) −1950.00 −0.418435
\(280\) 476.000 921.451i 0.101594 0.196669i
\(281\) −202.000 −0.0428837 −0.0214418 0.999770i \(-0.506826\pi\)
−0.0214418 + 0.999770i \(0.506826\pi\)
\(282\) 171.000 + 296.181i 0.0361096 + 0.0625436i
\(283\) 3974.50 6884.04i 0.834839 1.44598i −0.0593220 0.998239i \(-0.518894\pi\)
0.894161 0.447745i \(-0.147773\pi\)
\(284\) 1568.00 2715.86i 0.327619 0.567452i
\(285\) 479.500 + 830.518i 0.0996601 + 0.172616i
\(286\) −4620.00 −0.955197
\(287\) 4980.00 + 7763.05i 1.02425 + 1.59665i
\(288\) 832.000 0.170229
\(289\) 716.000 + 1240.15i 0.145736 + 0.252422i
\(290\) 742.000 1285.18i 0.150247 0.260236i
\(291\) −145.000 + 251.147i −0.0292098 + 0.0505929i
\(292\) −590.000 1021.91i −0.118244 0.204804i
\(293\) 318.000 0.0634053 0.0317027 0.999497i \(-0.489907\pi\)
0.0317027 + 0.999497i \(0.489907\pi\)
\(294\) −286.000 + 623.538i −0.0567342 + 0.123692i
\(295\) −119.000 −0.0234863
\(296\) 44.0000 + 76.2102i 0.00864003 + 0.0149650i
\(297\) −927.500 + 1606.48i −0.181209 + 0.313863i
\(298\) 2295.00 3975.06i 0.446127 0.772714i
\(299\) 231.000 + 400.104i 0.0446792 + 0.0773866i
\(300\) 304.000 0.0585048
\(301\) −2600.00 4053.00i −0.497879 0.776116i
\(302\) 2218.00 0.422621
\(303\) −542.500 939.638i −0.102857 0.178154i
\(304\) −1096.00 + 1898.33i −0.206776 + 0.358147i
\(305\) −178.500 + 309.171i −0.0335111 + 0.0580429i
\(306\) −1534.00 2656.97i −0.286578 0.496368i
\(307\) −8132.00 −1.51178 −0.755892 0.654696i \(-0.772797\pi\)
−0.755892 + 0.654696i \(0.772797\pi\)
\(308\) −1190.00 + 2303.63i −0.220151 + 0.426173i
\(309\) −1553.00 −0.285913
\(310\) 525.000 + 909.327i 0.0961871 + 0.166601i
\(311\) 464.500 804.538i 0.0846925 0.146692i −0.820568 0.571549i \(-0.806343\pi\)
0.905260 + 0.424858i \(0.139676\pi\)
\(312\) −264.000 + 457.261i −0.0479040 + 0.0829722i
\(313\) 104.500 + 180.999i 0.0188712 + 0.0326859i 0.875307 0.483568i \(-0.160659\pi\)
−0.856436 + 0.516254i \(0.827326\pi\)
\(314\) −3118.00 −0.560379
\(315\) −3367.00 + 157.617i −0.602251 + 0.0281927i
\(316\) −1980.00 −0.352480
\(317\) −3565.50 6175.63i −0.631730 1.09419i −0.987198 0.159500i \(-0.949012\pi\)
0.355468 0.934689i \(-0.384322\pi\)
\(318\) 417.000 722.265i 0.0735352 0.127367i
\(319\) −1855.00 + 3212.95i −0.325580 + 0.563921i
\(320\) −224.000 387.979i −0.0391312 0.0677772i
\(321\) −129.000 −0.0224301
\(322\) 259.000 12.1244i 0.0448246 0.00209834i
\(323\) 8083.00 1.39242
\(324\) −1298.00 2248.20i −0.222565 0.385494i
\(325\) 2508.00 4343.98i 0.428058 0.741418i
\(326\) −2251.00 + 3898.85i −0.382427 + 0.662384i
\(327\) −482.500 835.715i −0.0815973 0.141331i
\(328\) 3984.00 0.670670
\(329\) 1453.50 2813.72i 0.243569 0.471505i
\(330\) 490.000 0.0817382
\(331\) 3285.50 + 5690.65i 0.545581 + 0.944975i 0.998570 + 0.0534583i \(0.0170244\pi\)
−0.452989 + 0.891516i \(0.649642\pi\)
\(332\) −1864.00 + 3228.54i −0.308133 + 0.533703i
\(333\) 143.000 247.683i 0.0235326 0.0407596i
\(334\) 2788.00 + 4828.96i 0.456744 + 0.791104i
\(335\) 3073.00 0.501182
\(336\) 160.000 + 249.415i 0.0259783 + 0.0404962i
\(337\) −11466.0 −1.85339 −0.926696 0.375813i \(-0.877364\pi\)
−0.926696 + 0.375813i \(0.877364\pi\)
\(338\) 2159.00 + 3739.50i 0.347438 + 0.601781i
\(339\) −25.0000 + 43.3013i −0.00400535 + 0.00693747i
\(340\) −826.000 + 1430.67i −0.131753 + 0.228203i
\(341\) −1312.50 2273.32i −0.208434 0.361018i
\(342\) 7124.00 1.12638
\(343\) 6290.00 888.542i 0.990169 0.139874i
\(344\) −2080.00 −0.326006
\(345\) −24.5000 42.4352i −0.00382329 0.00662214i
\(346\) 1579.00 2734.91i 0.245340 0.424941i
\(347\) 4888.50 8467.13i 0.756278 1.30991i −0.188459 0.982081i \(-0.560349\pi\)
0.944737 0.327831i \(-0.106318\pi\)
\(348\) 212.000 + 367.195i 0.0326563 + 0.0565624i
\(349\) 11914.0 1.82734 0.913670 0.406456i \(-0.133236\pi\)
0.913670 + 0.406456i \(0.133236\pi\)
\(350\) −1520.00 2369.45i −0.232135 0.361863i
\(351\) 3498.00 0.531936
\(352\) 560.000 + 969.948i 0.0847957 + 0.146871i
\(353\) −4561.50 + 7900.75i −0.687774 + 1.19126i 0.284783 + 0.958592i \(0.408079\pi\)
−0.972556 + 0.232667i \(0.925255\pi\)
\(354\) 17.0000 29.4449i 0.00255237 0.00442084i
\(355\) 2744.00 + 4752.75i 0.410243 + 0.710562i
\(356\) −3492.00 −0.519875
\(357\) 501.500 970.814i 0.0743479 0.143924i
\(358\) −4902.00 −0.723684
\(359\) −4074.50 7057.24i −0.599008 1.03751i −0.992968 0.118385i \(-0.962228\pi\)
0.393960 0.919128i \(-0.371105\pi\)
\(360\) −728.000 + 1260.93i −0.106580 + 0.184603i
\(361\) −5955.00 + 10314.4i −0.868202 + 1.50377i
\(362\) −1170.00 2026.50i −0.169872 0.294228i
\(363\) 106.000 0.0153266
\(364\) 4884.00 228.631i 0.703272 0.0329217i
\(365\) 2065.00 0.296129
\(366\) −51.0000 88.3346i −0.00728364 0.0126156i
\(367\) −4835.50 + 8375.33i −0.687769 + 1.19125i 0.284790 + 0.958590i \(0.408076\pi\)
−0.972558 + 0.232660i \(0.925257\pi\)
\(368\) 56.0000 96.9948i 0.00793261 0.0137397i
\(369\) −6474.00 11213.3i −0.913341 1.58195i
\(370\) −154.000 −0.0216381
\(371\) −7714.50 + 361.133i −1.07956 + 0.0505366i
\(372\) −300.000 −0.0418126
\(373\) 2054.50 + 3558.50i 0.285196 + 0.493973i 0.972657 0.232248i \(-0.0746081\pi\)
−0.687461 + 0.726221i \(0.741275\pi\)
\(374\) 2065.00 3576.68i 0.285504 0.494508i
\(375\) −703.500 + 1218.50i −0.0968762 + 0.167795i
\(376\) −684.000 1184.72i −0.0938154 0.162493i
\(377\) 6996.00 0.955736
\(378\) 901.000 1744.18i 0.122599 0.237330i
\(379\) −3488.00 −0.472735 −0.236367 0.971664i \(-0.575957\pi\)
−0.236367 + 0.971664i \(0.575957\pi\)
\(380\) −1918.00 3322.07i −0.258925 0.448470i
\(381\) 468.000 810.600i 0.0629301 0.108998i
\(382\) −1275.00 + 2208.36i −0.170771 + 0.295785i
\(383\) −4358.50 7549.14i −0.581485 1.00716i −0.995304 0.0968028i \(-0.969138\pi\)
0.413818 0.910360i \(-0.364195\pi\)
\(384\) 128.000 0.0170103
\(385\) −2450.00 3819.17i −0.324321 0.505566i
\(386\) −70.0000 −0.00923033
\(387\) 3380.00 + 5854.33i 0.443967 + 0.768973i
\(388\) 580.000 1004.59i 0.0758893 0.131444i
\(389\) −81.5000 + 141.162i −0.0106227 + 0.0183990i −0.871288 0.490772i \(-0.836715\pi\)
0.860665 + 0.509171i \(0.170048\pi\)
\(390\) −462.000 800.207i −0.0599853 0.103898i
\(391\) −413.000 −0.0534177
\(392\) 1144.00 2494.15i 0.147400 0.321362i
\(393\) 755.000 0.0969077
\(394\) −2734.00 4735.43i −0.349586 0.605501i
\(395\) 1732.50 3000.78i 0.220687 0.382242i
\(396\) 1820.00 3152.33i 0.230956 0.400027i
\(397\) −499.500 865.159i −0.0631466 0.109373i 0.832724 0.553689i \(-0.186780\pi\)
−0.895870 + 0.444316i \(0.853447\pi\)
\(398\) −4486.00 −0.564982
\(399\) 1370.00 + 2135.62i 0.171894 + 0.267957i
\(400\) −1216.00 −0.152000
\(401\) 7378.50 + 12779.9i 0.918865 + 1.59152i 0.801143 + 0.598474i \(0.204226\pi\)
0.117722 + 0.993047i \(0.462441\pi\)
\(402\) −439.000 + 760.370i −0.0544660 + 0.0943379i
\(403\) −2475.00 + 4286.83i −0.305927 + 0.529881i
\(404\) 2170.00 + 3758.55i 0.267232 + 0.462859i
\(405\) 4543.00 0.557391
\(406\) 1802.00 3488.35i 0.220275 0.426414i
\(407\) 385.000 0.0468888
\(408\) −236.000 408.764i −0.0286366 0.0496001i
\(409\) 66.5000 115.181i 0.00803964 0.0139251i −0.861978 0.506946i \(-0.830774\pi\)
0.870017 + 0.493021i \(0.164108\pi\)
\(410\) −3486.00 + 6037.93i −0.419906 + 0.727298i
\(411\) −1178.50 2041.22i −0.141438 0.244978i
\(412\) 6212.00 0.742823
\(413\) −314.500 + 14.7224i −0.0374710 + 0.00175410i
\(414\) −364.000 −0.0432117
\(415\) −3262.00 5649.95i −0.385844 0.668302i
\(416\) 1056.00 1829.05i 0.124458 0.215568i
\(417\) 14.0000 24.2487i 0.00164408 0.00284764i
\(418\) 4795.00 + 8305.18i 0.561079 + 0.971818i
\(419\) −6420.00 −0.748538 −0.374269 0.927320i \(-0.622106\pi\)
−0.374269 + 0.927320i \(0.622106\pi\)
\(420\) −518.000 + 24.2487i −0.0601805 + 0.00281718i
\(421\) 10266.0 1.18844 0.594221 0.804302i \(-0.297460\pi\)
0.594221 + 0.804302i \(0.297460\pi\)
\(422\) 1172.00 + 2029.96i 0.135194 + 0.234164i
\(423\) −2223.00 + 3850.35i −0.255522 + 0.442578i
\(424\) −1668.00 + 2889.06i −0.191050 + 0.330908i
\(425\) 2242.00 + 3883.26i 0.255889 + 0.443213i
\(426\) −1568.00 −0.178333
\(427\) −433.500 + 839.179i −0.0491301 + 0.0951070i
\(428\) 516.000 0.0582752
\(429\) 1155.00 + 2000.52i 0.129986 + 0.225142i
\(430\) 1820.00 3152.33i 0.204112 0.353532i
\(431\) 7606.50 13174.8i 0.850098 1.47241i −0.0310213 0.999519i \(-0.509876\pi\)
0.881119 0.472894i \(-0.156791\pi\)
\(432\) −424.000 734.390i −0.0472215 0.0817901i
\(433\) −1378.00 −0.152939 −0.0764693 0.997072i \(-0.524365\pi\)
−0.0764693 + 0.997072i \(0.524365\pi\)
\(434\) 1500.00 + 2338.27i 0.165904 + 0.258619i
\(435\) −742.000 −0.0817843
\(436\) 1930.00 + 3342.86i 0.211996 + 0.367188i
\(437\) 479.500 830.518i 0.0524888 0.0909132i
\(438\) −295.000 + 510.955i −0.0321818 + 0.0557406i
\(439\) 1381.50 + 2392.83i 0.150195 + 0.260145i 0.931299 0.364256i \(-0.118677\pi\)
−0.781104 + 0.624401i \(0.785343\pi\)
\(440\) −1960.00 −0.212362
\(441\) −8879.00 + 833.116i −0.958752 + 0.0899597i
\(442\) −7788.00 −0.838094
\(443\) −2924.50 5065.38i −0.313651 0.543259i 0.665499 0.746399i \(-0.268219\pi\)
−0.979150 + 0.203140i \(0.934885\pi\)
\(444\) 22.0000 38.1051i 0.00235152 0.00407295i
\(445\) 3055.50 5292.28i 0.325493 0.563771i
\(446\) 2024.00 + 3505.67i 0.214886 + 0.372194i
\(447\) −2295.00 −0.242841
\(448\) −640.000 997.661i −0.0674937 0.105212i
\(449\) 4582.00 0.481599 0.240799 0.970575i \(-0.422590\pi\)
0.240799 + 0.970575i \(0.422590\pi\)
\(450\) 1976.00 + 3422.53i 0.206999 + 0.358533i
\(451\) 8715.00 15094.8i 0.909919 1.57603i
\(452\) 100.000 173.205i 0.0104062 0.0180241i
\(453\) −554.500 960.422i −0.0575114 0.0996127i
\(454\) −5142.00 −0.531555
\(455\) −3927.00 + 7601.97i −0.404617 + 0.783266i
\(456\) 1096.00 0.112555
\(457\) −5775.50 10003.5i −0.591174 1.02394i −0.994075 0.108700i \(-0.965331\pi\)
0.402901 0.915244i \(-0.368002\pi\)
\(458\) 895.000 1550.19i 0.0913114 0.158156i
\(459\) −1563.50 + 2708.06i −0.158993 + 0.275384i
\(460\) 98.0000 + 169.741i 0.00993320 + 0.0172048i
\(461\) −9494.00 −0.959175 −0.479587 0.877494i \(-0.659214\pi\)
−0.479587 + 0.877494i \(0.659214\pi\)
\(462\) 1295.00 60.6218i 0.130409 0.00610472i
\(463\) −10160.0 −1.01982 −0.509908 0.860229i \(-0.670321\pi\)
−0.509908 + 0.860229i \(0.670321\pi\)
\(464\) −848.000 1468.78i −0.0848436 0.146953i
\(465\) 262.500 454.663i 0.0261788 0.0453430i
\(466\) 1787.00 3095.17i 0.177642 0.307685i
\(467\) 653.500 + 1131.90i 0.0647545 + 0.112158i 0.896585 0.442872i \(-0.146040\pi\)
−0.831831 + 0.555030i \(0.812707\pi\)
\(468\) −6864.00 −0.677967
\(469\) 8121.50 380.185i 0.799608 0.0374314i
\(470\) 2394.00 0.234951
\(471\) 779.500 + 1350.13i 0.0762579 + 0.132083i
\(472\) −68.0000 + 117.779i −0.00663126 + 0.0114857i
\(473\) −4550.00 + 7880.83i −0.442303 + 0.766091i
\(474\) 495.000 + 857.365i 0.0479665 + 0.0830803i
\(475\) −10412.0 −1.00576
\(476\) −2006.00 + 3883.26i −0.193161 + 0.373926i
\(477\) 10842.0 1.04072
\(478\) −5100.00 8833.46i −0.488010 0.845257i
\(479\) −9143.50 + 15837.0i −0.872186 + 1.51067i −0.0124559 + 0.999922i \(0.503965\pi\)
−0.859730 + 0.510748i \(0.829368\pi\)
\(480\) −112.000 + 193.990i −0.0106502 + 0.0184466i
\(481\) −363.000 628.734i −0.0344103 0.0596005i
\(482\) 8354.00 0.789449
\(483\) −70.0000 109.119i −0.00659443 0.0102797i
\(484\) −424.000 −0.0398197
\(485\) 1015.00 + 1758.03i 0.0950284 + 0.164594i
\(486\) −2080.00 + 3602.67i −0.194137 + 0.336256i
\(487\) 7476.50 12949.7i 0.695673 1.20494i −0.274281 0.961650i \(-0.588440\pi\)
0.969953 0.243291i \(-0.0782269\pi\)
\(488\) 204.000 + 353.338i 0.0189235 + 0.0327764i
\(489\) 2251.00 0.208167
\(490\) 2779.00 + 3916.17i 0.256209 + 0.361050i
\(491\) 14352.0 1.31914 0.659569 0.751644i \(-0.270739\pi\)
0.659569 + 0.751644i \(0.270739\pi\)
\(492\) −996.000 1725.12i −0.0912666 0.158078i
\(493\) −3127.00 + 5416.12i −0.285665 + 0.494787i
\(494\) 9042.00 15661.2i 0.823520 1.42638i
\(495\) 3185.00 + 5516.58i 0.289202 + 0.500913i
\(496\) 1200.00 0.108632
\(497\) 7840.00 + 12221.4i 0.707590 + 1.10302i
\(498\) 1864.00 0.167727
\(499\) 2765.50 + 4789.99i 0.248098 + 0.429718i 0.962998 0.269509i \(-0.0868612\pi\)
−0.714900 + 0.699226i \(0.753528\pi\)
\(500\) 2814.00 4873.99i 0.251692 0.435943i
\(501\) 1394.00 2414.48i 0.124310 0.215311i
\(502\) −4680.00 8106.00i −0.416093 0.720694i
\(503\) 8400.00 0.744607 0.372304 0.928111i \(-0.378568\pi\)
0.372304 + 0.928111i \(0.378568\pi\)
\(504\) −1768.00 + 3422.53i −0.156256 + 0.302484i
\(505\) −7595.00 −0.669254
\(506\) −245.000 424.352i −0.0215249 0.0372821i
\(507\) 1079.50 1869.75i 0.0945607 0.163784i
\(508\) −1872.00 + 3242.40i −0.163497 + 0.283185i
\(509\) 1192.50 + 2065.47i 0.103844 + 0.179863i 0.913265 0.407365i \(-0.133552\pi\)
−0.809421 + 0.587228i \(0.800219\pi\)
\(510\) 826.000 0.0717174
\(511\) 5457.50 255.477i 0.472457 0.0221167i
\(512\) −512.000 −0.0441942
\(513\) −3630.50 6288.21i −0.312457 0.541192i
\(514\) −1749.00 + 3029.36i −0.150088 + 0.259960i
\(515\) −5435.50 + 9414.56i −0.465081 + 0.805544i
\(516\) 520.000 + 900.666i 0.0443638 + 0.0768404i
\(517\) −5985.00 −0.509130
\(518\) −407.000 + 19.0526i −0.0345223 + 0.00161606i
\(519\) −1579.00 −0.133546
\(520\) 1848.00 + 3200.83i 0.155846 + 0.269934i
\(521\) 4576.50 7926.73i 0.384837 0.666557i −0.606910 0.794771i \(-0.707591\pi\)
0.991747 + 0.128214i \(0.0409243\pi\)
\(522\) −2756.00 + 4773.53i −0.231086 + 0.400253i
\(523\) 6903.50 + 11957.2i 0.577187 + 0.999718i 0.995800 + 0.0915530i \(0.0291831\pi\)
−0.418613 + 0.908165i \(0.637484\pi\)
\(524\) −3020.00 −0.251773
\(525\) −646.000 + 1250.54i −0.0537024 + 0.103958i
\(526\) 8946.00 0.741567
\(527\) −2212.50 3832.16i −0.182880 0.316758i
\(528\) 280.000 484.974i 0.0230785 0.0399731i
\(529\) 6059.00 10494.5i 0.497986 0.862538i
\(530\) −2919.00 5055.86i −0.239233 0.414363i
\(531\) 442.000 0.0361227
\(532\) −5480.00 8542.47i −0.446594 0.696172i
\(533\) −32868.0 −2.67105
\(534\) 873.000 + 1512.08i 0.0707461 + 0.122536i
\(535\) −451.500 + 782.021i −0.0364861 + 0.0631957i
\(536\) 1756.00 3041.48i 0.141507 0.245097i
\(537\) 1225.50 + 2122.63i 0.0984809 + 0.170574i
\(538\) −3950.00 −0.316536
\(539\) −6947.50 9790.42i −0.555195 0.782381i
\(540\) 1484.00 0.118261
\(541\) −4087.50 7079.76i −0.324834 0.562629i 0.656645 0.754200i \(-0.271975\pi\)
−0.981479 + 0.191571i \(0.938642\pi\)
\(542\) −8439.00 + 14616.8i −0.668794 + 1.15838i
\(543\) −585.000 + 1013.25i −0.0462334 + 0.0800787i
\(544\) 944.000 + 1635.06i 0.0744001 + 0.128865i
\(545\) −6755.00 −0.530922
\(546\) −1320.00 2057.68i −0.103463 0.161283i
\(547\) 4656.00 0.363942 0.181971 0.983304i \(-0.441752\pi\)
0.181971 + 0.983304i \(0.441752\pi\)
\(548\) 4714.00 + 8164.89i 0.367467 + 0.636472i
\(549\) 663.000 1148.35i 0.0515413 0.0892721i
\(550\) −2660.00 + 4607.26i −0.206223 + 0.357189i
\(551\) −7261.00 12576.4i −0.561396 0.972366i
\(552\) −56.0000 −0.00431797
\(553\) 4207.50 8144.97i 0.323546 0.626328i
\(554\) −1054.00 −0.0808306
\(555\) 38.5000 + 66.6840i 0.00294457 + 0.00510014i
\(556\) −56.0000 + 96.9948i −0.00427146 + 0.00739838i
\(557\) −3501.50 + 6064.78i −0.266361 + 0.461352i −0.967919 0.251261i \(-0.919155\pi\)
0.701558 + 0.712612i \(0.252488\pi\)
\(558\) −1950.00 3377.50i −0.147939 0.256238i
\(559\) 17160.0 1.29837
\(560\) 2072.00 96.9948i 0.156354 0.00731925i
\(561\) −2065.00 −0.155409
\(562\) −202.000 349.874i −0.0151617 0.0262608i
\(563\) 9876.50 17106.6i 0.739334 1.28056i −0.213462 0.976951i \(-0.568474\pi\)
0.952796 0.303612i \(-0.0981927\pi\)
\(564\) −342.000 + 592.361i −0.0255333 + 0.0442250i
\(565\) 175.000 + 303.109i 0.0130306 + 0.0225697i
\(566\) 15898.0 1.18064
\(567\) 12006.5 562.050i 0.889287 0.0416295i
\(568\) 6272.00 0.463323
\(569\) 3448.50 + 5972.98i 0.254075 + 0.440071i 0.964644 0.263557i \(-0.0848957\pi\)
−0.710569 + 0.703628i \(0.751562\pi\)
\(570\) −959.000 + 1661.04i −0.0704703 + 0.122058i
\(571\) −12457.5 + 21577.0i −0.913013 + 1.58138i −0.103227 + 0.994658i \(0.532917\pi\)
−0.809785 + 0.586726i \(0.800416\pi\)
\(572\) −4620.00 8002.07i −0.337713 0.584936i
\(573\) 1275.00 0.0929562
\(574\) −8466.00 + 16388.7i −0.615617 + 1.19172i
\(575\) 532.000 0.0385842
\(576\) 832.000 + 1441.07i 0.0601852 + 0.104244i
\(577\) −63.5000 + 109.985i −0.00458152 + 0.00793543i −0.868307 0.496027i \(-0.834792\pi\)
0.863726 + 0.503962i \(0.168125\pi\)
\(578\) −1432.00 + 2480.30i −0.103051 + 0.178489i
\(579\) 17.5000 + 30.3109i 0.00125609 + 0.00217561i
\(580\) 2968.00 0.212482
\(581\) −9320.00 14528.4i −0.665506 1.03742i
\(582\) −580.000 −0.0413089
\(583\) 7297.50 + 12639.6i 0.518407 + 0.897908i
\(584\) 1180.00 2043.82i 0.0836109 0.144818i
\(585\) 6006.00 10402.7i 0.424474 0.735211i
\(586\) 318.000 + 550.792i 0.0224172 + 0.0388277i
\(587\) 9044.00 0.635921 0.317961 0.948104i \(-0.397002\pi\)
0.317961 + 0.948104i \(0.397002\pi\)
\(588\) −1366.00 + 128.172i −0.0958042 + 0.00898931i
\(589\) 10275.0 0.718801
\(590\) −119.000 206.114i −0.00830365 0.0143823i
\(591\) −1367.00 + 2367.71i −0.0951453 + 0.164796i
\(592\) −88.0000 + 152.420i −0.00610942 + 0.0105818i
\(593\) 5350.50 + 9267.34i 0.370521 + 0.641760i 0.989646 0.143532i \(-0.0458460\pi\)
−0.619125 + 0.785292i \(0.712513\pi\)
\(594\) −3710.00 −0.256268
\(595\) −4130.00 6438.03i −0.284560 0.443586i
\(596\) 9180.00 0.630919
\(597\) 1121.50 + 1942.49i 0.0768843 + 0.133168i
\(598\) −462.000 + 800.207i −0.0315930 + 0.0547206i
\(599\) −10399.5 + 18012.5i −0.709369 + 1.22866i 0.255722 + 0.966750i \(0.417687\pi\)
−0.965091 + 0.261913i \(0.915647\pi\)
\(600\) 304.000 + 526.543i 0.0206846 + 0.0358267i
\(601\) −1402.00 −0.0951560 −0.0475780 0.998868i \(-0.515150\pi\)
−0.0475780 + 0.998868i \(0.515150\pi\)
\(602\) 4420.00 8556.33i 0.299245 0.579286i
\(603\) −11414.0 −0.770836
\(604\) 2218.00 + 3841.69i 0.149419 + 0.258801i
\(605\) 371.000 642.591i 0.0249311 0.0431819i
\(606\) 1085.00 1879.28i 0.0727312 0.125974i
\(607\) −3262.50 5650.82i −0.218156 0.377858i 0.736088 0.676886i \(-0.236671\pi\)
−0.954244 + 0.299028i \(0.903338\pi\)
\(608\) −4384.00 −0.292425
\(609\) −1961.00 + 91.7987i −0.130482 + 0.00610816i
\(610\) −714.000 −0.0473918
\(611\) 5643.00 + 9773.96i 0.373636 + 0.647156i
\(612\) 3068.00 5313.93i 0.202641 0.350985i
\(613\) −7525.50 + 13034.5i −0.495844 + 0.858826i −0.999989 0.00479285i \(-0.998474\pi\)
0.504145 + 0.863619i \(0.331808\pi\)
\(614\) −8132.00 14085.0i −0.534496 0.925775i
\(615\) 3486.00 0.228568
\(616\) −5180.00 + 242.487i −0.338812 + 0.0158605i
\(617\) 11150.0 0.727524 0.363762 0.931492i \(-0.381492\pi\)
0.363762 + 0.931492i \(0.381492\pi\)
\(618\) −1553.00 2689.87i −0.101085 0.175085i
\(619\) −1707.50 + 2957.48i −0.110873 + 0.192037i −0.916122 0.400899i \(-0.868698\pi\)
0.805250 + 0.592936i \(0.202031\pi\)
\(620\) −1050.00 + 1818.65i −0.0680145 + 0.117805i
\(621\) 185.500 + 321.295i 0.0119869 + 0.0207619i
\(622\) 1858.00 0.119773
\(623\) 7420.50 14364.8i 0.477201 0.923775i
\(624\) −1056.00 −0.0677465
\(625\) 174.500 + 302.243i 0.0111680 + 0.0193435i
\(626\) −209.000 + 361.999i −0.0133440 + 0.0231124i
\(627\) 2397.50 4152.59i 0.152706 0.264495i
\(628\) −3118.00 5400.53i −0.198124 0.343160i
\(629\) 649.000 0.0411404
\(630\) −3640.00 5674.20i −0.230192 0.358834i
\(631\) −21184.0 −1.33648 −0.668242 0.743944i \(-0.732953\pi\)
−0.668242 + 0.743944i \(0.732953\pi\)
\(632\) −1980.00 3429.46i −0.124621 0.215849i
\(633\) 586.000 1014.98i 0.0367953 0.0637313i
\(634\) 7131.00 12351.3i 0.446701 0.773708i
\(635\) −3276.00 5674.20i −0.204731 0.354604i
\(636\) 1668.00 0.103995
\(637\) −9438.00 + 20576.8i −0.587044 + 1.27988i
\(638\) −7420.00 −0.460440
\(639\) −10192.0 17653.1i −0.630969 1.09287i
\(640\) 448.000 775.959i 0.0276699 0.0479257i
\(641\) 5352.50 9270.80i 0.329814 0.571255i −0.652660 0.757651i \(-0.726347\pi\)
0.982475 + 0.186395i \(0.0596805\pi\)
\(642\) −129.000 223.435i −0.00793026 0.0137356i
\(643\) 6860.00 0.420734 0.210367 0.977622i \(-0.432534\pi\)
0.210367 + 0.977622i \(0.432534\pi\)
\(644\) 280.000 + 436.477i 0.0171328 + 0.0267074i
\(645\) −1820.00 −0.111105
\(646\) 8083.00 + 14000.2i 0.492293 + 0.852677i
\(647\) −7231.50 + 12525.3i −0.439412 + 0.761084i −0.997644 0.0686008i \(-0.978147\pi\)
0.558232 + 0.829685i \(0.311480\pi\)
\(648\) 2596.00 4496.40i 0.157377 0.272586i
\(649\) 297.500 + 515.285i 0.0179937 + 0.0311660i
\(650\) 10032.0 0.605365
\(651\) 637.500 1234.09i 0.0383803 0.0742975i
\(652\) −9004.00 −0.540834
\(653\) −2989.50 5177.97i −0.179155 0.310305i 0.762436 0.647063i \(-0.224003\pi\)
−0.941591 + 0.336758i \(0.890670\pi\)
\(654\) 965.000 1671.43i 0.0576980 0.0999359i
\(655\) 2642.50 4576.94i 0.157635 0.273032i
\(656\) 3984.00 + 6900.49i 0.237117 + 0.410700i
\(657\) −7670.00 −0.455457
\(658\) 6327.00 296.181i 0.374851 0.0175476i
\(659\) −6940.00 −0.410234 −0.205117 0.978737i \(-0.565757\pi\)
−0.205117 + 0.978737i \(0.565757\pi\)
\(660\) 490.000 + 848.705i 0.0288988 + 0.0500542i
\(661\) −6699.50 + 11603.9i −0.394221 + 0.682812i −0.993001 0.118102i \(-0.962319\pi\)
0.598780 + 0.800914i \(0.295652\pi\)
\(662\) −6571.00 + 11381.3i −0.385784 + 0.668198i
\(663\) 1947.00 + 3372.30i 0.114050 + 0.197541i
\(664\) −7456.00 −0.435766
\(665\) 17741.5 830.518i 1.03457 0.0484303i
\(666\) 572.000 0.0332801
\(667\) 371.000 + 642.591i 0.0215370 + 0.0373032i
\(668\) −5576.00 + 9657.92i −0.322967 + 0.559395i
\(669\) 1012.00 1752.84i 0.0584846 0.101298i
\(670\) 3073.00 + 5322.59i 0.177195 + 0.306910i
\(671\) 1785.00 0.102696
\(672\) −272.000 + 526.543i −0.0156140 + 0.0302260i
\(673\) 29510.0 1.69023 0.845117 0.534582i \(-0.179531\pi\)
0.845117 + 0.534582i \(0.179531\pi\)
\(674\) −11466.0 19859.7i −0.655273 1.13497i
\(675\) 2014.00 3488.35i 0.114843 0.198914i
\(676\) −4318.00 + 7479.00i −0.245676 + 0.425523i
\(677\) 13000.5 + 22517.5i 0.738035 + 1.27831i 0.953379 + 0.301776i \(0.0975795\pi\)
−0.215344 + 0.976538i \(0.569087\pi\)
\(678\) −100.000 −0.00566442
\(679\) 2900.00 + 4520.65i 0.163905 + 0.255503i
\(680\) −3304.00 −0.186327
\(681\) 1285.50 + 2226.55i 0.0723355 + 0.125289i
\(682\) 2625.00 4546.63i 0.147385 0.255278i
\(683\) 4402.50 7625.35i 0.246643 0.427198i −0.715949 0.698152i \(-0.754006\pi\)
0.962592 + 0.270954i \(0.0873393\pi\)
\(684\) 7124.00 + 12339.1i 0.398235 + 0.689764i
\(685\) −16499.0 −0.920284
\(686\) 7829.00 + 10006.1i 0.435733 + 0.556899i
\(687\) −895.000 −0.0497036
\(688\) −2080.00 3602.67i −0.115261 0.199637i
\(689\) 13761.0 23834.8i 0.760889 1.31790i
\(690\) 49.0000 84.8705i 0.00270348 0.00468256i
\(691\) −14342.5 24841.9i −0.789601 1.36763i −0.926211 0.377004i \(-0.876954\pi\)
0.136610 0.990625i \(-0.456379\pi\)
\(692\) 6316.00 0.346963
\(693\) 9100.00 + 14185.5i 0.498817 + 0.777579i
\(694\) 19554.0 1.06954
\(695\) −98.0000 169.741i −0.00534871 0.00926423i
\(696\) −424.000 + 734.390i −0.0230915 + 0.0399956i
\(697\) 14691.0 25445.6i 0.798366 1.38281i
\(698\) 11914.0 + 20635.7i 0.646062 + 1.11901i
\(699\) −1787.00 −0.0966961
\(700\) 2584.00 5002.16i 0.139523 0.270091i
\(701\) −3146.00 −0.169505 −0.0847523 0.996402i \(-0.527010\pi\)
−0.0847523 + 0.996402i \(0.527010\pi\)
\(702\) 3498.00 + 6058.71i 0.188068 + 0.325743i
\(703\) −753.500 + 1305.10i −0.0404250 + 0.0700182i
\(704\) −1120.00 + 1939.90i −0.0599596 + 0.103853i
\(705\) −598.500 1036.63i −0.0319728 0.0553785i
\(706\) −18246.0 −0.972659
\(707\) −20072.5 + 939.638i −1.06776 + 0.0499840i
\(708\) 68.0000 0.00360960
\(709\) −629.500 1090.33i −0.0333447 0.0577547i 0.848871 0.528599i \(-0.177283\pi\)
−0.882216 + 0.470845i \(0.843949\pi\)
\(710\) −5488.00 + 9505.49i −0.290086 + 0.502443i
\(711\) −6435.00 + 11145.7i −0.339425 + 0.587902i
\(712\) −3492.00 6048.32i −0.183804 0.318357i
\(713\) −525.000 −0.0275756
\(714\) 2183.00 102.191i 0.114421 0.00535631i
\(715\) 16170.0 0.845767
\(716\) −4902.00 8490.51i −0.255861 0.443164i
\(717\) −2550.00 + 4416.73i −0.132819 + 0.230050i
\(718\) 8149.00 14114.5i 0.423563 0.733632i
\(719\) −8212.50 14224.5i −0.425973 0.737807i 0.570538 0.821271i \(-0.306735\pi\)
−0.996511 + 0.0834645i \(0.973401\pi\)
\(720\) −2912.00 −0.150728
\(721\) −13200.5 + 25553.8i −0.681848 + 1.31994i
\(722\) −23820.0 −1.22782
\(723\) −2088.50 3617.39i −0.107430 0.186075i
\(724\) 2340.00 4053.00i 0.120118 0.208050i
\(725\) 4028.00 6976.70i 0.206340 0.357391i
\(726\) 106.000 + 183.597i 0.00541877 + 0.00938559i
\(727\) −6032.00 −0.307723 −0.153861 0.988092i \(-0.549171\pi\)
−0.153861 + 0.988092i \(0.549171\pi\)
\(728\) 5280.00 + 8230.71i 0.268805 + 0.419025i
\(729\) −15443.0 −0.784586
\(730\) 2065.00 + 3576.68i 0.104697 + 0.181341i
\(731\) −7670.00 + 13284.8i −0.388078 + 0.672171i
\(732\) 102.000 176.669i 0.00515031 0.00892060i
\(733\) −7621.50 13200.8i −0.384047 0.665189i 0.607589 0.794251i \(-0.292137\pi\)
−0.991636 + 0.129062i \(0.958803\pi\)
\(734\) −19342.0 −0.972652
\(735\) 1001.00 2182.38i 0.0502346 0.109522i
\(736\) 224.000 0.0112184
\(737\) −7682.50 13306.5i −0.383974 0.665062i
\(738\) 12948.0 22426.6i 0.645830 1.11861i
\(739\) 5026.50 8706.15i 0.250207 0.433371i −0.713376 0.700782i \(-0.752835\pi\)
0.963583 + 0.267411i \(0.0861681\pi\)
\(740\) −154.000 266.736i −0.00765021 0.0132505i
\(741\) −9042.00 −0.448267
\(742\) −8340.00 13000.8i −0.412629 0.643226i
\(743\) 24384.0 1.20399 0.601993 0.798501i \(-0.294373\pi\)
0.601993 + 0.798501i \(0.294373\pi\)
\(744\) −300.000 519.615i −0.0147830 0.0256049i
\(745\) −8032.50 + 13912.7i −0.395017 + 0.684190i
\(746\) −4109.00 + 7117.00i −0.201664 + 0.349292i
\(747\) 12116.0 + 20985.5i 0.593442 + 1.02787i
\(748\) 8260.00 0.403764
\(749\) −1096.50 + 2122.63i −0.0534916 + 0.103550i
\(750\) −2814.00 −0.137004
\(751\) −5794.50 10036.4i −0.281550 0.487660i 0.690216 0.723603i \(-0.257515\pi\)
−0.971767 + 0.235943i \(0.924182\pi\)
\(752\) 1368.00 2369.45i 0.0663375 0.114900i
\(753\) −2340.00 + 4053.00i −0.113246 + 0.196148i
\(754\) 6996.00 + 12117.4i 0.337904 + 0.585266i
\(755\) −7763.00 −0.374205
\(756\) 3922.00 183.597i 0.188680 0.00883250i
\(757\) 14562.0 0.699161 0.349581 0.936906i \(-0.386324\pi\)
0.349581 + 0.936906i \(0.386324\pi\)
\(758\) −3488.00 6041.39i −0.167137 0.289490i
\(759\) −122.500 + 212.176i −0.00585832 + 0.0101469i
\(760\) 3836.00 6644.15i 0.183087 0.317116i
\(761\) 11382.5 + 19715.1i 0.542201 + 0.939120i 0.998777 + 0.0494360i \(0.0157424\pi\)
−0.456576 + 0.889684i \(0.650924\pi\)
\(762\) 1872.00 0.0889966
\(763\) −17852.5 + 835.715i −0.847056 + 0.0396526i
\(764\) −5100.00 −0.241507
\(765\) 5369.00 + 9299.38i 0.253747 + 0.439503i
\(766\) 8717.00 15098.3i 0.411172 0.712171i
\(767\) 561.000 971.681i 0.0264101 0.0457436i
\(768\) 128.000 + 221.703i 0.00601407 + 0.0104167i
\(769\) 3766.00 0.176600 0.0883000 0.996094i \(-0.471857\pi\)
0.0883000 + 0.996094i \(0.471857\pi\)
\(770\) 4165.00 8062.70i 0.194930 0.377350i
\(771\) 1749.00 0.0816974
\(772\) −70.0000 121.244i −0.00326341 0.00565240i
\(773\) 13430.5 23262.3i 0.624918 1.08239i −0.363639 0.931540i \(-0.618466\pi\)
0.988557 0.150849i \(-0.0482009\pi\)
\(774\) −6760.00 + 11708.7i −0.313932 + 0.543746i
\(775\) 2850.00 + 4936.34i 0.132097 + 0.228798i
\(776\) 2320.00 0.107324
\(777\) 110.000 + 171.473i 0.00507880 + 0.00791707i
\(778\) −326.000 −0.0150227
\(779\) 34113.0 + 59085.4i 1.56897 + 2.71753i
\(780\) 924.000 1600.41i 0.0424160 0.0734667i
\(781\) 13720.0 23763.7i 0.628605 1.08878i
\(782\) −413.000 715.337i −0.0188860 0.0327115i
\(783\) 5618.00 0.256412
\(784\) 5464.00 512.687i 0.248907 0.0233549i
\(785\) 10913.0 0.496180
\(786\) 755.000 + 1307.70i 0.0342620 + 0.0593436i
\(787\) 1048.50 1816.06i 0.0474905 0.0822559i −0.841303 0.540564i \(-0.818211\pi\)
0.888793 + 0.458308i \(0.151544\pi\)
\(788\) 5468.00 9470.85i 0.247195 0.428154i