# Properties

 Label 14.4.c.a.9.1 Level $14$ Weight $4$ Character 14.9 Analytic conductor $0.826$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$14 = 2 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 14.c (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.826026740080$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 9.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 14.9 Dual form 14.4.c.a.11.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.00000 + 1.73205i) q^{2} +(2.50000 + 4.33013i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(4.50000 - 7.79423i) q^{5} -10.0000 q^{6} +(-14.0000 - 12.1244i) q^{7} +8.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +O(q^{10})$$ $$q+(-1.00000 + 1.73205i) q^{2} +(2.50000 + 4.33013i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(4.50000 - 7.79423i) q^{5} -10.0000 q^{6} +(-14.0000 - 12.1244i) q^{7} +8.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +(9.00000 + 15.5885i) q^{10} +(28.5000 + 49.3634i) q^{11} +(10.0000 - 17.3205i) q^{12} -70.0000 q^{13} +(35.0000 - 12.1244i) q^{14} +45.0000 q^{15} +(-8.00000 + 13.8564i) q^{16} +(-25.5000 - 44.1673i) q^{17} +(2.00000 + 3.46410i) q^{18} +(-2.50000 + 4.33013i) q^{19} -36.0000 q^{20} +(17.5000 - 90.9327i) q^{21} -114.000 q^{22} +(-34.5000 + 59.7558i) q^{23} +(20.0000 + 34.6410i) q^{24} +(22.0000 + 38.1051i) q^{25} +(70.0000 - 121.244i) q^{26} +145.000 q^{27} +(-14.0000 + 72.7461i) q^{28} +114.000 q^{29} +(-45.0000 + 77.9423i) q^{30} +(-11.5000 - 19.9186i) q^{31} +(-16.0000 - 27.7128i) q^{32} +(-142.500 + 246.817i) q^{33} +102.000 q^{34} +(-157.500 + 54.5596i) q^{35} -8.00000 q^{36} +(126.500 - 219.104i) q^{37} +(-5.00000 - 8.66025i) q^{38} +(-175.000 - 303.109i) q^{39} +(36.0000 - 62.3538i) q^{40} -42.0000 q^{41} +(140.000 + 121.244i) q^{42} -124.000 q^{43} +(114.000 - 197.454i) q^{44} +(-9.00000 - 15.5885i) q^{45} +(-69.0000 - 119.512i) q^{46} +(-100.500 + 174.071i) q^{47} -80.0000 q^{48} +(49.0000 + 339.482i) q^{49} -88.0000 q^{50} +(127.500 - 220.836i) q^{51} +(140.000 + 242.487i) q^{52} +(196.500 + 340.348i) q^{53} +(-145.000 + 251.147i) q^{54} +513.000 q^{55} +(-112.000 - 96.9948i) q^{56} -25.0000 q^{57} +(-114.000 + 197.454i) q^{58} +(-109.500 - 189.660i) q^{59} +(-90.0000 - 155.885i) q^{60} +(354.500 - 614.012i) q^{61} +46.0000 q^{62} +(-35.0000 + 12.1244i) q^{63} +64.0000 q^{64} +(-315.000 + 545.596i) q^{65} +(-285.000 - 493.634i) q^{66} +(-209.500 - 362.865i) q^{67} +(-102.000 + 176.669i) q^{68} -345.000 q^{69} +(63.0000 - 327.358i) q^{70} -96.0000 q^{71} +(8.00000 - 13.8564i) q^{72} +(156.500 + 271.066i) q^{73} +(253.000 + 438.209i) q^{74} +(-110.000 + 190.526i) q^{75} +20.0000 q^{76} +(199.500 - 1036.63i) q^{77} +700.000 q^{78} +(-230.500 + 399.238i) q^{79} +(72.0000 + 124.708i) q^{80} +(335.500 + 581.103i) q^{81} +(42.0000 - 72.7461i) q^{82} -588.000 q^{83} +(-350.000 + 121.244i) q^{84} -459.000 q^{85} +(124.000 - 214.774i) q^{86} +(285.000 + 493.634i) q^{87} +(228.000 + 394.908i) q^{88} +(508.500 - 880.748i) q^{89} +36.0000 q^{90} +(980.000 + 848.705i) q^{91} +276.000 q^{92} +(57.5000 - 99.5929i) q^{93} +(-201.000 - 348.142i) q^{94} +(22.5000 + 38.9711i) q^{95} +(80.0000 - 138.564i) q^{96} -1834.00 q^{97} +(-637.000 - 254.611i) q^{98} +114.000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{2} + 5 q^{3} - 4 q^{4} + 9 q^{5} - 20 q^{6} - 28 q^{7} + 16 q^{8} + 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^2 + 5 * q^3 - 4 * q^4 + 9 * q^5 - 20 * q^6 - 28 * q^7 + 16 * q^8 + 2 * q^9 $$2 q - 2 q^{2} + 5 q^{3} - 4 q^{4} + 9 q^{5} - 20 q^{6} - 28 q^{7} + 16 q^{8} + 2 q^{9} + 18 q^{10} + 57 q^{11} + 20 q^{12} - 140 q^{13} + 70 q^{14} + 90 q^{15} - 16 q^{16} - 51 q^{17} + 4 q^{18} - 5 q^{19} - 72 q^{20} + 35 q^{21} - 228 q^{22} - 69 q^{23} + 40 q^{24} + 44 q^{25} + 140 q^{26} + 290 q^{27} - 28 q^{28} + 228 q^{29} - 90 q^{30} - 23 q^{31} - 32 q^{32} - 285 q^{33} + 204 q^{34} - 315 q^{35} - 16 q^{36} + 253 q^{37} - 10 q^{38} - 350 q^{39} + 72 q^{40} - 84 q^{41} + 280 q^{42} - 248 q^{43} + 228 q^{44} - 18 q^{45} - 138 q^{46} - 201 q^{47} - 160 q^{48} + 98 q^{49} - 176 q^{50} + 255 q^{51} + 280 q^{52} + 393 q^{53} - 290 q^{54} + 1026 q^{55} - 224 q^{56} - 50 q^{57} - 228 q^{58} - 219 q^{59} - 180 q^{60} + 709 q^{61} + 92 q^{62} - 70 q^{63} + 128 q^{64} - 630 q^{65} - 570 q^{66} - 419 q^{67} - 204 q^{68} - 690 q^{69} + 126 q^{70} - 192 q^{71} + 16 q^{72} + 313 q^{73} + 506 q^{74} - 220 q^{75} + 40 q^{76} + 399 q^{77} + 1400 q^{78} - 461 q^{79} + 144 q^{80} + 671 q^{81} + 84 q^{82} - 1176 q^{83} - 700 q^{84} - 918 q^{85} + 248 q^{86} + 570 q^{87} + 456 q^{88} + 1017 q^{89} + 72 q^{90} + 1960 q^{91} + 552 q^{92} + 115 q^{93} - 402 q^{94} + 45 q^{95} + 160 q^{96} - 3668 q^{97} - 1274 q^{98} + 228 q^{99}+O(q^{100})$$ 2 * q - 2 * q^2 + 5 * q^3 - 4 * q^4 + 9 * q^5 - 20 * q^6 - 28 * q^7 + 16 * q^8 + 2 * q^9 + 18 * q^10 + 57 * q^11 + 20 * q^12 - 140 * q^13 + 70 * q^14 + 90 * q^15 - 16 * q^16 - 51 * q^17 + 4 * q^18 - 5 * q^19 - 72 * q^20 + 35 * q^21 - 228 * q^22 - 69 * q^23 + 40 * q^24 + 44 * q^25 + 140 * q^26 + 290 * q^27 - 28 * q^28 + 228 * q^29 - 90 * q^30 - 23 * q^31 - 32 * q^32 - 285 * q^33 + 204 * q^34 - 315 * q^35 - 16 * q^36 + 253 * q^37 - 10 * q^38 - 350 * q^39 + 72 * q^40 - 84 * q^41 + 280 * q^42 - 248 * q^43 + 228 * q^44 - 18 * q^45 - 138 * q^46 - 201 * q^47 - 160 * q^48 + 98 * q^49 - 176 * q^50 + 255 * q^51 + 280 * q^52 + 393 * q^53 - 290 * q^54 + 1026 * q^55 - 224 * q^56 - 50 * q^57 - 228 * q^58 - 219 * q^59 - 180 * q^60 + 709 * q^61 + 92 * q^62 - 70 * q^63 + 128 * q^64 - 630 * q^65 - 570 * q^66 - 419 * q^67 - 204 * q^68 - 690 * q^69 + 126 * q^70 - 192 * q^71 + 16 * q^72 + 313 * q^73 + 506 * q^74 - 220 * q^75 + 40 * q^76 + 399 * q^77 + 1400 * q^78 - 461 * q^79 + 144 * q^80 + 671 * q^81 + 84 * q^82 - 1176 * q^83 - 700 * q^84 - 918 * q^85 + 248 * q^86 + 570 * q^87 + 456 * q^88 + 1017 * q^89 + 72 * q^90 + 1960 * q^91 + 552 * q^92 + 115 * q^93 - 402 * q^94 + 45 * q^95 + 160 * q^96 - 3668 * q^97 - 1274 * q^98 + 228 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/14\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 + 1.73205i −0.353553 + 0.612372i
$$3$$ 2.50000 + 4.33013i 0.481125 + 0.833333i 0.999765 0.0216593i $$-0.00689490\pi$$
−0.518640 + 0.854993i $$0.673562\pi$$
$$4$$ −2.00000 3.46410i −0.250000 0.433013i
$$5$$ 4.50000 7.79423i 0.402492 0.697137i −0.591534 0.806280i $$-0.701477\pi$$
0.994026 + 0.109143i $$0.0348107\pi$$
$$6$$ −10.0000 −0.680414
$$7$$ −14.0000 12.1244i −0.755929 0.654654i
$$8$$ 8.00000 0.353553
$$9$$ 1.00000 1.73205i 0.0370370 0.0641500i
$$10$$ 9.00000 + 15.5885i 0.284605 + 0.492950i
$$11$$ 28.5000 + 49.3634i 0.781188 + 1.35306i 0.931250 + 0.364381i $$0.118720\pi$$
−0.150061 + 0.988677i $$0.547947\pi$$
$$12$$ 10.0000 17.3205i 0.240563 0.416667i
$$13$$ −70.0000 −1.49342 −0.746712 0.665148i $$-0.768369\pi$$
−0.746712 + 0.665148i $$0.768369\pi$$
$$14$$ 35.0000 12.1244i 0.668153 0.231455i
$$15$$ 45.0000 0.774597
$$16$$ −8.00000 + 13.8564i −0.125000 + 0.216506i
$$17$$ −25.5000 44.1673i −0.363803 0.630126i 0.624780 0.780801i $$-0.285189\pi$$
−0.988583 + 0.150675i $$0.951855\pi$$
$$18$$ 2.00000 + 3.46410i 0.0261891 + 0.0453609i
$$19$$ −2.50000 + 4.33013i −0.0301863 + 0.0522842i −0.880724 0.473630i $$-0.842943\pi$$
0.850538 + 0.525914i $$0.176277\pi$$
$$20$$ −36.0000 −0.402492
$$21$$ 17.5000 90.9327i 0.181848 0.944911i
$$22$$ −114.000 −1.10477
$$23$$ −34.5000 + 59.7558i −0.312772 + 0.541736i −0.978961 0.204046i $$-0.934591\pi$$
0.666190 + 0.745782i $$0.267924\pi$$
$$24$$ 20.0000 + 34.6410i 0.170103 + 0.294628i
$$25$$ 22.0000 + 38.1051i 0.176000 + 0.304841i
$$26$$ 70.0000 121.244i 0.528005 0.914531i
$$27$$ 145.000 1.03353
$$28$$ −14.0000 + 72.7461i −0.0944911 + 0.490990i
$$29$$ 114.000 0.729975 0.364987 0.931012i $$-0.381073\pi$$
0.364987 + 0.931012i $$0.381073\pi$$
$$30$$ −45.0000 + 77.9423i −0.273861 + 0.474342i
$$31$$ −11.5000 19.9186i −0.0666278 0.115403i 0.830787 0.556590i $$-0.187891\pi$$
−0.897415 + 0.441188i $$0.854557\pi$$
$$32$$ −16.0000 27.7128i −0.0883883 0.153093i
$$33$$ −142.500 + 246.817i −0.751699 + 1.30198i
$$34$$ 102.000 0.514496
$$35$$ −157.500 + 54.5596i −0.760639 + 0.263493i
$$36$$ −8.00000 −0.0370370
$$37$$ 126.500 219.104i 0.562067 0.973528i −0.435249 0.900310i $$-0.643340\pi$$
0.997316 0.0732182i $$-0.0233270\pi$$
$$38$$ −5.00000 8.66025i −0.0213449 0.0369705i
$$39$$ −175.000 303.109i −0.718524 1.24452i
$$40$$ 36.0000 62.3538i 0.142302 0.246475i
$$41$$ −42.0000 −0.159983 −0.0799914 0.996796i $$-0.525489\pi$$
−0.0799914 + 0.996796i $$0.525489\pi$$
$$42$$ 140.000 + 121.244i 0.514344 + 0.445435i
$$43$$ −124.000 −0.439763 −0.219882 0.975527i $$-0.570567\pi$$
−0.219882 + 0.975527i $$0.570567\pi$$
$$44$$ 114.000 197.454i 0.390594 0.676529i
$$45$$ −9.00000 15.5885i −0.0298142 0.0516398i
$$46$$ −69.0000 119.512i −0.221163 0.383065i
$$47$$ −100.500 + 174.071i −0.311903 + 0.540231i −0.978774 0.204941i $$-0.934300\pi$$
0.666871 + 0.745173i $$0.267633\pi$$
$$48$$ −80.0000 −0.240563
$$49$$ 49.0000 + 339.482i 0.142857 + 0.989743i
$$50$$ −88.0000 −0.248902
$$51$$ 127.500 220.836i 0.350070 0.606339i
$$52$$ 140.000 + 242.487i 0.373356 + 0.646671i
$$53$$ 196.500 + 340.348i 0.509271 + 0.882083i 0.999942 + 0.0107383i $$0.00341816\pi$$
−0.490672 + 0.871345i $$0.663249\pi$$
$$54$$ −145.000 + 251.147i −0.365407 + 0.632904i
$$55$$ 513.000 1.25769
$$56$$ −112.000 96.9948i −0.267261 0.231455i
$$57$$ −25.0000 −0.0580935
$$58$$ −114.000 + 197.454i −0.258085 + 0.447016i
$$59$$ −109.500 189.660i −0.241622 0.418501i 0.719555 0.694436i $$-0.244346\pi$$
−0.961176 + 0.275935i $$0.911013\pi$$
$$60$$ −90.0000 155.885i −0.193649 0.335410i
$$61$$ 354.500 614.012i 0.744083 1.28879i −0.206539 0.978438i $$-0.566220\pi$$
0.950622 0.310351i $$-0.100447\pi$$
$$62$$ 46.0000 0.0942259
$$63$$ −35.0000 + 12.1244i −0.0699934 + 0.0242464i
$$64$$ 64.0000 0.125000
$$65$$ −315.000 + 545.596i −0.601091 + 1.04112i
$$66$$ −285.000 493.634i −0.531531 0.920639i
$$67$$ −209.500 362.865i −0.382007 0.661656i 0.609342 0.792908i $$-0.291434\pi$$
−0.991349 + 0.131251i $$0.958100\pi$$
$$68$$ −102.000 + 176.669i −0.181902 + 0.315063i
$$69$$ −345.000 −0.601929
$$70$$ 63.0000 327.358i 0.107571 0.558953i
$$71$$ −96.0000 −0.160466 −0.0802331 0.996776i $$-0.525566\pi$$
−0.0802331 + 0.996776i $$0.525566\pi$$
$$72$$ 8.00000 13.8564i 0.0130946 0.0226805i
$$73$$ 156.500 + 271.066i 0.250917 + 0.434601i 0.963779 0.266704i $$-0.0859346\pi$$
−0.712862 + 0.701305i $$0.752601\pi$$
$$74$$ 253.000 + 438.209i 0.397441 + 0.688388i
$$75$$ −110.000 + 190.526i −0.169356 + 0.293333i
$$76$$ 20.0000 0.0301863
$$77$$ 199.500 1036.63i 0.295261 1.53422i
$$78$$ 700.000 1.01615
$$79$$ −230.500 + 399.238i −0.328269 + 0.568579i −0.982169 0.188003i $$-0.939799\pi$$
0.653899 + 0.756582i $$0.273132\pi$$
$$80$$ 72.0000 + 124.708i 0.100623 + 0.174284i
$$81$$ 335.500 + 581.103i 0.460219 + 0.797124i
$$82$$ 42.0000 72.7461i 0.0565625 0.0979691i
$$83$$ −588.000 −0.777607 −0.388804 0.921321i $$-0.627112\pi$$
−0.388804 + 0.921321i $$0.627112\pi$$
$$84$$ −350.000 + 121.244i −0.454621 + 0.157485i
$$85$$ −459.000 −0.585712
$$86$$ 124.000 214.774i 0.155480 0.269299i
$$87$$ 285.000 + 493.634i 0.351209 + 0.608312i
$$88$$ 228.000 + 394.908i 0.276192 + 0.478378i
$$89$$ 508.500 880.748i 0.605628 1.04898i −0.386324 0.922363i $$-0.626255\pi$$
0.991952 0.126615i $$-0.0404114\pi$$
$$90$$ 36.0000 0.0421637
$$91$$ 980.000 + 848.705i 1.12892 + 0.977675i
$$92$$ 276.000 0.312772
$$93$$ 57.5000 99.5929i 0.0641126 0.111046i
$$94$$ −201.000 348.142i −0.220549 0.382001i
$$95$$ 22.5000 + 38.9711i 0.0242995 + 0.0420879i
$$96$$ 80.0000 138.564i 0.0850517 0.147314i
$$97$$ −1834.00 −1.91974 −0.959868 0.280451i $$-0.909516\pi$$
−0.959868 + 0.280451i $$0.909516\pi$$
$$98$$ −637.000 254.611i −0.656599 0.262445i
$$99$$ 114.000 0.115732
$$100$$ 88.0000 152.420i 0.0880000 0.152420i
$$101$$ 142.500 + 246.817i 0.140389 + 0.243161i 0.927643 0.373468i $$-0.121831\pi$$
−0.787254 + 0.616629i $$0.788498\pi$$
$$102$$ 255.000 + 441.673i 0.247537 + 0.428746i
$$103$$ 249.500 432.147i 0.238679 0.413405i −0.721656 0.692252i $$-0.756619\pi$$
0.960336 + 0.278847i $$0.0899522\pi$$
$$104$$ −560.000 −0.528005
$$105$$ −630.000 545.596i −0.585540 0.507093i
$$106$$ −786.000 −0.720218
$$107$$ 553.500 958.690i 0.500083 0.866169i −0.499917 0.866073i $$-0.666636\pi$$
1.00000 9.56665e-5i $$-3.04516e-5\pi$$
$$108$$ −290.000 502.295i −0.258382 0.447531i
$$109$$ −461.500 799.341i −0.405538 0.702413i 0.588846 0.808246i $$-0.299583\pi$$
−0.994384 + 0.105832i $$0.966249\pi$$
$$110$$ −513.000 + 888.542i −0.444660 + 0.770174i
$$111$$ 1265.00 1.08170
$$112$$ 280.000 96.9948i 0.236228 0.0818317i
$$113$$ 1542.00 1.28371 0.641855 0.766826i $$-0.278165\pi$$
0.641855 + 0.766826i $$0.278165\pi$$
$$114$$ 25.0000 43.3013i 0.0205392 0.0355749i
$$115$$ 310.500 + 537.802i 0.251776 + 0.436089i
$$116$$ −228.000 394.908i −0.182494 0.316088i
$$117$$ −70.0000 + 121.244i −0.0553120 + 0.0958032i
$$118$$ 438.000 0.341705
$$119$$ −178.500 + 927.513i −0.137505 + 0.714496i
$$120$$ 360.000 0.273861
$$121$$ −959.000 + 1661.04i −0.720511 + 1.24796i
$$122$$ 709.000 + 1228.02i 0.526146 + 0.911312i
$$123$$ −105.000 181.865i −0.0769718 0.133319i
$$124$$ −46.0000 + 79.6743i −0.0333139 + 0.0577013i
$$125$$ 1521.00 1.08834
$$126$$ 14.0000 72.7461i 0.00989856 0.0514344i
$$127$$ −2056.00 −1.43654 −0.718270 0.695765i $$-0.755066\pi$$
−0.718270 + 0.695765i $$0.755066\pi$$
$$128$$ −64.0000 + 110.851i −0.0441942 + 0.0765466i
$$129$$ −310.000 536.936i −0.211581 0.366469i
$$130$$ −630.000 1091.19i −0.425036 0.736184i
$$131$$ −1024.50 + 1774.49i −0.683290 + 1.18349i 0.290681 + 0.956820i $$0.406118\pi$$
−0.973971 + 0.226673i $$0.927215\pi$$
$$132$$ 1140.00 0.751699
$$133$$ 87.5000 30.3109i 0.0570467 0.0197616i
$$134$$ 838.000 0.540240
$$135$$ 652.500 1130.16i 0.415987 0.720511i
$$136$$ −204.000 353.338i −0.128624 0.222783i
$$137$$ 70.5000 + 122.110i 0.0439651 + 0.0761498i 0.887171 0.461442i $$-0.152668\pi$$
−0.843205 + 0.537591i $$0.819334\pi$$
$$138$$ 345.000 597.558i 0.212814 0.368605i
$$139$$ 1484.00 0.905548 0.452774 0.891625i $$-0.350434\pi$$
0.452774 + 0.891625i $$0.350434\pi$$
$$140$$ 504.000 + 436.477i 0.304256 + 0.263493i
$$141$$ −1005.00 −0.600257
$$142$$ 96.0000 166.277i 0.0567334 0.0982651i
$$143$$ −1995.00 3455.44i −1.16665 2.02069i
$$144$$ 16.0000 + 27.7128i 0.00925926 + 0.0160375i
$$145$$ 513.000 888.542i 0.293809 0.508892i
$$146$$ −626.000 −0.354850
$$147$$ −1347.50 + 1060.88i −0.756054 + 0.595238i
$$148$$ −1012.00 −0.562067
$$149$$ 28.5000 49.3634i 0.0156699 0.0271410i −0.858084 0.513509i $$-0.828345\pi$$
0.873754 + 0.486368i $$0.161679\pi$$
$$150$$ −220.000 381.051i −0.119753 0.207418i
$$151$$ −419.500 726.595i −0.226082 0.391586i 0.730561 0.682847i $$-0.239258\pi$$
−0.956644 + 0.291261i $$0.905925\pi$$
$$152$$ −20.0000 + 34.6410i −0.0106725 + 0.0184852i
$$153$$ −102.000 −0.0538968
$$154$$ 1596.00 + 1382.18i 0.835126 + 0.723240i
$$155$$ −207.000 −0.107269
$$156$$ −700.000 + 1212.44i −0.359262 + 0.622260i
$$157$$ 1416.50 + 2453.45i 0.720057 + 1.24718i 0.960976 + 0.276631i $$0.0892179\pi$$
−0.240919 + 0.970545i $$0.577449\pi$$
$$158$$ −461.000 798.475i −0.232121 0.402046i
$$159$$ −982.500 + 1701.74i −0.490046 + 0.848785i
$$160$$ −288.000 −0.142302
$$161$$ 1207.50 418.290i 0.591083 0.204757i
$$162$$ −1342.00 −0.650849
$$163$$ 1155.50 2001.38i 0.555250 0.961721i −0.442634 0.896702i $$-0.645956\pi$$
0.997884 0.0650188i $$-0.0207107\pi$$
$$164$$ 84.0000 + 145.492i 0.0399957 + 0.0692746i
$$165$$ 1282.50 + 2221.36i 0.605106 + 1.04807i
$$166$$ 588.000 1018.45i 0.274926 0.476185i
$$167$$ 1260.00 0.583843 0.291921 0.956442i $$-0.405705\pi$$
0.291921 + 0.956442i $$0.405705\pi$$
$$168$$ 140.000 727.461i 0.0642931 0.334077i
$$169$$ 2703.00 1.23031
$$170$$ 459.000 795.011i 0.207081 0.358674i
$$171$$ 5.00000 + 8.66025i 0.00223602 + 0.00387290i
$$172$$ 248.000 + 429.549i 0.109941 + 0.190423i
$$173$$ −1633.50 + 2829.30i −0.717877 + 1.24340i 0.243962 + 0.969785i $$0.421553\pi$$
−0.961839 + 0.273615i $$0.911781\pi$$
$$174$$ −1140.00 −0.496685
$$175$$ 154.000 800.207i 0.0665217 0.345657i
$$176$$ −912.000 −0.390594
$$177$$ 547.500 948.298i 0.232501 0.402703i
$$178$$ 1017.00 + 1761.50i 0.428244 + 0.741740i
$$179$$ −643.500 1114.57i −0.268701 0.465403i 0.699826 0.714314i $$-0.253261\pi$$
−0.968527 + 0.248910i $$0.919928\pi$$
$$180$$ −36.0000 + 62.3538i −0.0149071 + 0.0258199i
$$181$$ −2674.00 −1.09810 −0.549052 0.835788i $$-0.685011\pi$$
−0.549052 + 0.835788i $$0.685011\pi$$
$$182$$ −2450.00 + 848.705i −0.997836 + 0.345660i
$$183$$ 3545.00 1.43199
$$184$$ −276.000 + 478.046i −0.110581 + 0.191533i
$$185$$ −1138.50 1971.94i −0.452455 0.783675i
$$186$$ 115.000 + 199.186i 0.0453345 + 0.0785216i
$$187$$ 1453.50 2517.54i 0.568398 0.984494i
$$188$$ 804.000 0.311903
$$189$$ −2030.00 1758.03i −0.781274 0.676603i
$$190$$ −90.0000 −0.0343647
$$191$$ −2092.50 + 3624.32i −0.792712 + 1.37302i 0.131570 + 0.991307i $$0.457998\pi$$
−0.924282 + 0.381711i $$0.875335\pi$$
$$192$$ 160.000 + 277.128i 0.0601407 + 0.104167i
$$193$$ 42.5000 + 73.6122i 0.0158509 + 0.0274545i 0.873842 0.486210i $$-0.161621\pi$$
−0.857991 + 0.513664i $$0.828288\pi$$
$$194$$ 1834.00 3176.58i 0.678730 1.17559i
$$195$$ −3150.00 −1.15680
$$196$$ 1078.00 848.705i 0.392857 0.309295i
$$197$$ −390.000 −0.141047 −0.0705237 0.997510i $$-0.522467\pi$$
−0.0705237 + 0.997510i $$0.522467\pi$$
$$198$$ −114.000 + 197.454i −0.0409173 + 0.0708709i
$$199$$ 1416.50 + 2453.45i 0.504588 + 0.873972i 0.999986 + 0.00530596i $$0.00168895\pi$$
−0.495398 + 0.868666i $$0.664978\pi$$
$$200$$ 176.000 + 304.841i 0.0622254 + 0.107778i
$$201$$ 1047.50 1814.32i 0.367587 0.636679i
$$202$$ −570.000 −0.198540
$$203$$ −1596.00 1382.18i −0.551809 0.477881i
$$204$$ −1020.00 −0.350070
$$205$$ −189.000 + 327.358i −0.0643919 + 0.111530i
$$206$$ 499.000 + 864.293i 0.168772 + 0.292321i
$$207$$ 69.0000 + 119.512i 0.0231683 + 0.0401286i
$$208$$ 560.000 969.948i 0.186678 0.323336i
$$209$$ −285.000 −0.0943247
$$210$$ 1575.00 545.596i 0.517549 0.179284i
$$211$$ −124.000 −0.0404574 −0.0202287 0.999795i $$-0.506439\pi$$
−0.0202287 + 0.999795i $$0.506439\pi$$
$$212$$ 786.000 1361.39i 0.254635 0.441041i
$$213$$ −240.000 415.692i −0.0772044 0.133722i
$$214$$ 1107.00 + 1917.38i 0.353612 + 0.612474i
$$215$$ −558.000 + 966.484i −0.177001 + 0.306575i
$$216$$ 1160.00 0.365407
$$217$$ −80.5000 + 418.290i −0.0251829 + 0.130854i
$$218$$ 1846.00 0.573518
$$219$$ −782.500 + 1355.33i −0.241445 + 0.418195i
$$220$$ −1026.00 1777.08i −0.314422 0.544595i
$$221$$ 1785.00 + 3091.71i 0.543313 + 0.941045i
$$222$$ −1265.00 + 2191.04i −0.382438 + 0.662402i
$$223$$ 56.0000 0.0168163 0.00840816 0.999965i $$-0.497324\pi$$
0.00840816 + 0.999965i $$0.497324\pi$$
$$224$$ −112.000 + 581.969i −0.0334077 + 0.173591i
$$225$$ 88.0000 0.0260741
$$226$$ −1542.00 + 2670.82i −0.453860 + 0.786108i
$$227$$ 1528.50 + 2647.44i 0.446917 + 0.774083i 0.998184 0.0602465i $$-0.0191887\pi$$
−0.551267 + 0.834329i $$0.685855\pi$$
$$228$$ 50.0000 + 86.6025i 0.0145234 + 0.0251552i
$$229$$ 480.500 832.250i 0.138656 0.240160i −0.788332 0.615250i $$-0.789055\pi$$
0.926988 + 0.375090i $$0.122388\pi$$
$$230$$ −1242.00 −0.356065
$$231$$ 4987.50 1727.72i 1.42058 0.492102i
$$232$$ 912.000 0.258085
$$233$$ 1414.50 2449.99i 0.397712 0.688858i −0.595731 0.803184i $$-0.703138\pi$$
0.993443 + 0.114326i $$0.0364709\pi$$
$$234$$ −140.000 242.487i −0.0391115 0.0677431i
$$235$$ 904.500 + 1566.64i 0.251077 + 0.434878i
$$236$$ −438.000 + 758.638i −0.120811 + 0.209251i
$$237$$ −2305.00 −0.631755
$$238$$ −1428.00 1236.68i −0.388922 0.336817i
$$239$$ −3540.00 −0.958090 −0.479045 0.877790i $$-0.659017\pi$$
−0.479045 + 0.877790i $$0.659017\pi$$
$$240$$ −360.000 + 623.538i −0.0968246 + 0.167705i
$$241$$ −2615.50 4530.18i −0.699084 1.21085i −0.968785 0.247904i $$-0.920258\pi$$
0.269701 0.962944i $$-0.413075\pi$$
$$242$$ −1918.00 3322.07i −0.509478 0.882442i
$$243$$ 280.000 484.974i 0.0739177 0.128029i
$$244$$ −2836.00 −0.744083
$$245$$ 2866.50 + 1145.75i 0.747486 + 0.298773i
$$246$$ 420.000 0.108855
$$247$$ 175.000 303.109i 0.0450809 0.0780824i
$$248$$ −92.0000 159.349i −0.0235565 0.0408010i
$$249$$ −1470.00 2546.11i −0.374126 0.648006i
$$250$$ −1521.00 + 2634.45i −0.384786 + 0.666469i
$$251$$ 5040.00 1.26742 0.633709 0.773571i $$-0.281532\pi$$
0.633709 + 0.773571i $$0.281532\pi$$
$$252$$ 112.000 + 96.9948i 0.0279974 + 0.0242464i
$$253$$ −3933.00 −0.977334
$$254$$ 2056.00 3561.10i 0.507893 0.879697i
$$255$$ −1147.50 1987.53i −0.281801 0.488094i
$$256$$ −128.000 221.703i −0.0312500 0.0541266i
$$257$$ 718.500 1244.48i 0.174392 0.302056i −0.765559 0.643366i $$-0.777537\pi$$
0.939951 + 0.341310i $$0.110871\pi$$
$$258$$ 1240.00 0.299221
$$259$$ −4427.50 + 1533.73i −1.06221 + 0.367959i
$$260$$ 2520.00 0.601091
$$261$$ 114.000 197.454i 0.0270361 0.0468279i
$$262$$ −2049.00 3548.97i −0.483159 0.836856i
$$263$$ 1162.50 + 2013.51i 0.272558 + 0.472085i 0.969516 0.245027i $$-0.0787969\pi$$
−0.696958 + 0.717112i $$0.745464\pi$$
$$264$$ −1140.00 + 1974.54i −0.265766 + 0.460320i
$$265$$ 3537.00 0.819910
$$266$$ −35.0000 + 181.865i −0.00806762 + 0.0419206i
$$267$$ 5085.00 1.16553
$$268$$ −838.000 + 1451.46i −0.191004 + 0.330828i
$$269$$ 1192.50 + 2065.47i 0.270290 + 0.468156i 0.968936 0.247311i $$-0.0795471\pi$$
−0.698646 + 0.715467i $$0.746214\pi$$
$$270$$ 1305.00 + 2260.33i 0.294147 + 0.509478i
$$271$$ 165.500 286.654i 0.0370975 0.0642547i −0.846881 0.531783i $$-0.821522\pi$$
0.883978 + 0.467528i $$0.154855\pi$$
$$272$$ 816.000 0.181902
$$273$$ −1225.00 + 6365.29i −0.271576 + 1.41115i
$$274$$ −282.000 −0.0621761
$$275$$ −1254.00 + 2171.99i −0.274978 + 0.476276i
$$276$$ 690.000 + 1195.12i 0.150482 + 0.260643i
$$277$$ −2435.50 4218.41i −0.528285 0.915017i −0.999456 0.0329750i $$-0.989502\pi$$
0.471171 0.882042i $$-0.343831\pi$$
$$278$$ −1484.00 + 2570.36i −0.320160 + 0.554533i
$$279$$ −46.0000 −0.00987078
$$280$$ −1260.00 + 436.477i −0.268926 + 0.0931589i
$$281$$ −7026.00 −1.49159 −0.745794 0.666177i $$-0.767930\pi$$
−0.745794 + 0.666177i $$0.767930\pi$$
$$282$$ 1005.00 1740.71i 0.212223 0.367581i
$$283$$ 2676.50 + 4635.83i 0.562196 + 0.973752i 0.997305 + 0.0733738i $$0.0233766\pi$$
−0.435109 + 0.900378i $$0.643290\pi$$
$$284$$ 192.000 + 332.554i 0.0401166 + 0.0694839i
$$285$$ −112.500 + 194.856i −0.0233822 + 0.0404991i
$$286$$ 7980.00 1.64989
$$287$$ 588.000 + 509.223i 0.120936 + 0.104733i
$$288$$ −64.0000 −0.0130946
$$289$$ 1156.00 2002.25i 0.235294 0.407541i
$$290$$ 1026.00 + 1777.08i 0.207754 + 0.359841i
$$291$$ −4585.00 7941.45i −0.923634 1.59978i
$$292$$ 626.000 1084.26i 0.125458 0.217300i
$$293$$ 4158.00 0.829054 0.414527 0.910037i $$-0.363947\pi$$
0.414527 + 0.910037i $$0.363947\pi$$
$$294$$ −490.000 3394.82i −0.0972020 0.673435i
$$295$$ −1971.00 −0.389004
$$296$$ 1012.00 1752.84i 0.198721 0.344194i
$$297$$ 4132.50 + 7157.70i 0.807380 + 1.39842i
$$298$$ 57.0000 + 98.7269i 0.0110803 + 0.0191916i
$$299$$ 2415.00 4182.90i 0.467101 0.809042i
$$300$$ 880.000 0.169356
$$301$$ 1736.00 + 1503.42i 0.332430 + 0.287893i
$$302$$ 1678.00 0.319729
$$303$$ −712.500 + 1234.09i −0.135089 + 0.233982i
$$304$$ −40.0000 69.2820i −0.00754657 0.0130710i
$$305$$ −3190.50 5526.11i −0.598975 1.03746i
$$306$$ 102.000 176.669i 0.0190554 0.0330049i
$$307$$ −9604.00 −1.78544 −0.892719 0.450615i $$-0.851205\pi$$
−0.892719 + 0.450615i $$0.851205\pi$$
$$308$$ −3990.00 + 1382.18i −0.738154 + 0.255704i
$$309$$ 2495.00 0.459338
$$310$$ 207.000 358.535i 0.0379252 0.0656884i
$$311$$ −5065.50 8773.70i −0.923595 1.59971i −0.793805 0.608173i $$-0.791903\pi$$
−0.129791 0.991541i $$-0.541430\pi$$
$$312$$ −1400.00 2424.87i −0.254037 0.440004i
$$313$$ −5399.50 + 9352.21i −0.975073 + 1.68888i −0.295378 + 0.955380i $$0.595446\pi$$
−0.679695 + 0.733495i $$0.737888\pi$$
$$314$$ −5666.00 −1.01831
$$315$$ −63.0000 + 327.358i −0.0112687 + 0.0585540i
$$316$$ 1844.00 0.328269
$$317$$ −265.500 + 459.859i −0.0470409 + 0.0814772i −0.888587 0.458708i $$-0.848312\pi$$
0.841546 + 0.540185i $$0.181646\pi$$
$$318$$ −1965.00 3403.48i −0.346515 0.600181i
$$319$$ 3249.00 + 5627.43i 0.570248 + 0.987698i
$$320$$ 288.000 498.831i 0.0503115 0.0871421i
$$321$$ 5535.00 0.962410
$$322$$ −483.000 + 2509.74i −0.0835917 + 0.434355i
$$323$$ 255.000 0.0439275
$$324$$ 1342.00 2324.41i 0.230110 0.398562i
$$325$$ −1540.00 2667.36i −0.262843 0.455257i
$$326$$ 2311.00 + 4002.77i 0.392621 + 0.680040i
$$327$$ 2307.50 3996.71i 0.390229 0.675897i
$$328$$ −336.000 −0.0565625
$$329$$ 3517.50 1218.50i 0.589441 0.204188i
$$330$$ −5130.00 −0.855749
$$331$$ 3507.50 6075.17i 0.582446 1.00883i −0.412743 0.910848i $$-0.635429\pi$$
0.995189 0.0979784i $$-0.0312376\pi$$
$$332$$ 1176.00 + 2036.89i 0.194402 + 0.336714i
$$333$$ −253.000 438.209i −0.0416346 0.0721132i
$$334$$ −1260.00 + 2182.38i −0.206420 + 0.357529i
$$335$$ −3771.00 −0.615020
$$336$$ 1120.00 + 969.948i 0.181848 + 0.157485i
$$337$$ 8990.00 1.45316 0.726582 0.687079i $$-0.241108\pi$$
0.726582 + 0.687079i $$0.241108\pi$$
$$338$$ −2703.00 + 4681.73i −0.434982 + 0.753410i
$$339$$ 3855.00 + 6677.06i 0.617625 + 1.06976i
$$340$$ 918.000 + 1590.02i 0.146428 + 0.253621i
$$341$$ 655.500 1135.36i 0.104098 0.180303i
$$342$$ −20.0000 −0.00316221
$$343$$ 3430.00 5346.84i 0.539949 0.841698i
$$344$$ −992.000 −0.155480
$$345$$ −1552.50 + 2689.01i −0.242272 + 0.419627i
$$346$$ −3267.00 5658.61i −0.507616 0.879216i
$$347$$ 4354.50 + 7542.22i 0.673665 + 1.16682i 0.976857 + 0.213893i $$0.0686143\pi$$
−0.303192 + 0.952929i $$0.598052\pi$$
$$348$$ 1140.00 1974.54i 0.175605 0.304156i
$$349$$ 6482.00 0.994193 0.497097 0.867695i $$-0.334399\pi$$
0.497097 + 0.867695i $$0.334399\pi$$
$$350$$ 1232.00 + 1066.94i 0.188152 + 0.162944i
$$351$$ −10150.0 −1.54350
$$352$$ 912.000 1579.63i 0.138096 0.239189i
$$353$$ 1066.50 + 1847.23i 0.160805 + 0.278522i 0.935158 0.354232i $$-0.115258\pi$$
−0.774353 + 0.632754i $$0.781924\pi$$
$$354$$ 1095.00 + 1896.60i 0.164403 + 0.284754i
$$355$$ −432.000 + 748.246i −0.0645864 + 0.111867i
$$356$$ −4068.00 −0.605628
$$357$$ −4462.50 + 1545.86i −0.661570 + 0.229175i
$$358$$ 2574.00 0.380000
$$359$$ −1924.50 + 3333.33i −0.282928 + 0.490046i −0.972105 0.234548i $$-0.924639\pi$$
0.689176 + 0.724594i $$0.257972\pi$$
$$360$$ −72.0000 124.708i −0.0105409 0.0182574i
$$361$$ 3417.00 + 5918.42i 0.498178 + 0.862869i
$$362$$ 2674.00 4631.50i 0.388238 0.672449i
$$363$$ −9590.00 −1.38662
$$364$$ 980.000 5092.23i 0.141115 0.733256i
$$365$$ 2817.00 0.403969
$$366$$ −3545.00 + 6140.12i −0.506284 + 0.876910i
$$367$$ −3245.50 5621.37i −0.461618 0.799545i 0.537424 0.843312i $$-0.319397\pi$$
−0.999042 + 0.0437668i $$0.986064\pi$$
$$368$$ −552.000 956.092i −0.0781929 0.135434i
$$369$$ −42.0000 + 72.7461i −0.00592529 + 0.0102629i
$$370$$ 4554.00 0.639868
$$371$$ 1375.50 7147.31i 0.192486 1.00019i
$$372$$ −460.000 −0.0641126
$$373$$ −461.500 + 799.341i −0.0640632 + 0.110961i −0.896278 0.443493i $$-0.853739\pi$$
0.832215 + 0.554453i $$0.187073\pi$$
$$374$$ 2907.00 + 5035.07i 0.401918 + 0.696143i
$$375$$ 3802.50 + 6586.12i 0.523627 + 0.906949i
$$376$$ −804.000 + 1392.57i −0.110274 + 0.191001i
$$377$$ −7980.00 −1.09016
$$378$$ 5075.00 1758.03i 0.690555 0.239215i
$$379$$ 6344.00 0.859814 0.429907 0.902873i $$-0.358546\pi$$
0.429907 + 0.902873i $$0.358546\pi$$
$$380$$ 90.0000 155.885i 0.0121497 0.0210440i
$$381$$ −5140.00 8902.74i −0.691155 1.19712i
$$382$$ −4185.00 7248.63i −0.560532 0.970870i
$$383$$ 2503.50 4336.19i 0.334002 0.578509i −0.649290 0.760541i $$-0.724934\pi$$
0.983293 + 0.182032i $$0.0582673\pi$$
$$384$$ −640.000 −0.0850517
$$385$$ −7182.00 6219.79i −0.950724 0.823351i
$$386$$ −170.000 −0.0224165
$$387$$ −124.000 + 214.774i −0.0162875 + 0.0282108i
$$388$$ 3668.00 + 6353.16i 0.479934 + 0.831270i
$$389$$ −6145.50 10644.3i −0.801001 1.38737i −0.918958 0.394355i $$-0.870968\pi$$
0.117958 0.993019i $$-0.462365\pi$$
$$390$$ 3150.00 5455.96i 0.408991 0.708393i
$$391$$ 3519.00 0.455150
$$392$$ 392.000 + 2715.86i 0.0505076 + 0.349927i
$$393$$ −10245.0 −1.31499
$$394$$ 390.000 675.500i 0.0498678 0.0863736i
$$395$$ 2074.50 + 3593.14i 0.264252 + 0.457697i
$$396$$ −228.000 394.908i −0.0289329 0.0501133i
$$397$$ −443.500 + 768.165i −0.0560671 + 0.0971110i −0.892697 0.450658i $$-0.851189\pi$$
0.836630 + 0.547769i $$0.184523\pi$$
$$398$$ −5666.00 −0.713595
$$399$$ 350.000 + 303.109i 0.0439146 + 0.0380311i
$$400$$ −704.000 −0.0880000
$$401$$ −5977.50 + 10353.3i −0.744394 + 1.28933i 0.206083 + 0.978535i $$0.433928\pi$$
−0.950477 + 0.310794i $$0.899405\pi$$
$$402$$ 2095.00 + 3628.65i 0.259923 + 0.450200i
$$403$$ 805.000 + 1394.30i 0.0995035 + 0.172345i
$$404$$ 570.000 987.269i 0.0701945 0.121580i
$$405$$ 6039.00 0.740939
$$406$$ 3990.00 1382.18i 0.487735 0.168956i
$$407$$ 14421.0 1.75632
$$408$$ 1020.00 1766.69i 0.123768 0.214373i
$$409$$ 1710.50 + 2962.67i 0.206794 + 0.358178i 0.950703 0.310103i $$-0.100364\pi$$
−0.743909 + 0.668281i $$0.767030\pi$$
$$410$$ −378.000 654.715i −0.0455319 0.0788636i
$$411$$ −352.500 + 610.548i −0.0423055 + 0.0732752i
$$412$$ −1996.00 −0.238679
$$413$$ −766.500 + 3982.85i −0.0913245 + 0.474536i
$$414$$ −276.000 −0.0327649
$$415$$ −2646.00 + 4583.01i −0.312981 + 0.542099i
$$416$$ 1120.00 + 1939.90i 0.132001 + 0.228633i
$$417$$ 3710.00 + 6425.91i 0.435682 + 0.754624i
$$418$$ 285.000 493.634i 0.0333488 0.0577618i
$$419$$ −5460.00 −0.636607 −0.318304 0.947989i $$-0.603113\pi$$
−0.318304 + 0.947989i $$0.603113\pi$$
$$420$$ −630.000 + 3273.58i −0.0731925 + 0.380319i
$$421$$ 7730.00 0.894863 0.447431 0.894318i $$-0.352339\pi$$
0.447431 + 0.894318i $$0.352339\pi$$
$$422$$ 124.000 214.774i 0.0143039 0.0247750i
$$423$$ 201.000 + 348.142i 0.0231039 + 0.0400171i
$$424$$ 1572.00 + 2722.78i 0.180054 + 0.311863i
$$425$$ 1122.00 1943.36i 0.128059 0.221804i
$$426$$ 960.000 0.109183
$$427$$ −12407.5 + 4298.08i −1.40619 + 0.487117i
$$428$$ −4428.00 −0.500083
$$429$$ 9975.00 17277.2i 1.12260 1.94441i
$$430$$ −1116.00 1932.97i −0.125159 0.216781i
$$431$$ 5656.50 + 9797.35i 0.632167 + 1.09495i 0.987108 + 0.160057i $$0.0511677\pi$$
−0.354941 + 0.934889i $$0.615499\pi$$
$$432$$ −1160.00 + 2009.18i −0.129191 + 0.223765i
$$433$$ 4214.00 0.467695 0.233847 0.972273i $$-0.424868\pi$$
0.233847 + 0.972273i $$0.424868\pi$$
$$434$$ −644.000 557.720i −0.0712281 0.0616853i
$$435$$ 5130.00 0.565436
$$436$$ −1846.00 + 3197.37i −0.202769 + 0.351207i
$$437$$ −172.500 298.779i −0.0188828 0.0327060i
$$438$$ −1565.00 2710.66i −0.170727 0.295708i
$$439$$ −8276.50 + 14335.3i −0.899808 + 1.55851i −0.0720696 + 0.997400i $$0.522960\pi$$
−0.827739 + 0.561114i $$0.810373\pi$$
$$440$$ 4104.00 0.444660
$$441$$ 637.000 + 254.611i 0.0687831 + 0.0274929i
$$442$$ −7140.00 −0.768360
$$443$$ 8197.50 14198.5i 0.879176 1.52278i 0.0269294 0.999637i $$-0.491427\pi$$
0.852247 0.523140i $$-0.175240\pi$$
$$444$$ −2530.00 4382.09i −0.270425 0.468389i
$$445$$ −4576.50 7926.73i −0.487521 0.844411i
$$446$$ −56.0000 + 96.9948i −0.00594546 + 0.0102978i
$$447$$ 285.000 0.0301567
$$448$$ −896.000 775.959i −0.0944911 0.0818317i
$$449$$ −15090.0 −1.58606 −0.793030 0.609182i $$-0.791498\pi$$
−0.793030 + 0.609182i $$0.791498\pi$$
$$450$$ −88.0000 + 152.420i −0.00921858 + 0.0159670i
$$451$$ −1197.00 2073.26i −0.124977 0.216466i
$$452$$ −3084.00 5341.64i −0.320927 0.555862i
$$453$$ 2097.50 3632.98i 0.217548 0.376804i
$$454$$ −6114.00 −0.632036
$$455$$ 11025.0 3819.17i 1.13596 0.393507i
$$456$$ −200.000 −0.0205392
$$457$$ 7392.50 12804.2i 0.756688 1.31062i −0.187842 0.982199i $$-0.560149\pi$$
0.944531 0.328423i $$-0.106517\pi$$
$$458$$ 961.000 + 1664.50i 0.0980449 + 0.169819i
$$459$$ −3697.50 6404.26i −0.376001 0.651253i
$$460$$ 1242.00 2151.21i 0.125888 0.218045i
$$461$$ 2898.00 0.292784 0.146392 0.989227i $$-0.453234\pi$$
0.146392 + 0.989227i $$0.453234\pi$$
$$462$$ −1995.00 + 10366.3i −0.200900 + 1.04391i
$$463$$ 464.000 0.0465743 0.0232872 0.999729i $$-0.492587\pi$$
0.0232872 + 0.999729i $$0.492587\pi$$
$$464$$ −912.000 + 1579.63i −0.0912468 + 0.158044i
$$465$$ −517.500 896.336i −0.0516097 0.0893905i
$$466$$ 2829.00 + 4899.97i 0.281225 + 0.487096i
$$467$$ −2116.50 + 3665.89i −0.209721 + 0.363248i −0.951627 0.307256i $$-0.900589\pi$$
0.741905 + 0.670505i $$0.233922\pi$$
$$468$$ 560.000 0.0553120
$$469$$ −1466.50 + 7620.16i −0.144385 + 0.750248i
$$470$$ −3618.00 −0.355076
$$471$$ −7082.50 + 12267.2i −0.692876 + 1.20010i
$$472$$ −876.000 1517.28i −0.0854262 0.147963i
$$473$$ −3534.00 6121.07i −0.343538 0.595025i
$$474$$ 2305.00 3992.38i 0.223359 0.386869i
$$475$$ −220.000 −0.0212511
$$476$$ 3570.00 1236.68i 0.343762 0.119083i
$$477$$ 786.000 0.0754475
$$478$$ 3540.00 6131.46i 0.338736 0.586708i
$$479$$ −1369.50 2372.04i −0.130635 0.226266i 0.793287 0.608848i $$-0.208368\pi$$
−0.923921 + 0.382582i $$0.875035\pi$$
$$480$$ −720.000 1247.08i −0.0684653 0.118585i
$$481$$ −8855.00 + 15337.3i −0.839404 + 1.45389i
$$482$$ 10462.0 0.988654
$$483$$ 4830.00 + 4182.90i 0.455016 + 0.394055i
$$484$$ 7672.00 0.720511
$$485$$ −8253.00 + 14294.6i −0.772679 + 1.33832i
$$486$$ 560.000 + 969.948i 0.0522677 + 0.0905304i
$$487$$ −8525.50 14766.6i −0.793280 1.37400i −0.923926 0.382572i $$-0.875038\pi$$
0.130646 0.991429i $$-0.458295\pi$$
$$488$$ 2836.00 4912.10i 0.263073 0.455656i
$$489$$ 11555.0 1.06858
$$490$$ −4851.00 + 3819.17i −0.447236 + 0.352107i
$$491$$ −4296.00 −0.394859 −0.197429 0.980317i $$-0.563259\pi$$
−0.197429 + 0.980317i $$0.563259\pi$$
$$492$$ −420.000 + 727.461i −0.0384859 + 0.0666595i
$$493$$ −2907.00 5035.07i −0.265567 0.459976i
$$494$$ 350.000 + 606.218i 0.0318770 + 0.0552126i
$$495$$ 513.000 888.542i 0.0465811 0.0806808i
$$496$$ 368.000 0.0333139
$$497$$ 1344.00 + 1163.94i 0.121301 + 0.105050i
$$498$$ 5880.00 0.529095
$$499$$ −1700.50 + 2945.35i −0.152555 + 0.264233i −0.932166 0.362031i $$-0.882083\pi$$
0.779611 + 0.626264i $$0.215417\pi$$
$$500$$ −3042.00 5268.90i −0.272085 0.471265i
$$501$$ 3150.00 + 5455.96i 0.280901 + 0.486536i
$$502$$ −5040.00 + 8729.54i −0.448100 + 0.776132i
$$503$$ 16800.0 1.48921 0.744607 0.667503i $$-0.232637\pi$$
0.744607 + 0.667503i $$0.232637\pi$$
$$504$$ −280.000 + 96.9948i −0.0247464 + 0.00857241i
$$505$$ 2565.00 0.226022
$$506$$ 3933.00 6812.16i 0.345540 0.598493i
$$507$$ 6757.50 + 11704.3i 0.591935 + 1.02526i
$$508$$ 4112.00 + 7122.19i 0.359135 + 0.622040i
$$509$$ −919.500 + 1592.62i −0.0800710 + 0.138687i −0.903280 0.429051i $$-0.858848\pi$$
0.823209 + 0.567738i $$0.192181\pi$$
$$510$$ 4590.00 0.398527
$$511$$ 1095.50 5692.38i 0.0948377 0.492791i
$$512$$ 512.000 0.0441942
$$513$$ −362.500 + 627.868i −0.0311984 + 0.0540372i
$$514$$ 1437.00 + 2488.96i 0.123314 + 0.213586i
$$515$$ −2245.50 3889.32i −0.192133 0.332784i
$$516$$ −1240.00 + 2147.74i −0.105791 + 0.183235i
$$517$$ −11457.0 −0.974620
$$518$$ 1771.00 9202.39i 0.150219 0.780559i
$$519$$ −16335.0 −1.38155
$$520$$ −2520.00 + 4364.77i −0.212518 + 0.368092i
$$521$$ −151.500 262.406i −0.0127396 0.0220656i 0.859585 0.510992i $$-0.170722\pi$$
−0.872325 + 0.488927i $$0.837389\pi$$
$$522$$ 228.000 + 394.908i 0.0191174 + 0.0331123i
$$523$$ 10833.5 18764.2i 0.905767 1.56883i 0.0858815 0.996305i $$-0.472629\pi$$
0.819885 0.572528i $$-0.194037\pi$$
$$524$$ 8196.00 0.683290
$$525$$ 3850.00 1333.68i 0.320053 0.110870i
$$526$$ −4650.00 −0.385456
$$527$$ −586.500 + 1015.85i −0.0484788 + 0.0839678i
$$528$$ −2280.00 3949.08i −0.187925 0.325495i
$$529$$ 3703.00 + 6413.78i 0.304348 + 0.527146i
$$530$$ −3537.00 + 6126.26i −0.289882 + 0.502090i
$$531$$ −438.000 −0.0357958
$$532$$ −280.000 242.487i −0.0228187 0.0197616i
$$533$$ 2940.00 0.238922
$$534$$ −5085.00 + 8807.48i −0.412078 + 0.713739i
$$535$$ −4981.50 8628.21i −0.402559 0.697253i
$$536$$ −1676.00 2902.92i −0.135060 0.233931i
$$537$$ 3217.50 5572.87i 0.258557 0.447835i
$$538$$ −4770.00 −0.382248
$$539$$ −15361.5 + 12094.0i −1.22758 + 0.966470i
$$540$$ −5220.00 −0.415987
$$541$$ −2519.50 + 4363.90i −0.200225 + 0.346800i −0.948601 0.316475i $$-0.897501\pi$$
0.748376 + 0.663275i $$0.230834\pi$$
$$542$$ 331.000 + 573.309i 0.0262319 + 0.0454349i
$$543$$ −6685.00 11578.8i −0.528326 0.915087i
$$544$$ −816.000 + 1413.35i −0.0643120 + 0.111392i
$$545$$ −8307.00 −0.652904
$$546$$ −9800.00 8487.05i −0.768134 0.665224i
$$547$$ −2392.00 −0.186974 −0.0934868 0.995621i $$-0.529801\pi$$
−0.0934868 + 0.995621i $$0.529801\pi$$
$$548$$ 282.000 488.438i 0.0219826 0.0380749i
$$549$$ −709.000 1228.02i −0.0551173 0.0954659i
$$550$$ −2508.00 4343.98i −0.194439 0.336778i
$$551$$ −285.000 + 493.634i −0.0220352 + 0.0381661i
$$552$$ −2760.00 −0.212814
$$553$$ 8067.50 2794.66i 0.620371 0.214903i
$$554$$ 9742.00 0.747108
$$555$$ 5692.50 9859.70i 0.435375 0.754092i
$$556$$ −2968.00 5140.73i −0.226387 0.392114i
$$557$$ 11074.5 + 19181.6i 0.842445 + 1.45916i 0.887822 + 0.460187i $$0.152218\pi$$
−0.0453775 + 0.998970i $$0.514449\pi$$
$$558$$ 46.0000 79.6743i 0.00348985 0.00604459i
$$559$$ 8680.00 0.656753
$$560$$ 504.000 2618.86i 0.0380319 0.197620i
$$561$$ 14535.0 1.09388
$$562$$ 7026.00 12169.4i 0.527356 0.913407i
$$563$$ 4174.50 + 7230.45i 0.312494 + 0.541256i 0.978902 0.204332i $$-0.0655022\pi$$
−0.666408 + 0.745588i $$0.732169\pi$$
$$564$$ 2010.00 + 3481.42i 0.150064 + 0.259919i
$$565$$ 6939.00 12018.7i 0.516683 0.894921i
$$566$$ −10706.0 −0.795065
$$567$$ 2348.50 12203.2i 0.173947 0.903853i
$$568$$ −768.000 −0.0567334
$$569$$ 7672.50 13289.2i 0.565286 0.979105i −0.431737 0.902000i $$-0.642099\pi$$
0.997023 0.0771050i $$-0.0245677\pi$$
$$570$$ −225.000 389.711i −0.0165337 0.0286372i
$$571$$ 5796.50 + 10039.8i 0.424827 + 0.735821i 0.996404 0.0847268i $$-0.0270017\pi$$
−0.571578 + 0.820548i $$0.693668\pi$$
$$572$$ −7980.00 + 13821.8i −0.583323 + 1.01034i
$$573$$ −20925.0 −1.52557
$$574$$ −1470.00 + 509.223i −0.106893 + 0.0370288i
$$575$$ −3036.00 −0.220191
$$576$$ 64.0000 110.851i 0.00462963 0.00801875i
$$577$$ 7296.50 + 12637.9i 0.526442 + 0.911825i 0.999525 + 0.0308071i $$0.00980776\pi$$
−0.473083 + 0.881018i $$0.656859\pi$$
$$578$$ 2312.00 + 4004.50i 0.166378 + 0.288175i
$$579$$ −212.500 + 368.061i −0.0152525 + 0.0264181i
$$580$$ −4104.00 −0.293809
$$581$$ 8232.00 + 7129.12i 0.587816 + 0.509063i
$$582$$ 18340.0 1.30622
$$583$$ −11200.5 + 19399.8i −0.795673 + 1.37815i
$$584$$ 1252.00 + 2168.53i 0.0887125 + 0.153655i
$$585$$ 630.000 + 1091.19i 0.0445253 + 0.0771201i
$$586$$ −4158.00 + 7201.87i −0.293115 + 0.507690i
$$587$$ −15372.0 −1.08087 −0.540435 0.841386i $$-0.681740\pi$$
−0.540435 + 0.841386i $$0.681740\pi$$
$$588$$ 6370.00 + 2546.11i 0.446759 + 0.178571i
$$589$$ 115.000 0.00804498
$$590$$ 1971.00 3413.87i 0.137534 0.238215i
$$591$$ −975.000 1688.75i −0.0678615 0.117540i
$$592$$ 2024.00 + 3505.67i 0.140517 + 0.243382i
$$593$$ 7186.50 12447.4i 0.497663 0.861978i −0.502333 0.864674i $$-0.667525\pi$$
0.999996 + 0.00269639i $$0.000858288\pi$$
$$594$$ −16530.0 −1.14181
$$595$$ 6426.00 + 5565.08i 0.442757 + 0.383439i
$$596$$ −228.000 −0.0156699
$$597$$ −7082.50 + 12267.2i −0.485540 + 0.840980i
$$598$$ 4830.00 + 8365.81i 0.330290 + 0.572079i
$$599$$ −1273.50 2205.77i −0.0868678 0.150459i 0.819318 0.573340i $$-0.194352\pi$$
−0.906186 + 0.422880i $$0.861019\pi$$
$$600$$ −880.000 + 1524.20i −0.0598764 + 0.103709i
$$601$$ −7042.00 −0.477952 −0.238976 0.971025i $$-0.576812\pi$$
−0.238976 + 0.971025i $$0.576812\pi$$
$$602$$ −4340.00 + 1503.42i −0.293829 + 0.101785i
$$603$$ −838.000 −0.0565937
$$604$$ −1678.00 + 2906.38i −0.113041 + 0.195793i
$$605$$ 8631.00 + 14949.3i 0.580000 + 1.00459i
$$606$$ −1425.00 2468.17i −0.0955226 0.165450i
$$607$$ 11295.5 19564.4i 0.755305 1.30823i −0.189917 0.981800i $$-0.560822\pi$$
0.945223 0.326427i $$-0.105845\pi$$
$$608$$ 160.000 0.0106725
$$609$$ 1995.00 10366.3i 0.132745 0.689761i
$$610$$ 12762.0 0.847079
$$611$$ 7035.00 12185.0i 0.465803 0.806794i
$$612$$ 204.000 + 353.338i 0.0134742 + 0.0233380i
$$613$$ 4242.50 + 7348.23i 0.279532 + 0.484163i 0.971268 0.237987i $$-0.0764874\pi$$
−0.691737 + 0.722150i $$0.743154\pi$$
$$614$$ 9604.00 16634.6i 0.631247 1.09335i
$$615$$ −1890.00 −0.123922
$$616$$ 1596.00 8293.06i 0.104391 0.542430i
$$617$$ −18282.0 −1.19288 −0.596439 0.802658i $$-0.703418\pi$$
−0.596439 + 0.802658i $$0.703418\pi$$
$$618$$ −2495.00 + 4321.47i −0.162401 + 0.281286i
$$619$$ −1145.50 1984.06i −0.0743805 0.128831i 0.826436 0.563030i $$-0.190365\pi$$
−0.900817 + 0.434200i $$0.857031\pi$$
$$620$$ 414.000 + 717.069i 0.0268172 + 0.0464487i
$$621$$ −5002.50 + 8664.58i −0.323258 + 0.559900i
$$622$$ 20262.0 1.30616
$$623$$ −17797.5 + 6165.23i −1.14453 + 0.396477i
$$624$$ 5600.00 0.359262
$$625$$ 4094.50 7091.88i 0.262048 0.453880i
$$626$$ −10799.0 18704.4i −0.689481 1.19422i
$$627$$ −712.500 1234.09i −0.0453820 0.0786039i
$$628$$ 5666.00 9813.80i 0.360029 0.623588i
$$629$$ −12903.0 −0.817927
$$630$$ −504.000 436.477i −0.0318728 0.0276026i
$$631$$ −6928.00 −0.437083 −0.218541 0.975828i $$-0.570130\pi$$
−0.218541 + 0.975828i $$0.570130\pi$$
$$632$$ −1844.00 + 3193.90i −0.116061 + 0.201023i
$$633$$ −310.000 536.936i −0.0194651 0.0337145i
$$634$$ −531.000 919.719i −0.0332629 0.0576131i
$$635$$ −9252.00 + 16024.9i −0.578196 + 1.00146i
$$636$$ 7860.00 0.490046
$$637$$ −3430.00 23763.7i −0.213346 1.47811i
$$638$$ −12996.0 −0.806452
$$639$$ −96.0000 + 166.277i −0.00594319 + 0.0102939i
$$640$$ 576.000 + 997.661i 0.0355756 + 0.0616188i
$$641$$ −12487.5 21629.0i −0.769464 1.33275i −0.937854 0.347031i $$-0.887190\pi$$
0.168390 0.985721i $$-0.446143\pi$$
$$642$$ −5535.00 + 9586.90i −0.340263 + 0.589353i
$$643$$ 9548.00 0.585593 0.292797 0.956175i $$-0.405414\pi$$
0.292797 + 0.956175i $$0.405414\pi$$
$$644$$ −3864.00 3346.32i −0.236433 0.204757i
$$645$$ −5580.00 −0.340639
$$646$$ −255.000 + 441.673i −0.0155307 + 0.0269000i
$$647$$ −5065.50 8773.70i −0.307798 0.533122i 0.670082 0.742287i $$-0.266259\pi$$
−0.977880 + 0.209165i $$0.932925\pi$$
$$648$$ 2684.00 + 4648.82i 0.162712 + 0.281826i
$$649$$ 6241.50 10810.6i 0.377504 0.653857i
$$650$$ 6160.00 0.371716
$$651$$ −2012.50 + 697.150i −0.121161 + 0.0419716i
$$652$$ −9244.00 −0.555250
$$653$$ −8329.50 + 14427.1i −0.499171 + 0.864589i −1.00000 0.000957229i $$-0.999695\pi$$
0.500829 + 0.865546i $$0.333029\pi$$
$$654$$ 4615.00 + 7993.41i 0.275934 + 0.477932i
$$655$$ 9220.50 + 15970.4i 0.550038 + 0.952693i
$$656$$ 336.000 581.969i 0.0199979 0.0346373i
$$657$$ 626.000 0.0371729
$$658$$ −1407.00 + 7310.99i −0.0833595 + 0.433149i
$$659$$ 29556.0 1.74710 0.873550 0.486735i $$-0.161812\pi$$
0.873550 + 0.486735i $$0.161812\pi$$
$$660$$ 5130.00 8885.42i 0.302553 0.524037i
$$661$$ −95.5000 165.411i −0.00561955 0.00973334i 0.863202 0.504859i $$-0.168455\pi$$
−0.868822 + 0.495125i $$0.835122\pi$$
$$662$$ 7015.00 + 12150.3i 0.411852 + 0.713348i
$$663$$ −8925.00 + 15458.6i −0.522803 + 0.905521i
$$664$$ −4704.00 −0.274926
$$665$$ 157.500 818.394i 0.00918434 0.0477232i
$$666$$ 1012.00 0.0588802
$$667$$ −3933.00 + 6812.16i −0.228315 + 0.395454i
$$668$$ −2520.00 4364.77i −0.145961 0.252811i
$$669$$ 140.000 + 242.487i 0.00809075 + 0.0140136i
$$670$$ 3771.00 6531.56i 0.217442 0.376621i
$$671$$ 40413.0 2.32508
$$672$$ −2800.00 + 969.948i −0.160733 + 0.0556794i
$$673$$ 2606.00 0.149263 0.0746314 0.997211i $$-0.476222\pi$$
0.0746314 + 0.997211i $$0.476222\pi$$
$$674$$ −8990.00 + 15571.1i −0.513771 + 0.889878i
$$675$$ 3190.00 + 5525.24i 0.181901 + 0.315062i
$$676$$ −5406.00 9363.47i −0.307579 0.532742i
$$677$$ 2104.50 3645.10i 0.119472 0.206931i −0.800087 0.599885i $$-0.795213\pi$$
0.919559 + 0.392953i $$0.128547\pi$$
$$678$$ −15420.0 −0.873454
$$679$$ 25676.0 + 22236.1i 1.45118 + 1.25676i
$$680$$ −3672.00 −0.207081
$$681$$ −7642.50 + 13237.2i −0.430046 + 0.744861i
$$682$$ 1311.00 + 2270.72i 0.0736082 + 0.127493i
$$683$$ −12151.5 21047.0i −0.680768 1.17912i −0.974747 0.223312i $$-0.928313\pi$$
0.293979 0.955812i $$-0.405020\pi$$
$$684$$ 20.0000 34.6410i 0.00111801 0.00193645i
$$685$$ 1269.00 0.0707825
$$686$$ 5831.00 + 11287.8i 0.324532 + 0.628235i
$$687$$ 4805.00 0.266845
$$688$$ 992.000 1718.19i 0.0549704 0.0952116i
$$689$$ −13755.0 23824.4i −0.760557 1.31732i
$$690$$ −3105.00 5378.02i −0.171312 0.296721i
$$691$$ −7520.50 + 13025.9i −0.414028 + 0.717117i −0.995326 0.0965734i $$-0.969212\pi$$
0.581298 + 0.813691i $$0.302545\pi$$
$$692$$ 13068.0 0.717877
$$693$$ −1596.00 1382.18i −0.0874849 0.0757641i
$$694$$ −17418.0 −0.952706
$$695$$ 6678.00 11566.6i 0.364476 0.631291i
$$696$$ 2280.00 + 3949.08i 0.124171 + 0.215071i
$$697$$ 1071.00 + 1855.03i 0.0582023 + 0.100809i
$$698$$ −6482.00 + 11227.2i −0.351500 + 0.608817i
$$699$$ 14145.0 0.765398
$$700$$ −3080.00 + 1066.94i −0.166304 + 0.0576095i
$$701$$ 24726.0 1.33222 0.666111 0.745852i $$-0.267958\pi$$
0.666111 + 0.745852i $$0.267958\pi$$
$$702$$ 10150.0 17580.3i 0.545708 0.945194i
$$703$$ 632.500 + 1095.52i 0.0339334 + 0.0587744i
$$704$$ 1824.00 + 3159.26i 0.0976486 + 0.169132i
$$705$$ −4522.50 + 7833.20i −0.241599 + 0.418462i
$$706$$ −4266.00 −0.227412
$$707$$ 997.500 5183.16i 0.0530620 0.275718i
$$708$$ −4380.00 −0.232501
$$709$$ 2478.50 4292.89i 0.131286 0.227395i −0.792886 0.609370i $$-0.791423\pi$$
0.924173 + 0.381975i $$0.124756\pi$$
$$710$$ −864.000 1496.49i −0.0456695 0.0791019i
$$711$$ 461.000 + 798.475i 0.0243162 + 0.0421170i
$$712$$ 4068.00 7045.98i 0.214122 0.370870i
$$713$$ 1587.00 0.0833571
$$714$$ 1785.00 9275.13i 0.0935601 0.486153i
$$715$$ −35910.0 −1.87826
$$716$$ −2574.00 + 4458.30i −0.134350 + 0.232702i
$$717$$ −8850.00 15328.6i −0.460961 0.798409i
$$718$$ −3849.00 6666.66i −0.200060 0.346515i
$$719$$ −13834.5 + 23962.1i −0.717580 + 1.24288i 0.244376 + 0.969680i $$0.421417\pi$$
−0.961956 + 0.273204i $$0.911917\pi$$
$$720$$ 288.000 0.0149071
$$721$$ −8732.50 + 3025.03i −0.451061 + 0.156252i
$$722$$ −13668.0 −0.704529
$$723$$ 13077.5 22650.9i 0.672694 1.16514i
$$724$$ 5348.00 + 9263.01i 0.274526 + 0.475493i
$$725$$ 2508.00 + 4343.98i 0.128476 + 0.222526i
$$726$$ 9590.00 16610.4i 0.490246 0.849130i
$$727$$ −13888.0 −0.708497 −0.354249 0.935151i $$-0.615263\pi$$
−0.354249 + 0.935151i $$0.615263\pi$$
$$728$$ 7840.00 + 6789.64i 0.399134 + 0.345660i
$$729$$ 20917.0 1.06269
$$730$$ −2817.00 + 4879.19i −0.142824 + 0.247379i
$$731$$ 3162.00 + 5476.74i 0.159987 + 0.277106i
$$732$$ −7090.00 12280.2i −0.357997 0.620069i
$$733$$ −7121.50 + 12334.8i −0.358852 + 0.621550i −0.987769 0.155922i $$-0.950165\pi$$
0.628917 + 0.777472i $$0.283498\pi$$
$$734$$ 12982.0 0.652826
$$735$$ 2205.00 + 15276.7i 0.110657 + 0.766652i
$$736$$ 2208.00 0.110581
$$737$$ 11941.5 20683.3i 0.596840 1.03376i
$$738$$ −84.0000 145.492i −0.00418981 0.00725697i
$$739$$ −18479.5 32007.4i −0.919864 1.59325i −0.799620 0.600507i $$-0.794966\pi$$
−0.120244 0.992744i $$-0.538368\pi$$
$$740$$ −4554.00 + 7887.76i −0.226228 + 0.391838i
$$741$$ 1750.00 0.0867582
$$742$$ 11004.0 + 9529.74i 0.544433 + 0.471493i
$$743$$ −12528.0 −0.618584 −0.309292 0.950967i $$-0.600092\pi$$
−0.309292 + 0.950967i $$0.600092\pi$$
$$744$$ 460.000 796.743i 0.0226672 0.0392608i
$$745$$ −256.500 444.271i −0.0126140 0.0218481i
$$746$$ −923.000 1598.68i −0.0452995 0.0784610i
$$747$$ −588.000 + 1018.45i −0.0288003 + 0.0498835i
$$748$$ −11628.0 −0.568398
$$749$$ −19372.5 + 6710.83i −0.945068 + 0.327381i
$$750$$ −15210.0 −0.740521
$$751$$ 8883.50 15386.7i 0.431643 0.747627i −0.565372 0.824836i $$-0.691268\pi$$
0.997015 + 0.0772090i $$0.0246009\pi$$
$$752$$ −1608.00 2785.14i −0.0779757 0.135058i
$$753$$ 12600.0 + 21823.8i 0.609787 + 1.05618i
$$754$$ 7980.00 13821.8i 0.385430 0.667585i
$$755$$ −7551.00 −0.363985
$$756$$ −2030.00 + 10548.2i −0.0976592 + 0.507452i
$$757$$ −28726.0 −1.37921 −0.689606 0.724184i $$-0.742216\pi$$
−0.689606 + 0.724184i $$0.742216\pi$$
$$758$$ −6344.00 + 10988.1i −0.303990 + 0.526526i
$$759$$ −9832.50 17030.4i −0.470220 0.814445i
$$760$$ 180.000 + 311.769i 0.00859117 + 0.0148803i
$$761$$ 13234.5 22922.8i 0.630421 1.09192i −0.357045 0.934087i $$-0.616216\pi$$
0.987466 0.157834i $$-0.0504510\pi$$
$$762$$ 20560.0 0.977441
$$763$$ −3230.50 + 16786.2i −0.153279 + 0.796462i
$$764$$ 16740.0 0.792712
$$765$$ −459.000 + 795.011i −0.0216930 + 0.0375735i
$$766$$ 5007.00 + 8672.38i 0.236175 + 0.409068i
$$767$$ 7665.00 + 13276.2i 0.360844 + 0.625000i
$$768$$ 640.000 1108.51i 0.0300703 0.0520833i
$$769$$ 5054.00 0.236999 0.118499 0.992954i $$-0.462192\pi$$
0.118499 + 0.992954i $$0.462192\pi$$
$$770$$ 17955.0 6219.79i 0.840329 0.291098i
$$771$$ 7185.00