Properties

Label 14.4.c.a
Level $14$
Weight $4$
Character orbit 14.c
Analytic conductor $0.826$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,4,Mod(9,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.9"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 14.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.826026740080\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \zeta_{6} - 2) q^{2} + 5 \zeta_{6} q^{3} - 4 \zeta_{6} q^{4} + ( - 9 \zeta_{6} + 9) q^{5} - 10 q^{6} + ( - 14 \zeta_{6} - 7) q^{7} + 8 q^{8} + ( - 2 \zeta_{6} + 2) q^{9} + 18 \zeta_{6} q^{10} + 57 \zeta_{6} q^{11} + \cdots + 114 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 5 q^{3} - 4 q^{4} + 9 q^{5} - 20 q^{6} - 28 q^{7} + 16 q^{8} + 2 q^{9} + 18 q^{10} + 57 q^{11} + 20 q^{12} - 140 q^{13} + 70 q^{14} + 90 q^{15} - 16 q^{16} - 51 q^{17} + 4 q^{18} - 5 q^{19}+ \cdots + 228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/14\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
9.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 + 1.73205i 2.50000 + 4.33013i −2.00000 3.46410i 4.50000 7.79423i −10.0000 −14.0000 12.1244i 8.00000 1.00000 1.73205i 9.00000 + 15.5885i
11.1 −1.00000 1.73205i 2.50000 4.33013i −2.00000 + 3.46410i 4.50000 + 7.79423i −10.0000 −14.0000 + 12.1244i 8.00000 1.00000 + 1.73205i 9.00000 15.5885i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.4.c.a 2
3.b odd 2 1 126.4.g.d 2
4.b odd 2 1 112.4.i.a 2
5.b even 2 1 350.4.e.e 2
5.c odd 4 2 350.4.j.b 4
7.b odd 2 1 98.4.c.a 2
7.c even 3 1 inner 14.4.c.a 2
7.c even 3 1 98.4.a.d 1
7.d odd 6 1 98.4.a.f 1
7.d odd 6 1 98.4.c.a 2
8.b even 2 1 448.4.i.b 2
8.d odd 2 1 448.4.i.e 2
21.c even 2 1 882.4.g.u 2
21.g even 6 1 882.4.a.c 1
21.g even 6 1 882.4.g.u 2
21.h odd 6 1 126.4.g.d 2
21.h odd 6 1 882.4.a.f 1
28.f even 6 1 784.4.a.c 1
28.g odd 6 1 112.4.i.a 2
28.g odd 6 1 784.4.a.p 1
35.i odd 6 1 2450.4.a.d 1
35.j even 6 1 350.4.e.e 2
35.j even 6 1 2450.4.a.q 1
35.l odd 12 2 350.4.j.b 4
56.k odd 6 1 448.4.i.e 2
56.p even 6 1 448.4.i.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.c.a 2 1.a even 1 1 trivial
14.4.c.a 2 7.c even 3 1 inner
98.4.a.d 1 7.c even 3 1
98.4.a.f 1 7.d odd 6 1
98.4.c.a 2 7.b odd 2 1
98.4.c.a 2 7.d odd 6 1
112.4.i.a 2 4.b odd 2 1
112.4.i.a 2 28.g odd 6 1
126.4.g.d 2 3.b odd 2 1
126.4.g.d 2 21.h odd 6 1
350.4.e.e 2 5.b even 2 1
350.4.e.e 2 35.j even 6 1
350.4.j.b 4 5.c odd 4 2
350.4.j.b 4 35.l odd 12 2
448.4.i.b 2 8.b even 2 1
448.4.i.b 2 56.p even 6 1
448.4.i.e 2 8.d odd 2 1
448.4.i.e 2 56.k odd 6 1
784.4.a.c 1 28.f even 6 1
784.4.a.p 1 28.g odd 6 1
882.4.a.c 1 21.g even 6 1
882.4.a.f 1 21.h odd 6 1
882.4.g.u 2 21.c even 2 1
882.4.g.u 2 21.g even 6 1
2450.4.a.d 1 35.i odd 6 1
2450.4.a.q 1 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 5T_{3} + 25 \) acting on \(S_{4}^{\mathrm{new}}(14, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$5$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$7$ \( T^{2} + 28T + 343 \) Copy content Toggle raw display
$11$ \( T^{2} - 57T + 3249 \) Copy content Toggle raw display
$13$ \( (T + 70)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 51T + 2601 \) Copy content Toggle raw display
$19$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$23$ \( T^{2} + 69T + 4761 \) Copy content Toggle raw display
$29$ \( (T - 114)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 23T + 529 \) Copy content Toggle raw display
$37$ \( T^{2} - 253T + 64009 \) Copy content Toggle raw display
$41$ \( (T + 42)^{2} \) Copy content Toggle raw display
$43$ \( (T + 124)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 201T + 40401 \) Copy content Toggle raw display
$53$ \( T^{2} - 393T + 154449 \) Copy content Toggle raw display
$59$ \( T^{2} + 219T + 47961 \) Copy content Toggle raw display
$61$ \( T^{2} - 709T + 502681 \) Copy content Toggle raw display
$67$ \( T^{2} + 419T + 175561 \) Copy content Toggle raw display
$71$ \( (T + 96)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 313T + 97969 \) Copy content Toggle raw display
$79$ \( T^{2} + 461T + 212521 \) Copy content Toggle raw display
$83$ \( (T + 588)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 1017 T + 1034289 \) Copy content Toggle raw display
$97$ \( (T + 1834)^{2} \) Copy content Toggle raw display
show more
show less