Properties

Label 1395.2.a.j.1.1
Level $1395$
Weight $2$
Character 1395.1
Self dual yes
Analytic conductor $11.139$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1395,2,Mod(1,1395)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1395, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1395.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1395 = 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1395.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.1391310820\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.51414\) of defining polynomial
Character \(\chi\) \(=\) 1395.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51414 q^{2} +4.32088 q^{4} +1.00000 q^{5} +0.485863 q^{7} -5.83502 q^{8} -2.51414 q^{10} -5.02827 q^{11} +3.51414 q^{13} -1.22153 q^{14} +6.02827 q^{16} +1.32088 q^{17} -6.64177 q^{19} +4.32088 q^{20} +12.6418 q^{22} -0.292611 q^{23} +1.00000 q^{25} -8.83502 q^{26} +2.09936 q^{28} +9.86330 q^{29} +1.00000 q^{31} -3.48586 q^{32} -3.32088 q^{34} +0.485863 q^{35} +5.51414 q^{37} +16.6983 q^{38} -5.83502 q^{40} +7.02827 q^{41} -1.02827 q^{43} -21.7266 q^{44} +0.735663 q^{46} +6.93438 q^{47} -6.76394 q^{49} -2.51414 q^{50} +15.1842 q^{52} +1.70739 q^{53} -5.02827 q^{55} -2.83502 q^{56} -24.7977 q^{58} +2.19325 q^{59} -2.00000 q^{61} -2.51414 q^{62} -3.29261 q^{64} +3.51414 q^{65} +9.12763 q^{67} +5.70739 q^{68} -1.22153 q^{70} -13.4768 q^{71} +12.5424 q^{73} -13.8633 q^{74} -28.6983 q^{76} -2.44305 q^{77} -0.349158 q^{79} +6.02827 q^{80} -17.6700 q^{82} -10.9344 q^{83} +1.32088 q^{85} +2.58522 q^{86} +29.3401 q^{88} -5.03374 q^{89} +1.70739 q^{91} -1.26434 q^{92} -17.4340 q^{94} -6.64177 q^{95} +10.4431 q^{97} +17.0055 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 5 q^{4} + 3 q^{5} + 8 q^{7} - 3 q^{8} - q^{10} - 2 q^{11} + 4 q^{13} + 8 q^{14} + 5 q^{16} - 4 q^{17} - 4 q^{19} + 5 q^{20} + 22 q^{22} - 6 q^{23} + 3 q^{25} - 12 q^{26} + 10 q^{28} + 2 q^{29}+ \cdots + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51414 −1.77776 −0.888882 0.458137i \(-0.848517\pi\)
−0.888882 + 0.458137i \(0.848517\pi\)
\(3\) 0 0
\(4\) 4.32088 2.16044
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.485863 0.183639 0.0918195 0.995776i \(-0.470732\pi\)
0.0918195 + 0.995776i \(0.470732\pi\)
\(8\) −5.83502 −2.06299
\(9\) 0 0
\(10\) −2.51414 −0.795040
\(11\) −5.02827 −1.51608 −0.758041 0.652207i \(-0.773843\pi\)
−0.758041 + 0.652207i \(0.773843\pi\)
\(12\) 0 0
\(13\) 3.51414 0.974646 0.487323 0.873222i \(-0.337973\pi\)
0.487323 + 0.873222i \(0.337973\pi\)
\(14\) −1.22153 −0.326467
\(15\) 0 0
\(16\) 6.02827 1.50707
\(17\) 1.32088 0.320362 0.160181 0.987088i \(-0.448792\pi\)
0.160181 + 0.987088i \(0.448792\pi\)
\(18\) 0 0
\(19\) −6.64177 −1.52373 −0.761863 0.647738i \(-0.775715\pi\)
−0.761863 + 0.647738i \(0.775715\pi\)
\(20\) 4.32088 0.966179
\(21\) 0 0
\(22\) 12.6418 2.69523
\(23\) −0.292611 −0.0610135 −0.0305068 0.999535i \(-0.509712\pi\)
−0.0305068 + 0.999535i \(0.509712\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −8.83502 −1.73269
\(27\) 0 0
\(28\) 2.09936 0.396741
\(29\) 9.86330 1.83157 0.915784 0.401671i \(-0.131571\pi\)
0.915784 + 0.401671i \(0.131571\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) −3.48586 −0.616219
\(33\) 0 0
\(34\) −3.32088 −0.569527
\(35\) 0.485863 0.0821258
\(36\) 0 0
\(37\) 5.51414 0.906519 0.453259 0.891379i \(-0.350261\pi\)
0.453259 + 0.891379i \(0.350261\pi\)
\(38\) 16.6983 2.70882
\(39\) 0 0
\(40\) −5.83502 −0.922598
\(41\) 7.02827 1.09763 0.548816 0.835943i \(-0.315079\pi\)
0.548816 + 0.835943i \(0.315079\pi\)
\(42\) 0 0
\(43\) −1.02827 −0.156810 −0.0784051 0.996922i \(-0.524983\pi\)
−0.0784051 + 0.996922i \(0.524983\pi\)
\(44\) −21.7266 −3.27541
\(45\) 0 0
\(46\) 0.735663 0.108468
\(47\) 6.93438 1.01148 0.505742 0.862685i \(-0.331219\pi\)
0.505742 + 0.862685i \(0.331219\pi\)
\(48\) 0 0
\(49\) −6.76394 −0.966277
\(50\) −2.51414 −0.355553
\(51\) 0 0
\(52\) 15.1842 2.10567
\(53\) 1.70739 0.234528 0.117264 0.993101i \(-0.462588\pi\)
0.117264 + 0.993101i \(0.462588\pi\)
\(54\) 0 0
\(55\) −5.02827 −0.678012
\(56\) −2.83502 −0.378846
\(57\) 0 0
\(58\) −24.7977 −3.25609
\(59\) 2.19325 0.285537 0.142769 0.989756i \(-0.454400\pi\)
0.142769 + 0.989756i \(0.454400\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −2.51414 −0.319296
\(63\) 0 0
\(64\) −3.29261 −0.411576
\(65\) 3.51414 0.435875
\(66\) 0 0
\(67\) 9.12763 1.11512 0.557559 0.830137i \(-0.311738\pi\)
0.557559 + 0.830137i \(0.311738\pi\)
\(68\) 5.70739 0.692123
\(69\) 0 0
\(70\) −1.22153 −0.146000
\(71\) −13.4768 −1.59940 −0.799700 0.600399i \(-0.795008\pi\)
−0.799700 + 0.600399i \(0.795008\pi\)
\(72\) 0 0
\(73\) 12.5424 1.46798 0.733989 0.679161i \(-0.237656\pi\)
0.733989 + 0.679161i \(0.237656\pi\)
\(74\) −13.8633 −1.61158
\(75\) 0 0
\(76\) −28.6983 −3.29192
\(77\) −2.44305 −0.278412
\(78\) 0 0
\(79\) −0.349158 −0.0392834 −0.0196417 0.999807i \(-0.506253\pi\)
−0.0196417 + 0.999807i \(0.506253\pi\)
\(80\) 6.02827 0.673982
\(81\) 0 0
\(82\) −17.6700 −1.95133
\(83\) −10.9344 −1.20020 −0.600102 0.799923i \(-0.704873\pi\)
−0.600102 + 0.799923i \(0.704873\pi\)
\(84\) 0 0
\(85\) 1.32088 0.143270
\(86\) 2.58522 0.278772
\(87\) 0 0
\(88\) 29.3401 3.12766
\(89\) −5.03374 −0.533575 −0.266788 0.963755i \(-0.585962\pi\)
−0.266788 + 0.963755i \(0.585962\pi\)
\(90\) 0 0
\(91\) 1.70739 0.178983
\(92\) −1.26434 −0.131816
\(93\) 0 0
\(94\) −17.4340 −1.79818
\(95\) −6.64177 −0.681431
\(96\) 0 0
\(97\) 10.4431 1.06033 0.530166 0.847894i \(-0.322130\pi\)
0.530166 + 0.847894i \(0.322130\pi\)
\(98\) 17.0055 1.71781
\(99\) 0 0
\(100\) 4.32088 0.432088
\(101\) 11.6135 1.15559 0.577793 0.816183i \(-0.303914\pi\)
0.577793 + 0.816183i \(0.303914\pi\)
\(102\) 0 0
\(103\) −3.76940 −0.371410 −0.185705 0.982606i \(-0.559457\pi\)
−0.185705 + 0.982606i \(0.559457\pi\)
\(104\) −20.5051 −2.01069
\(105\) 0 0
\(106\) −4.29261 −0.416935
\(107\) 6.73566 0.651161 0.325581 0.945514i \(-0.394440\pi\)
0.325581 + 0.945514i \(0.394440\pi\)
\(108\) 0 0
\(109\) −3.90611 −0.374137 −0.187069 0.982347i \(-0.559899\pi\)
−0.187069 + 0.982347i \(0.559899\pi\)
\(110\) 12.6418 1.20535
\(111\) 0 0
\(112\) 2.92892 0.276757
\(113\) 15.0848 1.41906 0.709530 0.704675i \(-0.248907\pi\)
0.709530 + 0.704675i \(0.248907\pi\)
\(114\) 0 0
\(115\) −0.292611 −0.0272861
\(116\) 42.6182 3.95700
\(117\) 0 0
\(118\) −5.51414 −0.507617
\(119\) 0.641769 0.0588309
\(120\) 0 0
\(121\) 14.2835 1.29850
\(122\) 5.02827 0.455239
\(123\) 0 0
\(124\) 4.32088 0.388027
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.25526 −0.555065 −0.277532 0.960716i \(-0.589517\pi\)
−0.277532 + 0.960716i \(0.589517\pi\)
\(128\) 15.2498 1.34790
\(129\) 0 0
\(130\) −8.83502 −0.774883
\(131\) 22.1186 1.93251 0.966254 0.257592i \(-0.0829291\pi\)
0.966254 + 0.257592i \(0.0829291\pi\)
\(132\) 0 0
\(133\) −3.22699 −0.279816
\(134\) −22.9481 −1.98242
\(135\) 0 0
\(136\) −7.70739 −0.660903
\(137\) 14.6044 1.24774 0.623870 0.781528i \(-0.285559\pi\)
0.623870 + 0.781528i \(0.285559\pi\)
\(138\) 0 0
\(139\) 12.8970 1.09391 0.546956 0.837161i \(-0.315786\pi\)
0.546956 + 0.837161i \(0.315786\pi\)
\(140\) 2.09936 0.177428
\(141\) 0 0
\(142\) 33.8825 2.84336
\(143\) −17.6700 −1.47764
\(144\) 0 0
\(145\) 9.86330 0.819102
\(146\) −31.5333 −2.60972
\(147\) 0 0
\(148\) 23.8259 1.95848
\(149\) −16.3118 −1.33632 −0.668158 0.744020i \(-0.732917\pi\)
−0.668158 + 0.744020i \(0.732917\pi\)
\(150\) 0 0
\(151\) 19.3774 1.57691 0.788457 0.615090i \(-0.210881\pi\)
0.788457 + 0.615090i \(0.210881\pi\)
\(152\) 38.7549 3.14343
\(153\) 0 0
\(154\) 6.14217 0.494950
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) −3.80128 −0.303375 −0.151688 0.988428i \(-0.548471\pi\)
−0.151688 + 0.988428i \(0.548471\pi\)
\(158\) 0.877832 0.0698366
\(159\) 0 0
\(160\) −3.48586 −0.275582
\(161\) −0.142169 −0.0112045
\(162\) 0 0
\(163\) 12.5424 0.982397 0.491199 0.871048i \(-0.336559\pi\)
0.491199 + 0.871048i \(0.336559\pi\)
\(164\) 30.3684 2.37137
\(165\) 0 0
\(166\) 27.4905 2.13368
\(167\) −22.2553 −1.72216 −0.861082 0.508466i \(-0.830213\pi\)
−0.861082 + 0.508466i \(0.830213\pi\)
\(168\) 0 0
\(169\) −0.650842 −0.0500647
\(170\) −3.32088 −0.254700
\(171\) 0 0
\(172\) −4.44305 −0.338780
\(173\) 10.9717 0.834165 0.417082 0.908869i \(-0.363053\pi\)
0.417082 + 0.908869i \(0.363053\pi\)
\(174\) 0 0
\(175\) 0.485863 0.0367278
\(176\) −30.3118 −2.28484
\(177\) 0 0
\(178\) 12.6555 0.948570
\(179\) 15.9253 1.19031 0.595157 0.803610i \(-0.297090\pi\)
0.595157 + 0.803610i \(0.297090\pi\)
\(180\) 0 0
\(181\) −8.05655 −0.598838 −0.299419 0.954122i \(-0.596793\pi\)
−0.299419 + 0.954122i \(0.596793\pi\)
\(182\) −4.29261 −0.318189
\(183\) 0 0
\(184\) 1.70739 0.125870
\(185\) 5.51414 0.405407
\(186\) 0 0
\(187\) −6.64177 −0.485694
\(188\) 29.9627 2.18525
\(189\) 0 0
\(190\) 16.6983 1.21142
\(191\) −6.19325 −0.448128 −0.224064 0.974574i \(-0.571932\pi\)
−0.224064 + 0.974574i \(0.571932\pi\)
\(192\) 0 0
\(193\) −2.25526 −0.162337 −0.0811687 0.996700i \(-0.525865\pi\)
−0.0811687 + 0.996700i \(0.525865\pi\)
\(194\) −26.2553 −1.88502
\(195\) 0 0
\(196\) −29.2262 −2.08759
\(197\) −9.32088 −0.664086 −0.332043 0.943264i \(-0.607738\pi\)
−0.332043 + 0.943264i \(0.607738\pi\)
\(198\) 0 0
\(199\) 16.5479 1.17305 0.586524 0.809932i \(-0.300496\pi\)
0.586524 + 0.809932i \(0.300496\pi\)
\(200\) −5.83502 −0.412598
\(201\) 0 0
\(202\) −29.1979 −2.05436
\(203\) 4.79221 0.336347
\(204\) 0 0
\(205\) 7.02827 0.490876
\(206\) 9.47679 0.660279
\(207\) 0 0
\(208\) 21.1842 1.46886
\(209\) 33.3966 2.31009
\(210\) 0 0
\(211\) 25.0101 1.72177 0.860884 0.508801i \(-0.169911\pi\)
0.860884 + 0.508801i \(0.169911\pi\)
\(212\) 7.37743 0.506684
\(213\) 0 0
\(214\) −16.9344 −1.15761
\(215\) −1.02827 −0.0701277
\(216\) 0 0
\(217\) 0.485863 0.0329825
\(218\) 9.82048 0.665127
\(219\) 0 0
\(220\) −21.7266 −1.46481
\(221\) 4.64177 0.312239
\(222\) 0 0
\(223\) 19.2835 1.29132 0.645661 0.763625i \(-0.276582\pi\)
0.645661 + 0.763625i \(0.276582\pi\)
\(224\) −1.69365 −0.113162
\(225\) 0 0
\(226\) −37.9253 −2.52275
\(227\) −23.4340 −1.55537 −0.777684 0.628655i \(-0.783606\pi\)
−0.777684 + 0.628655i \(0.783606\pi\)
\(228\) 0 0
\(229\) −25.0283 −1.65391 −0.826957 0.562265i \(-0.809930\pi\)
−0.826957 + 0.562265i \(0.809930\pi\)
\(230\) 0.735663 0.0485082
\(231\) 0 0
\(232\) −57.5525 −3.77851
\(233\) −18.7175 −1.22623 −0.613113 0.789995i \(-0.710083\pi\)
−0.613113 + 0.789995i \(0.710083\pi\)
\(234\) 0 0
\(235\) 6.93438 0.452349
\(236\) 9.47679 0.616887
\(237\) 0 0
\(238\) −1.61350 −0.104587
\(239\) 3.86876 0.250249 0.125125 0.992141i \(-0.460067\pi\)
0.125125 + 0.992141i \(0.460067\pi\)
\(240\) 0 0
\(241\) −1.61350 −0.103934 −0.0519672 0.998649i \(-0.516549\pi\)
−0.0519672 + 0.998649i \(0.516549\pi\)
\(242\) −35.9108 −2.30843
\(243\) 0 0
\(244\) −8.64177 −0.553233
\(245\) −6.76394 −0.432132
\(246\) 0 0
\(247\) −23.3401 −1.48509
\(248\) −5.83502 −0.370524
\(249\) 0 0
\(250\) −2.51414 −0.159008
\(251\) 25.4713 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(252\) 0 0
\(253\) 1.47133 0.0925015
\(254\) 15.7266 0.986774
\(255\) 0 0
\(256\) −31.7549 −1.98468
\(257\) −18.0192 −1.12401 −0.562003 0.827135i \(-0.689969\pi\)
−0.562003 + 0.827135i \(0.689969\pi\)
\(258\) 0 0
\(259\) 2.67912 0.166472
\(260\) 15.1842 0.941683
\(261\) 0 0
\(262\) −55.6091 −3.43554
\(263\) −1.15951 −0.0714987 −0.0357494 0.999361i \(-0.511382\pi\)
−0.0357494 + 0.999361i \(0.511382\pi\)
\(264\) 0 0
\(265\) 1.70739 0.104884
\(266\) 8.11310 0.497446
\(267\) 0 0
\(268\) 39.4394 2.40915
\(269\) 7.80675 0.475986 0.237993 0.971267i \(-0.423511\pi\)
0.237993 + 0.971267i \(0.423511\pi\)
\(270\) 0 0
\(271\) 17.7831 1.08025 0.540124 0.841585i \(-0.318377\pi\)
0.540124 + 0.841585i \(0.318377\pi\)
\(272\) 7.96265 0.482807
\(273\) 0 0
\(274\) −36.7175 −2.21819
\(275\) −5.02827 −0.303216
\(276\) 0 0
\(277\) 25.9390 1.55853 0.779263 0.626697i \(-0.215594\pi\)
0.779263 + 0.626697i \(0.215594\pi\)
\(278\) −32.4249 −1.94472
\(279\) 0 0
\(280\) −2.83502 −0.169425
\(281\) 13.0283 0.777202 0.388601 0.921406i \(-0.372959\pi\)
0.388601 + 0.921406i \(0.372959\pi\)
\(282\) 0 0
\(283\) 15.9006 0.945195 0.472598 0.881278i \(-0.343316\pi\)
0.472598 + 0.881278i \(0.343316\pi\)
\(284\) −58.2317 −3.45541
\(285\) 0 0
\(286\) 44.4249 2.62690
\(287\) 3.41478 0.201568
\(288\) 0 0
\(289\) −15.2553 −0.897368
\(290\) −24.7977 −1.45617
\(291\) 0 0
\(292\) 54.1943 3.17148
\(293\) 29.4340 1.71955 0.859776 0.510672i \(-0.170603\pi\)
0.859776 + 0.510672i \(0.170603\pi\)
\(294\) 0 0
\(295\) 2.19325 0.127696
\(296\) −32.1751 −1.87014
\(297\) 0 0
\(298\) 41.0101 2.37565
\(299\) −1.02827 −0.0594666
\(300\) 0 0
\(301\) −0.499600 −0.0287965
\(302\) −48.7175 −2.80338
\(303\) 0 0
\(304\) −40.0384 −2.29636
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 9.96812 0.568911 0.284455 0.958689i \(-0.408187\pi\)
0.284455 + 0.958689i \(0.408187\pi\)
\(308\) −10.5561 −0.601492
\(309\) 0 0
\(310\) −2.51414 −0.142793
\(311\) −15.9945 −0.906967 −0.453483 0.891265i \(-0.649819\pi\)
−0.453483 + 0.891265i \(0.649819\pi\)
\(312\) 0 0
\(313\) −22.8542 −1.29180 −0.645899 0.763423i \(-0.723517\pi\)
−0.645899 + 0.763423i \(0.723517\pi\)
\(314\) 9.55695 0.539330
\(315\) 0 0
\(316\) −1.50867 −0.0848695
\(317\) −14.6044 −0.820266 −0.410133 0.912026i \(-0.634518\pi\)
−0.410133 + 0.912026i \(0.634518\pi\)
\(318\) 0 0
\(319\) −49.5953 −2.77681
\(320\) −3.29261 −0.184063
\(321\) 0 0
\(322\) 0.357432 0.0199189
\(323\) −8.77301 −0.488143
\(324\) 0 0
\(325\) 3.51414 0.194929
\(326\) −31.5333 −1.74647
\(327\) 0 0
\(328\) −41.0101 −2.26441
\(329\) 3.36916 0.185748
\(330\) 0 0
\(331\) −8.16137 −0.448589 −0.224295 0.974521i \(-0.572008\pi\)
−0.224295 + 0.974521i \(0.572008\pi\)
\(332\) −47.2462 −2.59297
\(333\) 0 0
\(334\) 55.9528 3.06160
\(335\) 9.12763 0.498696
\(336\) 0 0
\(337\) −11.8825 −0.647281 −0.323640 0.946180i \(-0.604907\pi\)
−0.323640 + 0.946180i \(0.604907\pi\)
\(338\) 1.63631 0.0890033
\(339\) 0 0
\(340\) 5.70739 0.309527
\(341\) −5.02827 −0.272296
\(342\) 0 0
\(343\) −6.68739 −0.361085
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) −27.5844 −1.48295
\(347\) 18.3684 0.986065 0.493033 0.870011i \(-0.335888\pi\)
0.493033 + 0.870011i \(0.335888\pi\)
\(348\) 0 0
\(349\) 11.2462 0.601995 0.300997 0.953625i \(-0.402680\pi\)
0.300997 + 0.953625i \(0.402680\pi\)
\(350\) −1.22153 −0.0652933
\(351\) 0 0
\(352\) 17.5279 0.934239
\(353\) −25.3593 −1.34974 −0.674869 0.737937i \(-0.735800\pi\)
−0.674869 + 0.737937i \(0.735800\pi\)
\(354\) 0 0
\(355\) −13.4768 −0.715274
\(356\) −21.7502 −1.15276
\(357\) 0 0
\(358\) −40.0384 −2.11610
\(359\) −15.2890 −0.806923 −0.403461 0.914997i \(-0.632193\pi\)
−0.403461 + 0.914997i \(0.632193\pi\)
\(360\) 0 0
\(361\) 25.1131 1.32174
\(362\) 20.2553 1.06459
\(363\) 0 0
\(364\) 7.37743 0.386683
\(365\) 12.5424 0.656500
\(366\) 0 0
\(367\) 6.05655 0.316149 0.158075 0.987427i \(-0.449471\pi\)
0.158075 + 0.987427i \(0.449471\pi\)
\(368\) −1.76394 −0.0919516
\(369\) 0 0
\(370\) −13.8633 −0.720718
\(371\) 0.829557 0.0430685
\(372\) 0 0
\(373\) 8.06748 0.417718 0.208859 0.977946i \(-0.433025\pi\)
0.208859 + 0.977946i \(0.433025\pi\)
\(374\) 16.6983 0.863449
\(375\) 0 0
\(376\) −40.4623 −2.08668
\(377\) 34.6610 1.78513
\(378\) 0 0
\(379\) −36.8114 −1.89088 −0.945438 0.325803i \(-0.894365\pi\)
−0.945438 + 0.325803i \(0.894365\pi\)
\(380\) −28.6983 −1.47219
\(381\) 0 0
\(382\) 15.5707 0.796666
\(383\) 3.63270 0.185622 0.0928111 0.995684i \(-0.470415\pi\)
0.0928111 + 0.995684i \(0.470415\pi\)
\(384\) 0 0
\(385\) −2.44305 −0.124509
\(386\) 5.67004 0.288598
\(387\) 0 0
\(388\) 45.1232 2.29078
\(389\) −15.2781 −0.774629 −0.387315 0.921948i \(-0.626597\pi\)
−0.387315 + 0.921948i \(0.626597\pi\)
\(390\) 0 0
\(391\) −0.386505 −0.0195464
\(392\) 39.4677 1.99342
\(393\) 0 0
\(394\) 23.4340 1.18059
\(395\) −0.349158 −0.0175681
\(396\) 0 0
\(397\) −18.5852 −0.932766 −0.466383 0.884583i \(-0.654443\pi\)
−0.466383 + 0.884583i \(0.654443\pi\)
\(398\) −41.6036 −2.08540
\(399\) 0 0
\(400\) 6.02827 0.301414
\(401\) −6.19325 −0.309276 −0.154638 0.987971i \(-0.549421\pi\)
−0.154638 + 0.987971i \(0.549421\pi\)
\(402\) 0 0
\(403\) 3.51414 0.175052
\(404\) 50.1806 2.49658
\(405\) 0 0
\(406\) −12.0483 −0.597946
\(407\) −27.7266 −1.37436
\(408\) 0 0
\(409\) −32.0565 −1.58509 −0.792547 0.609811i \(-0.791245\pi\)
−0.792547 + 0.609811i \(0.791245\pi\)
\(410\) −17.6700 −0.872661
\(411\) 0 0
\(412\) −16.2871 −0.802410
\(413\) 1.06562 0.0524357
\(414\) 0 0
\(415\) −10.9344 −0.536748
\(416\) −12.2498 −0.600596
\(417\) 0 0
\(418\) −83.9637 −4.10680
\(419\) −9.78860 −0.478205 −0.239102 0.970994i \(-0.576853\pi\)
−0.239102 + 0.970994i \(0.576853\pi\)
\(420\) 0 0
\(421\) −14.2745 −0.695695 −0.347847 0.937551i \(-0.613087\pi\)
−0.347847 + 0.937551i \(0.613087\pi\)
\(422\) −62.8789 −3.06090
\(423\) 0 0
\(424\) −9.96265 −0.483829
\(425\) 1.32088 0.0640723
\(426\) 0 0
\(427\) −0.971726 −0.0470251
\(428\) 29.1040 1.40680
\(429\) 0 0
\(430\) 2.58522 0.124670
\(431\) 22.8350 1.09992 0.549962 0.835190i \(-0.314642\pi\)
0.549962 + 0.835190i \(0.314642\pi\)
\(432\) 0 0
\(433\) 13.8259 0.664433 0.332216 0.943203i \(-0.392204\pi\)
0.332216 + 0.943203i \(0.392204\pi\)
\(434\) −1.22153 −0.0586351
\(435\) 0 0
\(436\) −16.8778 −0.808302
\(437\) 1.94345 0.0929679
\(438\) 0 0
\(439\) 39.8506 1.90197 0.950983 0.309243i \(-0.100076\pi\)
0.950983 + 0.309243i \(0.100076\pi\)
\(440\) 29.3401 1.39873
\(441\) 0 0
\(442\) −11.6700 −0.555087
\(443\) 10.1504 0.482262 0.241131 0.970493i \(-0.422482\pi\)
0.241131 + 0.970493i \(0.422482\pi\)
\(444\) 0 0
\(445\) −5.03374 −0.238622
\(446\) −48.4815 −2.29566
\(447\) 0 0
\(448\) −1.59976 −0.0755815
\(449\) 3.75020 0.176983 0.0884914 0.996077i \(-0.471795\pi\)
0.0884914 + 0.996077i \(0.471795\pi\)
\(450\) 0 0
\(451\) −35.3401 −1.66410
\(452\) 65.1798 3.06580
\(453\) 0 0
\(454\) 58.9162 2.76508
\(455\) 1.70739 0.0800436
\(456\) 0 0
\(457\) −1.70193 −0.0796127 −0.0398064 0.999207i \(-0.512674\pi\)
−0.0398064 + 0.999207i \(0.512674\pi\)
\(458\) 62.9245 2.94027
\(459\) 0 0
\(460\) −1.26434 −0.0589500
\(461\) −7.40931 −0.345086 −0.172543 0.985002i \(-0.555198\pi\)
−0.172543 + 0.985002i \(0.555198\pi\)
\(462\) 0 0
\(463\) −30.3865 −1.41218 −0.706090 0.708122i \(-0.749543\pi\)
−0.706090 + 0.708122i \(0.749543\pi\)
\(464\) 59.4586 2.76030
\(465\) 0 0
\(466\) 47.0584 2.17994
\(467\) −17.1040 −0.791480 −0.395740 0.918363i \(-0.629512\pi\)
−0.395740 + 0.918363i \(0.629512\pi\)
\(468\) 0 0
\(469\) 4.43478 0.204779
\(470\) −17.4340 −0.804170
\(471\) 0 0
\(472\) −12.7977 −0.589061
\(473\) 5.17044 0.237737
\(474\) 0 0
\(475\) −6.64177 −0.304745
\(476\) 2.77301 0.127101
\(477\) 0 0
\(478\) −9.72659 −0.444884
\(479\) −21.2890 −0.972719 −0.486360 0.873759i \(-0.661676\pi\)
−0.486360 + 0.873759i \(0.661676\pi\)
\(480\) 0 0
\(481\) 19.3774 0.883535
\(482\) 4.05655 0.184771
\(483\) 0 0
\(484\) 61.7175 2.80534
\(485\) 10.4431 0.474195
\(486\) 0 0
\(487\) 20.4996 0.928926 0.464463 0.885593i \(-0.346247\pi\)
0.464463 + 0.885593i \(0.346247\pi\)
\(488\) 11.6700 0.528278
\(489\) 0 0
\(490\) 17.0055 0.768229
\(491\) 31.0667 1.40202 0.701010 0.713152i \(-0.252733\pi\)
0.701010 + 0.713152i \(0.252733\pi\)
\(492\) 0 0
\(493\) 13.0283 0.586764
\(494\) 58.6802 2.64015
\(495\) 0 0
\(496\) 6.02827 0.270677
\(497\) −6.54787 −0.293712
\(498\) 0 0
\(499\) 15.3401 0.686717 0.343358 0.939205i \(-0.388435\pi\)
0.343358 + 0.939205i \(0.388435\pi\)
\(500\) 4.32088 0.193236
\(501\) 0 0
\(502\) −64.0384 −2.85817
\(503\) 14.9344 0.665891 0.332946 0.942946i \(-0.391957\pi\)
0.332946 + 0.942946i \(0.391957\pi\)
\(504\) 0 0
\(505\) 11.6135 0.516794
\(506\) −3.69912 −0.164446
\(507\) 0 0
\(508\) −27.0283 −1.19919
\(509\) 1.22153 0.0541432 0.0270716 0.999633i \(-0.491382\pi\)
0.0270716 + 0.999633i \(0.491382\pi\)
\(510\) 0 0
\(511\) 6.09389 0.269578
\(512\) 49.3365 2.18038
\(513\) 0 0
\(514\) 45.3027 1.99822
\(515\) −3.76940 −0.166100
\(516\) 0 0
\(517\) −34.8680 −1.53349
\(518\) −6.73566 −0.295948
\(519\) 0 0
\(520\) −20.5051 −0.899207
\(521\) −4.57429 −0.200403 −0.100202 0.994967i \(-0.531949\pi\)
−0.100202 + 0.994967i \(0.531949\pi\)
\(522\) 0 0
\(523\) −29.7831 −1.30233 −0.651163 0.758938i \(-0.725719\pi\)
−0.651163 + 0.758938i \(0.725719\pi\)
\(524\) 95.5717 4.17507
\(525\) 0 0
\(526\) 2.91518 0.127108
\(527\) 1.32088 0.0575386
\(528\) 0 0
\(529\) −22.9144 −0.996277
\(530\) −4.29261 −0.186459
\(531\) 0 0
\(532\) −13.9435 −0.604525
\(533\) 24.6983 1.06980
\(534\) 0 0
\(535\) 6.73566 0.291208
\(536\) −53.2599 −2.30048
\(537\) 0 0
\(538\) −19.6272 −0.846190
\(539\) 34.0109 1.46495
\(540\) 0 0
\(541\) −3.04748 −0.131021 −0.0655106 0.997852i \(-0.520868\pi\)
−0.0655106 + 0.997852i \(0.520868\pi\)
\(542\) −44.7092 −1.92043
\(543\) 0 0
\(544\) −4.60442 −0.197413
\(545\) −3.90611 −0.167319
\(546\) 0 0
\(547\) 9.82595 0.420127 0.210064 0.977688i \(-0.432633\pi\)
0.210064 + 0.977688i \(0.432633\pi\)
\(548\) 63.1040 2.69567
\(549\) 0 0
\(550\) 12.6418 0.539047
\(551\) −65.5097 −2.79081
\(552\) 0 0
\(553\) −0.169643 −0.00721396
\(554\) −65.2143 −2.77069
\(555\) 0 0
\(556\) 55.7266 2.36333
\(557\) 38.7922 1.64368 0.821839 0.569719i \(-0.192948\pi\)
0.821839 + 0.569719i \(0.192948\pi\)
\(558\) 0 0
\(559\) −3.61350 −0.152835
\(560\) 2.92892 0.123769
\(561\) 0 0
\(562\) −32.7549 −1.38168
\(563\) −2.73566 −0.115294 −0.0576472 0.998337i \(-0.518360\pi\)
−0.0576472 + 0.998337i \(0.518360\pi\)
\(564\) 0 0
\(565\) 15.0848 0.634623
\(566\) −39.9764 −1.68033
\(567\) 0 0
\(568\) 78.6374 3.29955
\(569\) −4.39197 −0.184121 −0.0920605 0.995753i \(-0.529345\pi\)
−0.0920605 + 0.995753i \(0.529345\pi\)
\(570\) 0 0
\(571\) 9.67004 0.404679 0.202339 0.979315i \(-0.435146\pi\)
0.202339 + 0.979315i \(0.435146\pi\)
\(572\) −76.3502 −3.19236
\(573\) 0 0
\(574\) −8.58522 −0.358340
\(575\) −0.292611 −0.0122027
\(576\) 0 0
\(577\) 31.4148 1.30781 0.653907 0.756575i \(-0.273129\pi\)
0.653907 + 0.756575i \(0.273129\pi\)
\(578\) 38.3538 1.59531
\(579\) 0 0
\(580\) 42.6182 1.76962
\(581\) −5.31261 −0.220404
\(582\) 0 0
\(583\) −8.58522 −0.355564
\(584\) −73.1852 −3.02843
\(585\) 0 0
\(586\) −74.0011 −3.05696
\(587\) 27.2161 1.12333 0.561664 0.827366i \(-0.310162\pi\)
0.561664 + 0.827366i \(0.310162\pi\)
\(588\) 0 0
\(589\) −6.64177 −0.273669
\(590\) −5.51414 −0.227013
\(591\) 0 0
\(592\) 33.2407 1.36619
\(593\) −32.5561 −1.33692 −0.668460 0.743748i \(-0.733046\pi\)
−0.668460 + 0.743748i \(0.733046\pi\)
\(594\) 0 0
\(595\) 0.641769 0.0263100
\(596\) −70.4815 −2.88703
\(597\) 0 0
\(598\) 2.58522 0.105718
\(599\) −27.8067 −1.13615 −0.568076 0.822976i \(-0.692312\pi\)
−0.568076 + 0.822976i \(0.692312\pi\)
\(600\) 0 0
\(601\) 17.6519 0.720036 0.360018 0.932945i \(-0.382771\pi\)
0.360018 + 0.932945i \(0.382771\pi\)
\(602\) 1.25606 0.0511933
\(603\) 0 0
\(604\) 83.7276 3.40683
\(605\) 14.2835 0.580708
\(606\) 0 0
\(607\) 44.9673 1.82517 0.912584 0.408890i \(-0.134084\pi\)
0.912584 + 0.408890i \(0.134084\pi\)
\(608\) 23.1523 0.938950
\(609\) 0 0
\(610\) 5.02827 0.203589
\(611\) 24.3684 0.985838
\(612\) 0 0
\(613\) 33.7694 1.36393 0.681967 0.731383i \(-0.261125\pi\)
0.681967 + 0.731383i \(0.261125\pi\)
\(614\) −25.0612 −1.01139
\(615\) 0 0
\(616\) 14.2553 0.574361
\(617\) 26.1131 1.05127 0.525637 0.850709i \(-0.323827\pi\)
0.525637 + 0.850709i \(0.323827\pi\)
\(618\) 0 0
\(619\) −20.8597 −0.838422 −0.419211 0.907889i \(-0.637693\pi\)
−0.419211 + 0.907889i \(0.637693\pi\)
\(620\) 4.32088 0.173531
\(621\) 0 0
\(622\) 40.2125 1.61237
\(623\) −2.44571 −0.0979852
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 57.4586 2.29651
\(627\) 0 0
\(628\) −16.4249 −0.655425
\(629\) 7.28354 0.290414
\(630\) 0 0
\(631\) −20.5105 −0.816511 −0.408256 0.912868i \(-0.633863\pi\)
−0.408256 + 0.912868i \(0.633863\pi\)
\(632\) 2.03735 0.0810413
\(633\) 0 0
\(634\) 36.7175 1.45824
\(635\) −6.25526 −0.248233
\(636\) 0 0
\(637\) −23.7694 −0.941778
\(638\) 124.690 4.93650
\(639\) 0 0
\(640\) 15.2498 0.602801
\(641\) −23.9945 −0.947727 −0.473864 0.880598i \(-0.657141\pi\)
−0.473864 + 0.880598i \(0.657141\pi\)
\(642\) 0 0
\(643\) −13.6700 −0.539094 −0.269547 0.962987i \(-0.586874\pi\)
−0.269547 + 0.962987i \(0.586874\pi\)
\(644\) −0.614295 −0.0242066
\(645\) 0 0
\(646\) 22.0565 0.867803
\(647\) 11.1523 0.438442 0.219221 0.975675i \(-0.429648\pi\)
0.219221 + 0.975675i \(0.429648\pi\)
\(648\) 0 0
\(649\) −11.0283 −0.432898
\(650\) −8.83502 −0.346538
\(651\) 0 0
\(652\) 54.1943 2.12241
\(653\) 39.1896 1.53361 0.766805 0.641881i \(-0.221846\pi\)
0.766805 + 0.641881i \(0.221846\pi\)
\(654\) 0 0
\(655\) 22.1186 0.864244
\(656\) 42.3684 1.65421
\(657\) 0 0
\(658\) −8.47053 −0.330216
\(659\) 31.6464 1.23277 0.616385 0.787445i \(-0.288597\pi\)
0.616385 + 0.787445i \(0.288597\pi\)
\(660\) 0 0
\(661\) −3.59535 −0.139843 −0.0699215 0.997553i \(-0.522275\pi\)
−0.0699215 + 0.997553i \(0.522275\pi\)
\(662\) 20.5188 0.797486
\(663\) 0 0
\(664\) 63.8023 2.47601
\(665\) −3.22699 −0.125137
\(666\) 0 0
\(667\) −2.88611 −0.111750
\(668\) −96.1624 −3.72064
\(669\) 0 0
\(670\) −22.9481 −0.886563
\(671\) 10.0565 0.388229
\(672\) 0 0
\(673\) −7.24073 −0.279110 −0.139555 0.990214i \(-0.544567\pi\)
−0.139555 + 0.990214i \(0.544567\pi\)
\(674\) 29.8742 1.15071
\(675\) 0 0
\(676\) −2.81221 −0.108162
\(677\) −38.5188 −1.48040 −0.740199 0.672388i \(-0.765269\pi\)
−0.740199 + 0.672388i \(0.765269\pi\)
\(678\) 0 0
\(679\) 5.07389 0.194718
\(680\) −7.70739 −0.295565
\(681\) 0 0
\(682\) 12.6418 0.484078
\(683\) −40.0192 −1.53129 −0.765646 0.643262i \(-0.777581\pi\)
−0.765646 + 0.643262i \(0.777581\pi\)
\(684\) 0 0
\(685\) 14.6044 0.558006
\(686\) 16.8130 0.641924
\(687\) 0 0
\(688\) −6.19872 −0.236324
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −11.8013 −0.448942 −0.224471 0.974481i \(-0.572065\pi\)
−0.224471 + 0.974481i \(0.572065\pi\)
\(692\) 47.4076 1.80217
\(693\) 0 0
\(694\) −46.1806 −1.75299
\(695\) 12.8970 0.489212
\(696\) 0 0
\(697\) 9.28354 0.351639
\(698\) −28.2745 −1.07020
\(699\) 0 0
\(700\) 2.09936 0.0793483
\(701\) −5.17044 −0.195285 −0.0976425 0.995222i \(-0.531130\pi\)
−0.0976425 + 0.995222i \(0.531130\pi\)
\(702\) 0 0
\(703\) −36.6236 −1.38129
\(704\) 16.5561 0.623983
\(705\) 0 0
\(706\) 63.7567 2.39952
\(707\) 5.64257 0.212211
\(708\) 0 0
\(709\) 47.7722 1.79412 0.897062 0.441906i \(-0.145697\pi\)
0.897062 + 0.441906i \(0.145697\pi\)
\(710\) 33.8825 1.27159
\(711\) 0 0
\(712\) 29.3720 1.10076
\(713\) −0.292611 −0.0109584
\(714\) 0 0
\(715\) −17.6700 −0.660822
\(716\) 68.8114 2.57160
\(717\) 0 0
\(718\) 38.4386 1.43452
\(719\) −23.0848 −0.860919 −0.430459 0.902610i \(-0.641648\pi\)
−0.430459 + 0.902610i \(0.641648\pi\)
\(720\) 0 0
\(721\) −1.83141 −0.0682054
\(722\) −63.1378 −2.34974
\(723\) 0 0
\(724\) −34.8114 −1.29376
\(725\) 9.86330 0.366314
\(726\) 0 0
\(727\) −22.2125 −0.823814 −0.411907 0.911226i \(-0.635137\pi\)
−0.411907 + 0.911226i \(0.635137\pi\)
\(728\) −9.96265 −0.369241
\(729\) 0 0
\(730\) −31.5333 −1.16710
\(731\) −1.35823 −0.0502360
\(732\) 0 0
\(733\) −43.9072 −1.62175 −0.810874 0.585221i \(-0.801008\pi\)
−0.810874 + 0.585221i \(0.801008\pi\)
\(734\) −15.2270 −0.562038
\(735\) 0 0
\(736\) 1.02000 0.0375977
\(737\) −45.8962 −1.69061
\(738\) 0 0
\(739\) 6.86690 0.252603 0.126302 0.991992i \(-0.459689\pi\)
0.126302 + 0.991992i \(0.459689\pi\)
\(740\) 23.8259 0.875859
\(741\) 0 0
\(742\) −2.08562 −0.0765656
\(743\) −29.2726 −1.07391 −0.536954 0.843612i \(-0.680425\pi\)
−0.536954 + 0.843612i \(0.680425\pi\)
\(744\) 0 0
\(745\) −16.3118 −0.597619
\(746\) −20.2827 −0.742604
\(747\) 0 0
\(748\) −28.6983 −1.04931
\(749\) 3.27261 0.119579
\(750\) 0 0
\(751\) 9.67004 0.352865 0.176432 0.984313i \(-0.443544\pi\)
0.176432 + 0.984313i \(0.443544\pi\)
\(752\) 41.8023 1.52437
\(753\) 0 0
\(754\) −87.1424 −3.17354
\(755\) 19.3774 0.705217
\(756\) 0 0
\(757\) −49.4104 −1.79585 −0.897925 0.440148i \(-0.854926\pi\)
−0.897925 + 0.440148i \(0.854926\pi\)
\(758\) 92.5489 3.36153
\(759\) 0 0
\(760\) 38.7549 1.40579
\(761\) −47.2599 −1.71317 −0.856586 0.516005i \(-0.827419\pi\)
−0.856586 + 0.516005i \(0.827419\pi\)
\(762\) 0 0
\(763\) −1.89783 −0.0687062
\(764\) −26.7603 −0.968155
\(765\) 0 0
\(766\) −9.13310 −0.329992
\(767\) 7.70739 0.278298
\(768\) 0 0
\(769\) 9.49053 0.342237 0.171119 0.985250i \(-0.445262\pi\)
0.171119 + 0.985250i \(0.445262\pi\)
\(770\) 6.14217 0.221348
\(771\) 0 0
\(772\) −9.74474 −0.350721
\(773\) −41.7567 −1.50188 −0.750942 0.660368i \(-0.770400\pi\)
−0.750942 + 0.660368i \(0.770400\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) −60.9354 −2.18745
\(777\) 0 0
\(778\) 38.4112 1.37711
\(779\) −46.6802 −1.67249
\(780\) 0 0
\(781\) 67.7650 2.42482
\(782\) 0.971726 0.0347489
\(783\) 0 0
\(784\) −40.7749 −1.45625
\(785\) −3.80128 −0.135674
\(786\) 0 0
\(787\) −40.0950 −1.42923 −0.714615 0.699518i \(-0.753398\pi\)
−0.714615 + 0.699518i \(0.753398\pi\)
\(788\) −40.2745 −1.43472
\(789\) 0 0
\(790\) 0.877832 0.0312319
\(791\) 7.32916 0.260595
\(792\) 0 0
\(793\) −7.02827 −0.249581
\(794\) 46.7258 1.65824
\(795\) 0 0
\(796\) 71.5015 2.53430
\(797\) 31.1150 1.10215 0.551074 0.834456i \(-0.314218\pi\)
0.551074 + 0.834456i \(0.314218\pi\)
\(798\) 0 0
\(799\) 9.15951 0.324040
\(800\) −3.48586 −0.123244
\(801\) 0 0
\(802\) 15.5707 0.549820
\(803\) −63.0667 −2.22557
\(804\) 0 0
\(805\) −0.142169 −0.00501079
\(806\) −8.83502 −0.311200
\(807\) 0 0
\(808\) −67.7650 −2.38396
\(809\) −46.6291 −1.63939 −0.819696 0.572799i \(-0.805857\pi\)
−0.819696 + 0.572799i \(0.805857\pi\)
\(810\) 0 0
\(811\) −47.0283 −1.65139 −0.825693 0.564120i \(-0.809216\pi\)
−0.825693 + 0.564120i \(0.809216\pi\)
\(812\) 20.7066 0.726659
\(813\) 0 0
\(814\) 69.7084 2.44328
\(815\) 12.5424 0.439341
\(816\) 0 0
\(817\) 6.82956 0.238936
\(818\) 80.5946 2.81792
\(819\) 0 0
\(820\) 30.3684 1.06051
\(821\) −35.3912 −1.23516 −0.617580 0.786508i \(-0.711887\pi\)
−0.617580 + 0.786508i \(0.711887\pi\)
\(822\) 0 0
\(823\) −17.2161 −0.600114 −0.300057 0.953921i \(-0.597006\pi\)
−0.300057 + 0.953921i \(0.597006\pi\)
\(824\) 21.9945 0.766216
\(825\) 0 0
\(826\) −2.67912 −0.0932184
\(827\) −16.3310 −0.567885 −0.283942 0.958841i \(-0.591642\pi\)
−0.283942 + 0.958841i \(0.591642\pi\)
\(828\) 0 0
\(829\) −29.0667 −1.00953 −0.504764 0.863258i \(-0.668420\pi\)
−0.504764 + 0.863258i \(0.668420\pi\)
\(830\) 27.4905 0.954210
\(831\) 0 0
\(832\) −11.5707 −0.401141
\(833\) −8.93438 −0.309558
\(834\) 0 0
\(835\) −22.2553 −0.770175
\(836\) 144.303 4.99082
\(837\) 0 0
\(838\) 24.6099 0.850134
\(839\) −27.6646 −0.955087 −0.477544 0.878608i \(-0.658473\pi\)
−0.477544 + 0.878608i \(0.658473\pi\)
\(840\) 0 0
\(841\) 68.2846 2.35464
\(842\) 35.8880 1.23678
\(843\) 0 0
\(844\) 108.066 3.71978
\(845\) −0.650842 −0.0223896
\(846\) 0 0
\(847\) 6.93984 0.238456
\(848\) 10.2926 0.353450
\(849\) 0 0
\(850\) −3.32088 −0.113905
\(851\) −1.61350 −0.0553099
\(852\) 0 0
\(853\) 32.5105 1.11314 0.556570 0.830801i \(-0.312117\pi\)
0.556570 + 0.830801i \(0.312117\pi\)
\(854\) 2.44305 0.0835995
\(855\) 0 0
\(856\) −39.3027 −1.34334
\(857\) 45.9144 1.56841 0.784203 0.620505i \(-0.213072\pi\)
0.784203 + 0.620505i \(0.213072\pi\)
\(858\) 0 0
\(859\) −19.6026 −0.668831 −0.334415 0.942426i \(-0.608539\pi\)
−0.334415 + 0.942426i \(0.608539\pi\)
\(860\) −4.44305 −0.151507
\(861\) 0 0
\(862\) −57.4104 −1.95540
\(863\) −46.1696 −1.57163 −0.785816 0.618460i \(-0.787757\pi\)
−0.785816 + 0.618460i \(0.787757\pi\)
\(864\) 0 0
\(865\) 10.9717 0.373050
\(866\) −34.7603 −1.18120
\(867\) 0 0
\(868\) 2.09936 0.0712569
\(869\) 1.75566 0.0595568
\(870\) 0 0
\(871\) 32.0757 1.08685
\(872\) 22.7922 0.771842
\(873\) 0 0
\(874\) −4.88611 −0.165275
\(875\) 0.485863 0.0164252
\(876\) 0 0
\(877\) 11.3017 0.381631 0.190815 0.981626i \(-0.438887\pi\)
0.190815 + 0.981626i \(0.438887\pi\)
\(878\) −100.190 −3.38125
\(879\) 0 0
\(880\) −30.3118 −1.02181
\(881\) 9.60803 0.323703 0.161851 0.986815i \(-0.448253\pi\)
0.161851 + 0.986815i \(0.448253\pi\)
\(882\) 0 0
\(883\) −33.5279 −1.12830 −0.564151 0.825671i \(-0.690797\pi\)
−0.564151 + 0.825671i \(0.690797\pi\)
\(884\) 20.0565 0.674575
\(885\) 0 0
\(886\) −25.5196 −0.857348
\(887\) 9.76394 0.327841 0.163920 0.986474i \(-0.447586\pi\)
0.163920 + 0.986474i \(0.447586\pi\)
\(888\) 0 0
\(889\) −3.03920 −0.101932
\(890\) 12.6555 0.424214
\(891\) 0 0
\(892\) 83.3219 2.78982
\(893\) −46.0565 −1.54122
\(894\) 0 0
\(895\) 15.9253 0.532324
\(896\) 7.40931 0.247528
\(897\) 0 0
\(898\) −9.42852 −0.314634
\(899\) 9.86330 0.328959
\(900\) 0 0
\(901\) 2.25526 0.0751337
\(902\) 88.8498 2.95838
\(903\) 0 0
\(904\) −88.0203 −2.92751
\(905\) −8.05655 −0.267809
\(906\) 0 0
\(907\) −9.18418 −0.304956 −0.152478 0.988307i \(-0.548725\pi\)
−0.152478 + 0.988307i \(0.548725\pi\)
\(908\) −101.256 −3.36028
\(909\) 0 0
\(910\) −4.29261 −0.142299
\(911\) 12.2553 0.406035 0.203018 0.979175i \(-0.434925\pi\)
0.203018 + 0.979175i \(0.434925\pi\)
\(912\) 0 0
\(913\) 54.9811 1.81961
\(914\) 4.27887 0.141533
\(915\) 0 0
\(916\) −108.144 −3.57319
\(917\) 10.7466 0.354884
\(918\) 0 0
\(919\) −47.5663 −1.56907 −0.784533 0.620087i \(-0.787097\pi\)
−0.784533 + 0.620087i \(0.787097\pi\)
\(920\) 1.70739 0.0562910
\(921\) 0 0
\(922\) 18.6280 0.613482
\(923\) −47.3593 −1.55885
\(924\) 0 0
\(925\) 5.51414 0.181304
\(926\) 76.3958 2.51052
\(927\) 0 0
\(928\) −34.3821 −1.12865
\(929\) −23.5333 −0.772104 −0.386052 0.922477i \(-0.626161\pi\)
−0.386052 + 0.922477i \(0.626161\pi\)
\(930\) 0 0
\(931\) 44.9245 1.47234
\(932\) −80.8762 −2.64919
\(933\) 0 0
\(934\) 43.0019 1.40706
\(935\) −6.64177 −0.217209
\(936\) 0 0
\(937\) −56.7258 −1.85315 −0.926575 0.376109i \(-0.877262\pi\)
−0.926575 + 0.376109i \(0.877262\pi\)
\(938\) −11.1496 −0.364049
\(939\) 0 0
\(940\) 29.9627 0.977274
\(941\) 33.5333 1.09316 0.546578 0.837408i \(-0.315930\pi\)
0.546578 + 0.837408i \(0.315930\pi\)
\(942\) 0 0
\(943\) −2.05655 −0.0669704
\(944\) 13.2215 0.430324
\(945\) 0 0
\(946\) −12.9992 −0.422640
\(947\) 52.0685 1.69200 0.846000 0.533183i \(-0.179004\pi\)
0.846000 + 0.533183i \(0.179004\pi\)
\(948\) 0 0
\(949\) 44.0757 1.43076
\(950\) 16.6983 0.541765
\(951\) 0 0
\(952\) −3.74474 −0.121368
\(953\) 11.1896 0.362468 0.181234 0.983440i \(-0.441991\pi\)
0.181234 + 0.983440i \(0.441991\pi\)
\(954\) 0 0
\(955\) −6.19325 −0.200409
\(956\) 16.7165 0.540649
\(957\) 0 0
\(958\) 53.5235 1.72926
\(959\) 7.09575 0.229134
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −48.7175 −1.57072
\(963\) 0 0
\(964\) −6.97173 −0.224544
\(965\) −2.25526 −0.0725995
\(966\) 0 0
\(967\) 36.8296 1.18436 0.592179 0.805806i \(-0.298268\pi\)
0.592179 + 0.805806i \(0.298268\pi\)
\(968\) −83.3448 −2.67880
\(969\) 0 0
\(970\) −26.2553 −0.843006
\(971\) −18.7494 −0.601697 −0.300848 0.953672i \(-0.597270\pi\)
−0.300848 + 0.953672i \(0.597270\pi\)
\(972\) 0 0
\(973\) 6.26619 0.200885
\(974\) −51.5388 −1.65141
\(975\) 0 0
\(976\) −12.0565 −0.385921
\(977\) 50.2262 1.60688 0.803439 0.595387i \(-0.203001\pi\)
0.803439 + 0.595387i \(0.203001\pi\)
\(978\) 0 0
\(979\) 25.3110 0.808943
\(980\) −29.2262 −0.933596
\(981\) 0 0
\(982\) −78.1059 −2.49246
\(983\) −15.5279 −0.495262 −0.247631 0.968854i \(-0.579652\pi\)
−0.247631 + 0.968854i \(0.579652\pi\)
\(984\) 0 0
\(985\) −9.32088 −0.296988
\(986\) −32.7549 −1.04313
\(987\) 0 0
\(988\) −100.850 −3.20846
\(989\) 0.300884 0.00956755
\(990\) 0 0
\(991\) −20.1022 −0.638566 −0.319283 0.947659i \(-0.603442\pi\)
−0.319283 + 0.947659i \(0.603442\pi\)
\(992\) −3.48586 −0.110676
\(993\) 0 0
\(994\) 16.4623 0.522151
\(995\) 16.5479 0.524603
\(996\) 0 0
\(997\) −20.8186 −0.659333 −0.329666 0.944098i \(-0.606936\pi\)
−0.329666 + 0.944098i \(0.606936\pi\)
\(998\) −38.5671 −1.22082
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1395.2.a.j.1.1 3
3.2 odd 2 465.2.a.e.1.3 3
5.4 even 2 6975.2.a.bf.1.3 3
12.11 even 2 7440.2.a.bs.1.3 3
15.2 even 4 2325.2.c.k.1024.6 6
15.8 even 4 2325.2.c.k.1024.1 6
15.14 odd 2 2325.2.a.r.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.e.1.3 3 3.2 odd 2
1395.2.a.j.1.1 3 1.1 even 1 trivial
2325.2.a.r.1.1 3 15.14 odd 2
2325.2.c.k.1024.1 6 15.8 even 4
2325.2.c.k.1024.6 6 15.2 even 4
6975.2.a.bf.1.3 3 5.4 even 2
7440.2.a.bs.1.3 3 12.11 even 2