Properties

Label 1386.4.a.k
Level $1386$
Weight $4$
Character orbit 1386.a
Self dual yes
Analytic conductor $81.777$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1386.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(81.7766472680\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + q^{5} - 7 q^{7} + 8 q^{8} + O(q^{10}) \) \( q + 2 q^{2} + 4 q^{4} + q^{5} - 7 q^{7} + 8 q^{8} + 2 q^{10} + 11 q^{11} - 8 q^{13} - 14 q^{14} + 16 q^{16} - 22 q^{17} + 54 q^{19} + 4 q^{20} + 22 q^{22} - 213 q^{23} - 124 q^{25} - 16 q^{26} - 28 q^{28} - 190 q^{29} + 163 q^{31} + 32 q^{32} - 44 q^{34} - 7 q^{35} + 31 q^{37} + 108 q^{38} + 8 q^{40} - 110 q^{41} + 4 q^{43} + 44 q^{44} - 426 q^{46} + 80 q^{47} + 49 q^{49} - 248 q^{50} - 32 q^{52} + 566 q^{53} + 11 q^{55} - 56 q^{56} - 380 q^{58} - 645 q^{59} + 634 q^{61} + 326 q^{62} + 64 q^{64} - 8 q^{65} - 729 q^{67} - 88 q^{68} - 14 q^{70} - 431 q^{71} - 918 q^{73} + 62 q^{74} + 216 q^{76} - 77 q^{77} - 254 q^{79} + 16 q^{80} - 220 q^{82} - 904 q^{83} - 22 q^{85} + 8 q^{86} + 88 q^{88} - 901 q^{89} + 56 q^{91} - 852 q^{92} + 160 q^{94} + 54 q^{95} - 89 q^{97} + 98 q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 1.00000 0 −7.00000 8.00000 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1386.4.a.k 1
3.b odd 2 1 154.4.a.a 1
12.b even 2 1 1232.4.a.g 1
21.c even 2 1 1078.4.a.c 1
33.d even 2 1 1694.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.4.a.a 1 3.b odd 2 1
1078.4.a.c 1 21.c even 2 1
1232.4.a.g 1 12.b even 2 1
1386.4.a.k 1 1.a even 1 1 trivial
1694.4.a.e 1 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1386))\):

\( T_{5} - 1 \)
\( T_{13} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( T \)
$5$ \( -1 + T \)
$7$ \( 7 + T \)
$11$ \( -11 + T \)
$13$ \( 8 + T \)
$17$ \( 22 + T \)
$19$ \( -54 + T \)
$23$ \( 213 + T \)
$29$ \( 190 + T \)
$31$ \( -163 + T \)
$37$ \( -31 + T \)
$41$ \( 110 + T \)
$43$ \( -4 + T \)
$47$ \( -80 + T \)
$53$ \( -566 + T \)
$59$ \( 645 + T \)
$61$ \( -634 + T \)
$67$ \( 729 + T \)
$71$ \( 431 + T \)
$73$ \( 918 + T \)
$79$ \( 254 + T \)
$83$ \( 904 + T \)
$89$ \( 901 + T \)
$97$ \( 89 + T \)
show more
show less