Properties

Label 1386.4.a.j
Level $1386$
Weight $4$
Character orbit 1386.a
Self dual yes
Analytic conductor $81.777$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1386.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(81.7766472680\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} - 2 q^{5} - 7 q^{7} + 8 q^{8} + O(q^{10}) \) \( q + 2 q^{2} + 4 q^{4} - 2 q^{5} - 7 q^{7} + 8 q^{8} - 4 q^{10} - 11 q^{11} + 26 q^{13} - 14 q^{14} + 16 q^{16} + 46 q^{17} - 48 q^{19} - 8 q^{20} - 22 q^{22} + 128 q^{23} - 121 q^{25} + 52 q^{26} - 28 q^{28} + 146 q^{29} - 128 q^{31} + 32 q^{32} + 92 q^{34} + 14 q^{35} - 26 q^{37} - 96 q^{38} - 16 q^{40} - 10 q^{41} + 52 q^{43} - 44 q^{44} + 256 q^{46} + 544 q^{47} + 49 q^{49} - 242 q^{50} + 104 q^{52} - 318 q^{53} + 22 q^{55} - 56 q^{56} + 292 q^{58} + 48 q^{59} + 466 q^{61} - 256 q^{62} + 64 q^{64} - 52 q^{65} + 516 q^{67} + 184 q^{68} + 28 q^{70} + 392 q^{71} + 754 q^{73} - 52 q^{74} - 192 q^{76} + 77 q^{77} - 32 q^{80} - 20 q^{82} - 624 q^{83} - 92 q^{85} + 104 q^{86} - 88 q^{88} + 1590 q^{89} - 182 q^{91} + 512 q^{92} + 1088 q^{94} + 96 q^{95} + 1018 q^{97} + 98 q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 −2.00000 0 −7.00000 8.00000 0 −4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1386.4.a.j 1
3.b odd 2 1 154.4.a.b 1
12.b even 2 1 1232.4.a.e 1
21.c even 2 1 1078.4.a.b 1
33.d even 2 1 1694.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.4.a.b 1 3.b odd 2 1
1078.4.a.b 1 21.c even 2 1
1232.4.a.e 1 12.b even 2 1
1386.4.a.j 1 1.a even 1 1 trivial
1694.4.a.f 1 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1386))\):

\( T_{5} + 2 \)
\( T_{13} - 26 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( T \)
$5$ \( 2 + T \)
$7$ \( 7 + T \)
$11$ \( 11 + T \)
$13$ \( -26 + T \)
$17$ \( -46 + T \)
$19$ \( 48 + T \)
$23$ \( -128 + T \)
$29$ \( -146 + T \)
$31$ \( 128 + T \)
$37$ \( 26 + T \)
$41$ \( 10 + T \)
$43$ \( -52 + T \)
$47$ \( -544 + T \)
$53$ \( 318 + T \)
$59$ \( -48 + T \)
$61$ \( -466 + T \)
$67$ \( -516 + T \)
$71$ \( -392 + T \)
$73$ \( -754 + T \)
$79$ \( T \)
$83$ \( 624 + T \)
$89$ \( -1590 + T \)
$97$ \( -1018 + T \)
show more
show less