Properties

Label 1386.2.k.v.991.1
Level $1386$
Weight $2$
Character 1386.991
Analytic conductor $11.067$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1386,2,Mod(793,1386)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1386, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1386.793");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0672657201\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.21870000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 24x^{4} - 43x^{3} + 138x^{2} - 117x + 73 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 462)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 991.1
Root \(0.500000 + 0.679547i\) of defining polynomial
Character \(\chi\) \(=\) 1386.991
Dual form 1386.2.k.v.793.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.40280 - 2.42972i) q^{5} +(-1.40280 + 2.24325i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.40280 - 2.42972i) q^{5} +(-1.40280 + 2.24325i) q^{7} -1.00000 q^{8} +(1.40280 - 2.42972i) q^{10} +(-0.500000 + 0.866025i) q^{11} +(-2.64411 - 0.0932392i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(3.98261 - 6.89809i) q^{17} +(3.24131 + 5.61411i) q^{19} +2.80560 q^{20} -1.00000 q^{22} +(-2.64411 - 4.57973i) q^{23} +(-1.43570 + 2.48671i) q^{25} +(-1.24131 - 2.33648i) q^{28} -5.12859 q^{29} +(4.48261 - 7.76411i) q^{31} +(0.500000 - 0.866025i) q^{32} +7.96523 q^{34} +(7.41832 + 0.261592i) q^{35} +(-5.24131 - 9.07821i) q^{37} +(-3.24131 + 5.61411i) q^{38} +(1.40280 + 2.42972i) q^{40} +5.09382 q^{41} +11.4478 q^{43} +(-0.500000 - 0.866025i) q^{44} +(2.64411 - 4.57973i) q^{46} +(0.161495 + 0.279717i) q^{47} +(-3.06430 - 6.29365i) q^{49} -2.87141 q^{50} +(4.00000 - 6.92820i) q^{53} +2.80560 q^{55} +(1.40280 - 2.24325i) q^{56} +(-2.56430 - 4.44149i) q^{58} +(-0.435704 + 0.754661i) q^{59} +(-1.07981 - 1.87029i) q^{61} +8.96523 q^{62} +1.00000 q^{64} +(3.54691 - 6.14343i) q^{67} +(3.98261 + 6.89809i) q^{68} +(3.48261 + 6.55525i) q^{70} +7.44784 q^{71} +(-6.28822 + 10.8915i) q^{73} +(5.24131 - 9.07821i) q^{74} -6.48261 q^{76} +(-1.24131 - 2.33648i) q^{77} +(-3.40280 - 5.89382i) q^{79} +(-1.40280 + 2.42972i) q^{80} +(2.54691 + 4.41138i) q^{82} -15.0938 q^{83} -22.3473 q^{85} +(5.72392 + 9.91412i) q^{86} +(0.500000 - 0.866025i) q^{88} +(0.805603 + 1.39535i) q^{89} +5.28822 q^{92} +(-0.161495 + 0.279717i) q^{94} +(9.09382 - 15.7510i) q^{95} +7.00000 q^{97} +(3.91832 - 5.80059i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 3 q^{4} - 6 q^{8} - 3 q^{11} + 3 q^{14} - 3 q^{16} + 3 q^{17} + 9 q^{19} - 6 q^{22} + 3 q^{23} - 15 q^{25} + 3 q^{28} - 18 q^{29} + 6 q^{31} + 3 q^{32} + 6 q^{34} + 30 q^{35} - 21 q^{37} - 9 q^{38} - 24 q^{41} + 6 q^{43} - 3 q^{44} - 3 q^{46} + 3 q^{47} - 12 q^{49} - 30 q^{50} + 24 q^{53} - 9 q^{58} - 9 q^{59} + 6 q^{61} + 12 q^{62} + 6 q^{64} - 6 q^{67} + 3 q^{68} - 18 q^{71} + 21 q^{74} - 18 q^{76} + 3 q^{77} - 12 q^{79} - 12 q^{82} - 36 q^{83} + 3 q^{86} + 3 q^{88} - 12 q^{89} - 6 q^{92} - 3 q^{94} + 42 q^{97} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.40280 2.42972i −0.627352 1.08661i −0.988081 0.153935i \(-0.950805\pi\)
0.360729 0.932671i \(-0.382528\pi\)
\(6\) 0 0
\(7\) −1.40280 + 2.24325i −0.530209 + 0.847867i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.40280 2.42972i 0.443605 0.768346i
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −2.64411 0.0932392i −0.706668 0.0249192i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.98261 6.89809i 0.965926 1.67303i 0.258818 0.965926i \(-0.416667\pi\)
0.707108 0.707106i \(-0.250000\pi\)
\(18\) 0 0
\(19\) 3.24131 + 5.61411i 0.743607 + 1.28796i 0.950843 + 0.309674i \(0.100220\pi\)
−0.207236 + 0.978291i \(0.566447\pi\)
\(20\) 2.80560 0.627352
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −2.64411 4.57973i −0.551335 0.954940i −0.998179 0.0603277i \(-0.980785\pi\)
0.446844 0.894612i \(-0.352548\pi\)
\(24\) 0 0
\(25\) −1.43570 + 2.48671i −0.287141 + 0.497342i
\(26\) 0 0
\(27\) 0 0
\(28\) −1.24131 2.33648i −0.234585 0.441554i
\(29\) −5.12859 −0.952356 −0.476178 0.879349i \(-0.657978\pi\)
−0.476178 + 0.879349i \(0.657978\pi\)
\(30\) 0 0
\(31\) 4.48261 7.76411i 0.805101 1.39448i −0.111122 0.993807i \(-0.535444\pi\)
0.916223 0.400669i \(-0.131222\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 7.96523 1.36602
\(35\) 7.41832 + 0.261592i 1.25392 + 0.0442171i
\(36\) 0 0
\(37\) −5.24131 9.07821i −0.861665 1.49245i −0.870320 0.492486i \(-0.836088\pi\)
0.00865499 0.999963i \(-0.497245\pi\)
\(38\) −3.24131 + 5.61411i −0.525809 + 0.910728i
\(39\) 0 0
\(40\) 1.40280 + 2.42972i 0.221802 + 0.384173i
\(41\) 5.09382 0.795521 0.397760 0.917489i \(-0.369788\pi\)
0.397760 + 0.917489i \(0.369788\pi\)
\(42\) 0 0
\(43\) 11.4478 1.74578 0.872890 0.487918i \(-0.162243\pi\)
0.872890 + 0.487918i \(0.162243\pi\)
\(44\) −0.500000 0.866025i −0.0753778 0.130558i
\(45\) 0 0
\(46\) 2.64411 4.57973i 0.389852 0.675244i
\(47\) 0.161495 + 0.279717i 0.0235565 + 0.0408010i 0.877563 0.479461i \(-0.159168\pi\)
−0.854007 + 0.520262i \(0.825834\pi\)
\(48\) 0 0
\(49\) −3.06430 6.29365i −0.437757 0.899094i
\(50\) −2.87141 −0.406078
\(51\) 0 0
\(52\) 0 0
\(53\) 4.00000 6.92820i 0.549442 0.951662i −0.448871 0.893597i \(-0.648174\pi\)
0.998313 0.0580651i \(-0.0184931\pi\)
\(54\) 0 0
\(55\) 2.80560 0.378307
\(56\) 1.40280 2.24325i 0.187457 0.299766i
\(57\) 0 0
\(58\) −2.56430 4.44149i −0.336709 0.583196i
\(59\) −0.435704 + 0.754661i −0.0567238 + 0.0982485i −0.892993 0.450071i \(-0.851399\pi\)
0.836269 + 0.548319i \(0.184732\pi\)
\(60\) 0 0
\(61\) −1.07981 1.87029i −0.138256 0.239466i 0.788581 0.614931i \(-0.210816\pi\)
−0.926836 + 0.375465i \(0.877483\pi\)
\(62\) 8.96523 1.13858
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 3.54691 6.14343i 0.433324 0.750539i −0.563833 0.825889i \(-0.690674\pi\)
0.997157 + 0.0753496i \(0.0240073\pi\)
\(68\) 3.98261 + 6.89809i 0.482963 + 0.836516i
\(69\) 0 0
\(70\) 3.48261 + 6.55525i 0.416252 + 0.783502i
\(71\) 7.44784 0.883896 0.441948 0.897041i \(-0.354288\pi\)
0.441948 + 0.897041i \(0.354288\pi\)
\(72\) 0 0
\(73\) −6.28822 + 10.8915i −0.735980 + 1.27475i 0.218312 + 0.975879i \(0.429945\pi\)
−0.954292 + 0.298876i \(0.903388\pi\)
\(74\) 5.24131 9.07821i 0.609289 1.05532i
\(75\) 0 0
\(76\) −6.48261 −0.743607
\(77\) −1.24131 2.33648i −0.141460 0.266267i
\(78\) 0 0
\(79\) −3.40280 5.89382i −0.382845 0.663107i 0.608623 0.793460i \(-0.291722\pi\)
−0.991468 + 0.130353i \(0.958389\pi\)
\(80\) −1.40280 + 2.42972i −0.156838 + 0.271651i
\(81\) 0 0
\(82\) 2.54691 + 4.41138i 0.281259 + 0.487155i
\(83\) −15.0938 −1.65676 −0.828381 0.560165i \(-0.810738\pi\)
−0.828381 + 0.560165i \(0.810738\pi\)
\(84\) 0 0
\(85\) −22.3473 −2.42390
\(86\) 5.72392 + 9.91412i 0.617226 + 1.06907i
\(87\) 0 0
\(88\) 0.500000 0.866025i 0.0533002 0.0923186i
\(89\) 0.805603 + 1.39535i 0.0853937 + 0.147906i 0.905559 0.424221i \(-0.139452\pi\)
−0.820165 + 0.572127i \(0.806119\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 5.28822 0.551335
\(93\) 0 0
\(94\) −0.161495 + 0.279717i −0.0166569 + 0.0288507i
\(95\) 9.09382 15.7510i 0.933006 1.61601i
\(96\) 0 0
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 3.91832 5.80059i 0.395810 0.585948i
\(99\) 0 0
\(100\) −1.43570 2.48671i −0.143570 0.248671i
\(101\) 5.36990 9.30094i 0.534325 0.925478i −0.464871 0.885379i \(-0.653899\pi\)
0.999196 0.0400994i \(-0.0127675\pi\)
\(102\) 0 0
\(103\) −1.48261 2.56796i −0.146086 0.253029i 0.783691 0.621150i \(-0.213334\pi\)
−0.929778 + 0.368122i \(0.880001\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 8.00000 0.777029
\(107\) 2.41832 + 4.18865i 0.233787 + 0.404932i 0.958920 0.283678i \(-0.0915547\pi\)
−0.725132 + 0.688610i \(0.758221\pi\)
\(108\) 0 0
\(109\) 5.07981 8.79849i 0.486558 0.842743i −0.513323 0.858196i \(-0.671586\pi\)
0.999881 + 0.0154529i \(0.00491901\pi\)
\(110\) 1.40280 + 2.42972i 0.133752 + 0.231665i
\(111\) 0 0
\(112\) 2.64411 + 0.0932392i 0.249845 + 0.00881027i
\(113\) −10.9652 −1.03152 −0.515761 0.856733i \(-0.672491\pi\)
−0.515761 + 0.856733i \(0.672491\pi\)
\(114\) 0 0
\(115\) −7.41832 + 12.8489i −0.691762 + 1.19817i
\(116\) 2.56430 4.44149i 0.238089 0.412382i
\(117\) 0 0
\(118\) −0.871407 −0.0802195
\(119\) 9.88729 + 18.6106i 0.906366 + 1.70603i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 1.07981 1.87029i 0.0977615 0.169328i
\(123\) 0 0
\(124\) 4.48261 + 7.76411i 0.402551 + 0.697238i
\(125\) −5.97199 −0.534151
\(126\) 0 0
\(127\) −9.28822 −0.824196 −0.412098 0.911140i \(-0.635204\pi\)
−0.412098 + 0.911140i \(0.635204\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.48261 + 11.2282i 0.566389 + 0.981014i 0.996919 + 0.0784377i \(0.0249932\pi\)
−0.430530 + 0.902576i \(0.641674\pi\)
\(132\) 0 0
\(133\) −17.1407 0.604433i −1.48629 0.0524110i
\(134\) 7.09382 0.612813
\(135\) 0 0
\(136\) −3.98261 + 6.89809i −0.341506 + 0.591506i
\(137\) 2.80560 4.85945i 0.239699 0.415171i −0.720929 0.693009i \(-0.756285\pi\)
0.960628 + 0.277838i \(0.0896180\pi\)
\(138\) 0 0
\(139\) 13.1286 1.11355 0.556776 0.830662i \(-0.312038\pi\)
0.556776 + 0.830662i \(0.312038\pi\)
\(140\) −3.93570 + 6.29365i −0.332628 + 0.531911i
\(141\) 0 0
\(142\) 3.72392 + 6.45002i 0.312504 + 0.541273i
\(143\) 0 0
\(144\) 0 0
\(145\) 7.19440 + 12.4611i 0.597462 + 1.03483i
\(146\) −12.5764 −1.04083
\(147\) 0 0
\(148\) 10.4826 0.861665
\(149\) 8.36990 + 14.4971i 0.685689 + 1.18765i 0.973220 + 0.229877i \(0.0738323\pi\)
−0.287531 + 0.957771i \(0.592834\pi\)
\(150\) 0 0
\(151\) −5.44971 + 9.43918i −0.443491 + 0.768149i −0.997946 0.0640648i \(-0.979594\pi\)
0.554455 + 0.832214i \(0.312927\pi\)
\(152\) −3.24131 5.61411i −0.262905 0.455364i
\(153\) 0 0
\(154\) 1.40280 2.24325i 0.113041 0.180766i
\(155\) −25.1529 −2.02033
\(156\) 0 0
\(157\) −0.887286 + 1.53682i −0.0708132 + 0.122652i −0.899258 0.437419i \(-0.855893\pi\)
0.828445 + 0.560071i \(0.189226\pi\)
\(158\) 3.40280 5.89382i 0.270712 0.468888i
\(159\) 0 0
\(160\) −2.80560 −0.221802
\(161\) 13.9826 + 0.493069i 1.10198 + 0.0388593i
\(162\) 0 0
\(163\) 2.02952 + 3.51524i 0.158964 + 0.275335i 0.934496 0.355975i \(-0.115851\pi\)
−0.775531 + 0.631309i \(0.782518\pi\)
\(164\) −2.54691 + 4.41138i −0.198880 + 0.344471i
\(165\) 0 0
\(166\) −7.54691 13.0716i −0.585754 1.01456i
\(167\) −13.8684 −1.07317 −0.536584 0.843847i \(-0.680286\pi\)
−0.536584 + 0.843847i \(0.680286\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) −11.1736 19.3533i −0.856978 1.48433i
\(171\) 0 0
\(172\) −5.72392 + 9.91412i −0.436445 + 0.755945i
\(173\) 8.48261 + 14.6923i 0.644921 + 1.11704i 0.984320 + 0.176394i \(0.0564431\pi\)
−0.339399 + 0.940643i \(0.610224\pi\)
\(174\) 0 0
\(175\) −3.56430 6.70900i −0.269435 0.507153i
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −0.805603 + 1.39535i −0.0603825 + 0.104586i
\(179\) −6.33513 + 10.9728i −0.473509 + 0.820142i −0.999540 0.0303231i \(-0.990346\pi\)
0.526031 + 0.850466i \(0.323680\pi\)
\(180\) 0 0
\(181\) −2.57643 −0.191505 −0.0957523 0.995405i \(-0.530526\pi\)
−0.0957523 + 0.995405i \(0.530526\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.64411 + 4.57973i 0.194926 + 0.337622i
\(185\) −14.7050 + 25.4698i −1.08113 + 1.87258i
\(186\) 0 0
\(187\) 3.98261 + 6.89809i 0.291238 + 0.504438i
\(188\) −0.322990 −0.0235565
\(189\) 0 0
\(190\) 18.1876 1.31947
\(191\) −1.19440 2.06876i −0.0864235 0.149690i 0.819573 0.572974i \(-0.194210\pi\)
−0.905997 + 0.423284i \(0.860877\pi\)
\(192\) 0 0
\(193\) 7.28822 12.6236i 0.524617 0.908664i −0.474972 0.880001i \(-0.657542\pi\)
0.999589 0.0286628i \(-0.00912489\pi\)
\(194\) 3.50000 + 6.06218i 0.251285 + 0.435239i
\(195\) 0 0
\(196\) 6.98261 + 0.493069i 0.498758 + 0.0352192i
\(197\) 12.4826 0.889349 0.444675 0.895692i \(-0.353319\pi\)
0.444675 + 0.895692i \(0.353319\pi\)
\(198\) 0 0
\(199\) 7.09382 12.2869i 0.502867 0.870992i −0.497127 0.867678i \(-0.665612\pi\)
0.999995 0.00331424i \(-0.00105496\pi\)
\(200\) 1.43570 2.48671i 0.101520 0.175837i
\(201\) 0 0
\(202\) 10.7398 0.755650
\(203\) 7.19440 11.5047i 0.504948 0.807471i
\(204\) 0 0
\(205\) −7.14562 12.3766i −0.499071 0.864417i
\(206\) 1.48261 2.56796i 0.103299 0.178918i
\(207\) 0 0
\(208\) 0 0
\(209\) −6.48261 −0.448412
\(210\) 0 0
\(211\) −20.8336 −1.43425 −0.717123 0.696947i \(-0.754541\pi\)
−0.717123 + 0.696947i \(0.754541\pi\)
\(212\) 4.00000 + 6.92820i 0.274721 + 0.475831i
\(213\) 0 0
\(214\) −2.41832 + 4.18865i −0.165313 + 0.286330i
\(215\) −16.0590 27.8151i −1.09522 1.89697i
\(216\) 0 0
\(217\) 11.1286 + 20.9471i 0.755458 + 1.42198i
\(218\) 10.1596 0.688096
\(219\) 0 0
\(220\) −1.40280 + 2.42972i −0.0945769 + 0.163812i
\(221\) 0 0
\(222\) 0 0
\(223\) 12.5764 0.842180 0.421090 0.907019i \(-0.361648\pi\)
0.421090 + 0.907019i \(0.361648\pi\)
\(224\) 1.24131 + 2.33648i 0.0829383 + 0.156113i
\(225\) 0 0
\(226\) −5.48261 9.49616i −0.364698 0.631675i
\(227\) 10.0295 17.3716i 0.665683 1.15300i −0.313417 0.949616i \(-0.601474\pi\)
0.979100 0.203381i \(-0.0651929\pi\)
\(228\) 0 0
\(229\) 11.2882 + 19.5518i 0.745946 + 1.29202i 0.949751 + 0.313005i \(0.101336\pi\)
−0.203805 + 0.979011i \(0.565331\pi\)
\(230\) −14.8366 −0.978299
\(231\) 0 0
\(232\) 5.12859 0.336709
\(233\) −0.371407 0.643296i −0.0243317 0.0421437i 0.853603 0.520924i \(-0.174412\pi\)
−0.877935 + 0.478780i \(0.841079\pi\)
\(234\) 0 0
\(235\) 0.453091 0.784776i 0.0295564 0.0511931i
\(236\) −0.435704 0.754661i −0.0283619 0.0491242i
\(237\) 0 0
\(238\) −11.1736 + 17.8680i −0.724279 + 1.15821i
\(239\) −4.31925 −0.279389 −0.139694 0.990195i \(-0.544612\pi\)
−0.139694 + 0.990195i \(0.544612\pi\)
\(240\) 0 0
\(241\) 9.09382 15.7510i 0.585784 1.01461i −0.408993 0.912538i \(-0.634120\pi\)
0.994777 0.102071i \(-0.0325468\pi\)
\(242\) 0.500000 0.866025i 0.0321412 0.0556702i
\(243\) 0 0
\(244\) 2.15962 0.138256
\(245\) −10.9932 + 16.2741i −0.702332 + 1.03972i
\(246\) 0 0
\(247\) 0 0
\(248\) −4.48261 + 7.76411i −0.284646 + 0.493022i
\(249\) 0 0
\(250\) −2.98599 5.17189i −0.188851 0.327099i
\(251\) −28.6703 −1.80965 −0.904825 0.425784i \(-0.859999\pi\)
−0.904825 + 0.425784i \(0.859999\pi\)
\(252\) 0 0
\(253\) 5.28822 0.332467
\(254\) −4.64411 8.04383i −0.291397 0.504715i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −6.80560 11.7876i −0.424522 0.735293i 0.571854 0.820356i \(-0.306224\pi\)
−0.996376 + 0.0850621i \(0.972891\pi\)
\(258\) 0 0
\(259\) 27.7172 + 0.977390i 1.72226 + 0.0607321i
\(260\) 0 0
\(261\) 0 0
\(262\) −6.48261 + 11.2282i −0.400497 + 0.693681i
\(263\) −1.80560 + 3.12740i −0.111338 + 0.192843i −0.916310 0.400470i \(-0.868847\pi\)
0.804972 + 0.593313i \(0.202180\pi\)
\(264\) 0 0
\(265\) −22.4448 −1.37877
\(266\) −8.04691 15.1465i −0.493388 0.928693i
\(267\) 0 0
\(268\) 3.54691 + 6.14343i 0.216662 + 0.375270i
\(269\) −4.69102 + 8.12508i −0.286016 + 0.495395i −0.972855 0.231415i \(-0.925665\pi\)
0.686839 + 0.726810i \(0.258998\pi\)
\(270\) 0 0
\(271\) −2.80560 4.85945i −0.170428 0.295190i 0.768141 0.640280i \(-0.221182\pi\)
−0.938570 + 0.345090i \(0.887848\pi\)
\(272\) −7.96523 −0.482963
\(273\) 0 0
\(274\) 5.61121 0.338985
\(275\) −1.43570 2.48671i −0.0865762 0.149954i
\(276\) 0 0
\(277\) 8.00000 13.8564i 0.480673 0.832551i −0.519081 0.854725i \(-0.673726\pi\)
0.999754 + 0.0221745i \(0.00705893\pi\)
\(278\) 6.56430 + 11.3697i 0.393700 + 0.681909i
\(279\) 0 0
\(280\) −7.41832 0.261592i −0.443329 0.0156331i
\(281\) −24.1529 −1.44084 −0.720420 0.693539i \(-0.756051\pi\)
−0.720420 + 0.693539i \(0.756051\pi\)
\(282\) 0 0
\(283\) −3.77083 + 6.53127i −0.224152 + 0.388244i −0.956065 0.293155i \(-0.905295\pi\)
0.731912 + 0.681399i \(0.238628\pi\)
\(284\) −3.72392 + 6.45002i −0.220974 + 0.382738i
\(285\) 0 0
\(286\) 0 0
\(287\) −7.14562 + 11.4267i −0.421792 + 0.674496i
\(288\) 0 0
\(289\) −23.2224 40.2224i −1.36602 2.36602i
\(290\) −7.19440 + 12.4611i −0.422470 + 0.731739i
\(291\) 0 0
\(292\) −6.28822 10.8915i −0.367990 0.637377i
\(293\) −7.90618 −0.461884 −0.230942 0.972968i \(-0.574181\pi\)
−0.230942 + 0.972968i \(0.574181\pi\)
\(294\) 0 0
\(295\) 2.44482 0.142343
\(296\) 5.24131 + 9.07821i 0.304645 + 0.527660i
\(297\) 0 0
\(298\) −8.36990 + 14.4971i −0.484855 + 0.839794i
\(299\) 0 0
\(300\) 0 0
\(301\) −16.0590 + 25.6803i −0.925628 + 1.48019i
\(302\) −10.8994 −0.627191
\(303\) 0 0
\(304\) 3.24131 5.61411i 0.185902 0.321991i
\(305\) −3.02952 + 5.24729i −0.173470 + 0.300459i
\(306\) 0 0
\(307\) 12.8957 0.735995 0.367998 0.929827i \(-0.380043\pi\)
0.367998 + 0.929827i \(0.380043\pi\)
\(308\) 2.64411 + 0.0932392i 0.150662 + 0.00531279i
\(309\) 0 0
\(310\) −12.5764 21.7830i −0.714293 1.23719i
\(311\) 5.44971 9.43918i 0.309025 0.535247i −0.669125 0.743150i \(-0.733331\pi\)
0.978149 + 0.207904i \(0.0666641\pi\)
\(312\) 0 0
\(313\) 4.56430 + 7.90559i 0.257989 + 0.446851i 0.965703 0.259649i \(-0.0836067\pi\)
−0.707714 + 0.706499i \(0.750273\pi\)
\(314\) −1.77457 −0.100145
\(315\) 0 0
\(316\) 6.80560 0.382845
\(317\) −4.75682 8.23906i −0.267170 0.462752i 0.700960 0.713201i \(-0.252755\pi\)
−0.968130 + 0.250449i \(0.919422\pi\)
\(318\) 0 0
\(319\) 2.56430 4.44149i 0.143573 0.248676i
\(320\) −1.40280 2.42972i −0.0784190 0.135826i
\(321\) 0 0
\(322\) 6.56430 + 12.3558i 0.365814 + 0.688564i
\(323\) 51.6355 2.87307
\(324\) 0 0
\(325\) 0 0
\(326\) −2.02952 + 3.51524i −0.112405 + 0.194691i
\(327\) 0 0
\(328\) −5.09382 −0.281259
\(329\) −0.854020 0.0301153i −0.0470837 0.00166031i
\(330\) 0 0
\(331\) −0.546909 0.947275i −0.0300609 0.0520669i 0.850604 0.525807i \(-0.176237\pi\)
−0.880664 + 0.473741i \(0.842903\pi\)
\(332\) 7.54691 13.0716i 0.414190 0.717399i
\(333\) 0 0
\(334\) −6.93420 12.0104i −0.379422 0.657179i
\(335\) −19.9024 −1.08739
\(336\) 0 0
\(337\) −25.7988 −1.40535 −0.702676 0.711510i \(-0.748012\pi\)
−0.702676 + 0.711510i \(0.748012\pi\)
\(338\) −6.50000 11.2583i −0.353553 0.612372i
\(339\) 0 0
\(340\) 11.1736 19.3533i 0.605975 1.04958i
\(341\) 4.48261 + 7.76411i 0.242747 + 0.420450i
\(342\) 0 0
\(343\) 18.4168 + 1.95478i 0.994414 + 0.105548i
\(344\) −11.4478 −0.617226
\(345\) 0 0
\(346\) −8.48261 + 14.6923i −0.456028 + 0.789864i
\(347\) 10.3835 17.9848i 0.557418 0.965476i −0.440293 0.897854i \(-0.645126\pi\)
0.997711 0.0676219i \(-0.0215411\pi\)
\(348\) 0 0
\(349\) −9.51364 −0.509254 −0.254627 0.967039i \(-0.581953\pi\)
−0.254627 + 0.967039i \(0.581953\pi\)
\(350\) 4.02801 6.44127i 0.215306 0.344300i
\(351\) 0 0
\(352\) 0.500000 + 0.866025i 0.0266501 + 0.0461593i
\(353\) −6.28822 + 10.8915i −0.334688 + 0.579697i −0.983425 0.181316i \(-0.941964\pi\)
0.648737 + 0.761013i \(0.275298\pi\)
\(354\) 0 0
\(355\) −10.4478 18.0962i −0.554514 0.960446i
\(356\) −1.61121 −0.0853937
\(357\) 0 0
\(358\) −12.6703 −0.669644
\(359\) −0.0347742 0.0602306i −0.00183531 0.00317885i 0.865106 0.501589i \(-0.167251\pi\)
−0.866942 + 0.498410i \(0.833918\pi\)
\(360\) 0 0
\(361\) −11.5121 + 19.9396i −0.605902 + 1.04945i
\(362\) −1.28822 2.23126i −0.0677071 0.117272i
\(363\) 0 0
\(364\) 0 0
\(365\) 35.2845 1.84687
\(366\) 0 0
\(367\) 15.7708 27.3159i 0.823231 1.42588i −0.0800336 0.996792i \(-0.525503\pi\)
0.903264 0.429085i \(-0.141164\pi\)
\(368\) −2.64411 + 4.57973i −0.137834 + 0.238735i
\(369\) 0 0
\(370\) −29.4100 −1.52896
\(371\) 9.93045 + 18.6919i 0.515563 + 0.970434i
\(372\) 0 0
\(373\) −7.65624 13.2610i −0.396425 0.686629i 0.596857 0.802348i \(-0.296416\pi\)
−0.993282 + 0.115719i \(0.963083\pi\)
\(374\) −3.98261 + 6.89809i −0.205936 + 0.356692i
\(375\) 0 0
\(376\) −0.161495 0.279717i −0.00832847 0.0144253i
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0590 0.824898 0.412449 0.910981i \(-0.364674\pi\)
0.412449 + 0.910981i \(0.364674\pi\)
\(380\) 9.09382 + 15.7510i 0.466503 + 0.808007i
\(381\) 0 0
\(382\) 1.19440 2.06876i 0.0611107 0.105847i
\(383\) −0.369899 0.640684i −0.0189010 0.0327374i 0.856420 0.516279i \(-0.172683\pi\)
−0.875321 + 0.483542i \(0.839350\pi\)
\(384\) 0 0
\(385\) −3.93570 + 6.29365i −0.200582 + 0.320754i
\(386\) 14.5764 0.741921
\(387\) 0 0
\(388\) −3.50000 + 6.06218i −0.177686 + 0.307760i
\(389\) 1.79160 3.10313i 0.0908375 0.157335i −0.817026 0.576600i \(-0.804379\pi\)
0.907864 + 0.419265i \(0.137712\pi\)
\(390\) 0 0
\(391\) −42.1218 −2.13019
\(392\) 3.06430 + 6.29365i 0.154770 + 0.317878i
\(393\) 0 0
\(394\) 6.24131 + 10.8103i 0.314432 + 0.544613i
\(395\) −9.54691 + 16.5357i −0.480357 + 0.832003i
\(396\) 0 0
\(397\) 12.5643 + 21.7620i 0.630584 + 1.09220i 0.987433 + 0.158041i \(0.0505179\pi\)
−0.356849 + 0.934162i \(0.616149\pi\)
\(398\) 14.1876 0.711162
\(399\) 0 0
\(400\) 2.87141 0.143570
\(401\) −1.93420 3.35013i −0.0965891 0.167297i 0.813682 0.581311i \(-0.197460\pi\)
−0.910271 + 0.414014i \(0.864127\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 5.36990 + 9.30094i 0.267162 + 0.462739i
\(405\) 0 0
\(406\) 13.5606 + 0.478186i 0.672999 + 0.0237320i
\(407\) 10.4826 0.519604
\(408\) 0 0
\(409\) −2.32299 + 4.02354i −0.114864 + 0.198951i −0.917726 0.397215i \(-0.869977\pi\)
0.802861 + 0.596166i \(0.203310\pi\)
\(410\) 7.14562 12.3766i 0.352897 0.611235i
\(411\) 0 0
\(412\) 2.96523 0.146086
\(413\) −1.08168 2.03603i −0.0532262 0.100186i
\(414\) 0 0
\(415\) 21.1736 + 36.6738i 1.03937 + 1.80025i
\(416\) 0 0
\(417\) 0 0
\(418\) −3.24131 5.61411i −0.158537 0.274595i
\(419\) 19.5174 0.953487 0.476743 0.879043i \(-0.341817\pi\)
0.476743 + 0.879043i \(0.341817\pi\)
\(420\) 0 0
\(421\) 15.5174 0.756271 0.378136 0.925750i \(-0.376565\pi\)
0.378136 + 0.925750i \(0.376565\pi\)
\(422\) −10.4168 18.0424i −0.507082 0.878292i
\(423\) 0 0
\(424\) −4.00000 + 6.92820i −0.194257 + 0.336463i
\(425\) 11.4357 + 19.8072i 0.554713 + 0.960791i
\(426\) 0 0
\(427\) 5.71028 + 0.201361i 0.276340 + 0.00974456i
\(428\) −4.83663 −0.233787
\(429\) 0 0
\(430\) 16.0590 27.8151i 0.774436 1.34136i
\(431\) −7.19440 + 12.4611i −0.346542 + 0.600228i −0.985633 0.168903i \(-0.945977\pi\)
0.639091 + 0.769131i \(0.279311\pi\)
\(432\) 0 0
\(433\) 2.03477 0.0977850 0.0488925 0.998804i \(-0.484431\pi\)
0.0488925 + 0.998804i \(0.484431\pi\)
\(434\) −12.5764 + 20.1112i −0.603688 + 0.965368i
\(435\) 0 0
\(436\) 5.07981 + 8.79849i 0.243279 + 0.421371i
\(437\) 17.1407 29.6886i 0.819952 1.42020i
\(438\) 0 0
\(439\) −1.61308 2.79393i −0.0769880 0.133347i 0.824961 0.565190i \(-0.191197\pi\)
−0.901949 + 0.431842i \(0.857864\pi\)
\(440\) −2.80560 −0.133752
\(441\) 0 0
\(442\) 0 0
\(443\) −11.0469 19.1338i −0.524854 0.909075i −0.999581 0.0289413i \(-0.990786\pi\)
0.474727 0.880133i \(-0.342547\pi\)
\(444\) 0 0
\(445\) 2.26020 3.91478i 0.107144 0.185579i
\(446\) 6.28822 + 10.8915i 0.297756 + 0.515728i
\(447\) 0 0
\(448\) −1.40280 + 2.24325i −0.0662761 + 0.105983i
\(449\) −22.2497 −1.05003 −0.525014 0.851094i \(-0.675940\pi\)
−0.525014 + 0.851094i \(0.675940\pi\)
\(450\) 0 0
\(451\) −2.54691 + 4.41138i −0.119929 + 0.207724i
\(452\) 5.48261 9.49616i 0.257880 0.446662i
\(453\) 0 0
\(454\) 20.0590 0.941418
\(455\) 0 0
\(456\) 0 0
\(457\) 9.31925 + 16.1414i 0.435936 + 0.755063i 0.997372 0.0724572i \(-0.0230841\pi\)
−0.561436 + 0.827520i \(0.689751\pi\)
\(458\) −11.2882 + 19.5518i −0.527464 + 0.913594i
\(459\) 0 0
\(460\) −7.41832 12.8489i −0.345881 0.599083i
\(461\) 20.9895 0.977578 0.488789 0.872402i \(-0.337439\pi\)
0.488789 + 0.872402i \(0.337439\pi\)
\(462\) 0 0
\(463\) −5.35402 −0.248822 −0.124411 0.992231i \(-0.539704\pi\)
−0.124411 + 0.992231i \(0.539704\pi\)
\(464\) 2.56430 + 4.44149i 0.119044 + 0.206191i
\(465\) 0 0
\(466\) 0.371407 0.643296i 0.0172051 0.0298001i
\(467\) 13.0121 + 22.5377i 0.602130 + 1.04292i 0.992498 + 0.122261i \(0.0390144\pi\)
−0.390368 + 0.920659i \(0.627652\pi\)
\(468\) 0 0
\(469\) 8.80560 + 16.5746i 0.406605 + 0.765344i
\(470\) 0.906181 0.0417990
\(471\) 0 0
\(472\) 0.435704 0.754661i 0.0200549 0.0347361i
\(473\) −5.72392 + 9.91412i −0.263186 + 0.455852i
\(474\) 0 0
\(475\) −18.6142 −0.854079
\(476\) −21.0609 0.742671i −0.965326 0.0340403i
\(477\) 0 0
\(478\) −2.15962 3.74058i −0.0987789 0.171090i
\(479\) −1.80560 + 3.12740i −0.0825001 + 0.142894i −0.904323 0.426848i \(-0.859624\pi\)
0.821823 + 0.569743i \(0.192957\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 18.1876 0.828424
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −9.81961 17.0081i −0.445886 0.772296i
\(486\) 0 0
\(487\) 4.03103 6.98195i 0.182663 0.316382i −0.760123 0.649779i \(-0.774861\pi\)
0.942787 + 0.333397i \(0.108195\pi\)
\(488\) 1.07981 + 1.87029i 0.0488808 + 0.0846640i
\(489\) 0 0
\(490\) −19.5904 1.38336i −0.885006 0.0624936i
\(491\) −20.9062 −0.943483 −0.471741 0.881737i \(-0.656374\pi\)
−0.471741 + 0.881737i \(0.656374\pi\)
\(492\) 0 0
\(493\) −20.4252 + 35.3775i −0.919905 + 1.59332i
\(494\) 0 0
\(495\) 0 0
\(496\) −8.96523 −0.402551
\(497\) −10.4478 + 16.7073i −0.468650 + 0.749426i
\(498\) 0 0
\(499\) −2.48261 4.30001i −0.111137 0.192495i 0.805092 0.593150i \(-0.202116\pi\)
−0.916229 + 0.400655i \(0.868783\pi\)
\(500\) 2.98599 5.17189i 0.133538 0.231294i
\(501\) 0 0
\(502\) −14.3351 24.8292i −0.639808 1.10818i
\(503\) 17.7988 0.793611 0.396806 0.917903i \(-0.370119\pi\)
0.396806 + 0.917903i \(0.370119\pi\)
\(504\) 0 0
\(505\) −30.1316 −1.34084
\(506\) 2.64411 + 4.57973i 0.117545 + 0.203594i
\(507\) 0 0
\(508\) 4.64411 8.04383i 0.206049 0.356887i
\(509\) 2.25719 + 3.90956i 0.100048 + 0.173288i 0.911704 0.410847i \(-0.134767\pi\)
−0.811656 + 0.584135i \(0.801434\pi\)
\(510\) 0 0
\(511\) −15.6112 29.3846i −0.690599 1.29990i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 6.80560 11.7876i 0.300182 0.519931i
\(515\) −4.15962 + 7.20468i −0.183295 + 0.317476i
\(516\) 0 0
\(517\) −0.322990 −0.0142051
\(518\) 13.0121 + 24.4925i 0.571720 + 1.07614i
\(519\) 0 0
\(520\) 0 0
\(521\) −9.00000 + 15.5885i −0.394297 + 0.682943i −0.993011 0.118020i \(-0.962345\pi\)
0.598714 + 0.800963i \(0.295679\pi\)
\(522\) 0 0
\(523\) −3.45158 5.97832i −0.150927 0.261414i 0.780641 0.624979i \(-0.214893\pi\)
−0.931569 + 0.363566i \(0.881559\pi\)
\(524\) −12.9652 −0.566389
\(525\) 0 0
\(526\) −3.61121 −0.157456
\(527\) −35.7050 61.8429i −1.55534 2.69392i
\(528\) 0 0
\(529\) −2.48261 + 4.30001i −0.107940 + 0.186957i
\(530\) −11.2224 19.4378i −0.487470 0.844323i
\(531\) 0 0
\(532\) 9.09382 14.5421i 0.394267 0.630480i
\(533\) 0 0
\(534\) 0 0
\(535\) 6.78484 11.7517i 0.293334 0.508069i
\(536\) −3.54691 + 6.14343i −0.153203 + 0.265356i
\(537\) 0 0
\(538\) −9.38203 −0.404488
\(539\) 6.98261 + 0.493069i 0.300762 + 0.0212380i
\(540\) 0 0
\(541\) −1.40280 2.42972i −0.0603111 0.104462i 0.834293 0.551321i \(-0.185876\pi\)
−0.894604 + 0.446859i \(0.852543\pi\)
\(542\) 2.80560 4.85945i 0.120511 0.208731i
\(543\) 0 0
\(544\) −3.98261 6.89809i −0.170753 0.295753i
\(545\) −28.5039 −1.22097
\(546\) 0 0
\(547\) 32.9274 1.40788 0.703938 0.710262i \(-0.251423\pi\)
0.703938 + 0.710262i \(0.251423\pi\)
\(548\) 2.80560 + 4.85945i 0.119849 + 0.207585i
\(549\) 0 0
\(550\) 1.43570 2.48671i 0.0612186 0.106034i
\(551\) −16.6233 28.7925i −0.708178 1.22660i
\(552\) 0 0
\(553\) 17.9947 + 0.634549i 0.765215 + 0.0269838i
\(554\) 16.0000 0.679775
\(555\) 0 0
\(556\) −6.56430 + 11.3697i −0.278388 + 0.482182i
\(557\) 11.8525 20.5292i 0.502207 0.869848i −0.497790 0.867298i \(-0.665855\pi\)
0.999997 0.00255037i \(-0.000811808\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −3.48261 6.55525i −0.147167 0.277010i
\(561\) 0 0
\(562\) −12.0764 20.9170i −0.509414 0.882330i
\(563\) 15.2224 26.3660i 0.641548 1.11119i −0.343539 0.939138i \(-0.611626\pi\)
0.985087 0.172056i \(-0.0550409\pi\)
\(564\) 0 0
\(565\) 15.3820 + 26.6425i 0.647127 + 1.12086i
\(566\) −7.54166 −0.317000
\(567\) 0 0
\(568\) −7.44784 −0.312504
\(569\) 11.1407 + 19.2963i 0.467044 + 0.808943i 0.999291 0.0376455i \(-0.0119858\pi\)
−0.532248 + 0.846589i \(0.678652\pi\)
\(570\) 0 0
\(571\) 1.43570 2.48671i 0.0600823 0.104066i −0.834420 0.551130i \(-0.814197\pi\)
0.894502 + 0.447064i \(0.147530\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −13.4686 0.474943i −0.562169 0.0198238i
\(575\) 15.1846 0.633242
\(576\) 0 0
\(577\) 7.51214 13.0114i 0.312734 0.541672i −0.666219 0.745756i \(-0.732088\pi\)
0.978953 + 0.204084i \(0.0654217\pi\)
\(578\) 23.2224 40.2224i 0.965925 1.67303i
\(579\) 0 0
\(580\) −14.3888 −0.597462
\(581\) 21.1736 33.8591i 0.878430 1.40471i
\(582\) 0 0
\(583\) 4.00000 + 6.92820i 0.165663 + 0.286937i
\(584\) 6.28822 10.8915i 0.260208 0.450694i
\(585\) 0 0
\(586\) −3.95309 6.84695i −0.163301 0.282845i
\(587\) 42.5069 1.75445 0.877223 0.480082i \(-0.159393\pi\)
0.877223 + 0.480082i \(0.159393\pi\)
\(588\) 0 0
\(589\) 58.1181 2.39471
\(590\) 1.22241 + 2.11728i 0.0503259 + 0.0871670i
\(591\) 0 0
\(592\) −5.24131 + 9.07821i −0.215416 + 0.373112i
\(593\) 7.69289 + 13.3245i 0.315909 + 0.547171i 0.979630 0.200809i \(-0.0643572\pi\)
−0.663721 + 0.747980i \(0.731024\pi\)
\(594\) 0 0
\(595\) 31.3488 50.1304i 1.28517 2.05515i
\(596\) −16.7398 −0.685689
\(597\) 0 0
\(598\) 0 0
\(599\) −19.8196 + 34.3286i −0.809807 + 1.40263i 0.103190 + 0.994662i \(0.467095\pi\)
−0.912997 + 0.407966i \(0.866238\pi\)
\(600\) 0 0
\(601\) 33.3405 1.35999 0.679994 0.733218i \(-0.261983\pi\)
0.679994 + 0.733218i \(0.261983\pi\)
\(602\) −30.2693 1.06739i −1.23369 0.0435034i
\(603\) 0 0
\(604\) −5.44971 9.43918i −0.221746 0.384075i
\(605\) −1.40280 + 2.42972i −0.0570320 + 0.0987823i
\(606\) 0 0
\(607\) −7.97923 13.8204i −0.323867 0.560954i 0.657415 0.753528i \(-0.271650\pi\)
−0.981282 + 0.192574i \(0.938316\pi\)
\(608\) 6.48261 0.262905
\(609\) 0 0
\(610\) −6.05904 −0.245324
\(611\) 0 0
\(612\) 0 0
\(613\) −23.3333 + 40.4144i −0.942421 + 1.63232i −0.181587 + 0.983375i \(0.558123\pi\)
−0.760834 + 0.648947i \(0.775210\pi\)
\(614\) 6.44784 + 11.1680i 0.260214 + 0.450703i
\(615\) 0 0
\(616\) 1.24131 + 2.33648i 0.0500137 + 0.0941396i
\(617\) 9.28447 0.373779 0.186889 0.982381i \(-0.440159\pi\)
0.186889 + 0.982381i \(0.440159\pi\)
\(618\) 0 0
\(619\) −16.9947 + 29.4358i −0.683077 + 1.18312i 0.290961 + 0.956735i \(0.406025\pi\)
−0.974037 + 0.226388i \(0.927308\pi\)
\(620\) 12.5764 21.7830i 0.505082 0.874827i
\(621\) 0 0
\(622\) 10.8994 0.437027
\(623\) −4.26020 0.150227i −0.170681 0.00601874i
\(624\) 0 0
\(625\) 15.5560 + 26.9438i 0.622241 + 1.07775i
\(626\) −4.56430 + 7.90559i −0.182426 + 0.315971i
\(627\) 0 0
\(628\) −0.887286 1.53682i −0.0354066 0.0613260i
\(629\) −83.4964 −3.32922
\(630\) 0 0
\(631\) −14.6460 −0.583047 −0.291524 0.956564i \(-0.594162\pi\)
−0.291524 + 0.956564i \(0.594162\pi\)
\(632\) 3.40280 + 5.89382i 0.135356 + 0.234444i
\(633\) 0 0
\(634\) 4.75682 8.23906i 0.188918 0.327215i
\(635\) 13.0295 + 22.5678i 0.517061 + 0.895576i
\(636\) 0 0
\(637\) 0 0
\(638\) 5.12859 0.203043
\(639\) 0 0
\(640\) 1.40280 2.42972i 0.0554506 0.0960432i
\(641\) 10.4826 18.1564i 0.414038 0.717135i −0.581289 0.813697i \(-0.697451\pi\)
0.995327 + 0.0965620i \(0.0307846\pi\)
\(642\) 0 0
\(643\) −23.6733 −0.933582 −0.466791 0.884368i \(-0.654590\pi\)
−0.466791 + 0.884368i \(0.654590\pi\)
\(644\) −7.41832 + 11.8628i −0.292323 + 0.467458i
\(645\) 0 0
\(646\) 25.8177 + 44.7176i 1.01579 + 1.75939i
\(647\) −6.20840 + 10.7533i −0.244078 + 0.422755i −0.961872 0.273500i \(-0.911818\pi\)
0.717794 + 0.696255i \(0.245152\pi\)
\(648\) 0 0
\(649\) −0.435704 0.754661i −0.0171029 0.0296230i
\(650\) 0 0
\(651\) 0 0
\(652\) −4.05904 −0.158964
\(653\) −0.0487812 0.0844916i −0.00190896 0.00330641i 0.865069 0.501652i \(-0.167274\pi\)
−0.866978 + 0.498346i \(0.833941\pi\)
\(654\) 0 0
\(655\) 18.1876 31.5019i 0.710650 1.23088i
\(656\) −2.54691 4.41138i −0.0994401 0.172235i
\(657\) 0 0
\(658\) −0.400929 0.754661i −0.0156299 0.0294197i
\(659\) 35.0243 1.36435 0.682176 0.731188i \(-0.261034\pi\)
0.682176 + 0.731188i \(0.261034\pi\)
\(660\) 0 0
\(661\) −14.8177 + 25.6651i −0.576343 + 0.998256i 0.419551 + 0.907732i \(0.362188\pi\)
−0.995894 + 0.0905240i \(0.971146\pi\)
\(662\) 0.546909 0.947275i 0.0212562 0.0368169i
\(663\) 0 0
\(664\) 15.0938 0.585754
\(665\) 22.5764 + 42.4951i 0.875476 + 1.64789i
\(666\) 0 0
\(667\) 13.5606 + 23.4876i 0.525067 + 0.909442i
\(668\) 6.93420 12.0104i 0.268292 0.464696i
\(669\) 0 0
\(670\) −9.95122 17.2360i −0.384449 0.665885i
\(671\) 2.15962 0.0833713
\(672\) 0 0
\(673\) 16.8957 0.651281 0.325640 0.945494i \(-0.394420\pi\)
0.325640 + 0.945494i \(0.394420\pi\)
\(674\) −12.8994 22.3425i −0.496867 0.860599i
\(675\) 0 0
\(676\) 6.50000 11.2583i 0.250000 0.433013i
\(677\) 6.59533 + 11.4234i 0.253479 + 0.439038i 0.964481 0.264151i \(-0.0850918\pi\)
−0.711002 + 0.703190i \(0.751758\pi\)
\(678\) 0 0
\(679\) −9.81961 + 15.7027i −0.376842 + 0.602615i
\(680\) 22.3473 0.856978
\(681\) 0 0
\(682\) −4.48261 + 7.76411i −0.171648 + 0.297303i
\(683\) 4.91832 8.51877i 0.188194 0.325962i −0.756454 0.654047i \(-0.773070\pi\)
0.944648 + 0.328085i \(0.106403\pi\)
\(684\) 0 0
\(685\) −15.7428 −0.601502
\(686\) 7.51552 + 16.9268i 0.286944 + 0.646269i
\(687\) 0 0
\(688\) −5.72392 9.91412i −0.218222 0.377972i
\(689\) 0 0
\(690\) 0 0
\(691\) 24.9947 + 43.2922i 0.950845 + 1.64691i 0.743602 + 0.668622i \(0.233116\pi\)
0.207243 + 0.978290i \(0.433551\pi\)
\(692\) −16.9652 −0.644921
\(693\) 0 0
\(694\) 20.7671 0.788308
\(695\) −18.4168 31.8988i −0.698589 1.20999i
\(696\) 0 0
\(697\) 20.2867 35.1376i 0.768414 1.33093i
\(698\) −4.75682 8.23906i −0.180048 0.311853i
\(699\) 0 0
\(700\) 7.59231 + 0.267728i 0.286962 + 0.0101192i
\(701\) 17.7050 0.668710 0.334355 0.942447i \(-0.391482\pi\)
0.334355 + 0.942447i \(0.391482\pi\)
\(702\) 0 0
\(703\) 33.9774 58.8505i 1.28148 2.21959i
\(704\) −0.500000 + 0.866025i −0.0188445 + 0.0326396i
\(705\) 0 0
\(706\) −12.5764 −0.473320
\(707\) 13.3314 + 25.0934i 0.501378 + 0.943733i
\(708\) 0 0
\(709\) 15.9774 + 27.6736i 0.600042 + 1.03930i 0.992814 + 0.119668i \(0.0381830\pi\)
−0.392772 + 0.919636i \(0.628484\pi\)
\(710\) 10.4478 18.0962i 0.392100 0.679138i
\(711\) 0 0
\(712\) −0.805603 1.39535i −0.0301912 0.0522928i
\(713\) −47.4100 −1.77552
\(714\) 0 0
\(715\) 0 0
\(716\) −6.33513 10.9728i −0.236755 0.410071i
\(717\) 0 0
\(718\) 0.0347742 0.0602306i 0.00129776 0.00224779i
\(719\) 10.8975 + 18.8751i 0.406410 + 0.703923i 0.994484 0.104884i \(-0.0334471\pi\)
−0.588074 + 0.808807i \(0.700114\pi\)
\(720\) 0 0
\(721\) 7.84038 + 0.276475i 0.291991 + 0.0102965i
\(722\) −23.0243 −0.856875
\(723\) 0 0
\(724\) 1.28822 2.23126i 0.0478762 0.0829239i
\(725\) 7.36314 12.7533i 0.273460 0.473647i
\(726\) 0 0
\(727\) −4.84714 −0.179770 −0.0898852 0.995952i \(-0.528650\pi\)
−0.0898852 + 0.995952i \(0.528650\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 17.6422 + 30.5572i 0.652968 + 1.13097i
\(731\) 45.5923 78.9682i 1.68629 2.92074i
\(732\) 0 0
\(733\) −6.11459 10.5908i −0.225847 0.391179i 0.730726 0.682671i \(-0.239182\pi\)
−0.956573 + 0.291492i \(0.905848\pi\)
\(734\) 31.5417 1.16422
\(735\) 0 0
\(736\) −5.28822 −0.194926
\(737\) 3.54691 + 6.14343i 0.130652 + 0.226296i
\(738\) 0 0
\(739\) 0.517387 0.896141i 0.0190324 0.0329651i −0.856352 0.516392i \(-0.827275\pi\)
0.875385 + 0.483427i \(0.160608\pi\)
\(740\) −14.7050 25.4698i −0.540567 0.936290i
\(741\) 0 0
\(742\) −11.2224 + 17.9460i −0.411988 + 0.658817i
\(743\) 23.9925 0.880200 0.440100 0.897949i \(-0.354943\pi\)
0.440100 + 0.897949i \(0.354943\pi\)
\(744\) 0 0
\(745\) 23.4826 40.6731i 0.860336 1.49015i
\(746\) 7.65624 13.2610i 0.280315 0.485520i
\(747\) 0 0
\(748\) −7.96523 −0.291238
\(749\) −12.7886 0.450964i −0.467285 0.0164779i
\(750\) 0 0
\(751\) −10.2534 17.7595i −0.374153 0.648053i 0.616047 0.787710i \(-0.288733\pi\)
−0.990200 + 0.139657i \(0.955400\pi\)
\(752\) 0.161495 0.279717i 0.00588912 0.0102002i
\(753\) 0 0
\(754\) 0 0
\(755\) 30.5794 1.11290
\(756\) 0 0
\(757\) −16.8019 −0.610674 −0.305337 0.952244i \(-0.598769\pi\)
−0.305337 + 0.952244i \(0.598769\pi\)
\(758\) 8.02952 + 13.9075i 0.291645 + 0.505145i
\(759\) 0 0
\(760\) −9.09382 + 15.7510i −0.329867 + 0.571347i
\(761\) −7.25495 12.5659i −0.262992 0.455515i 0.704044 0.710157i \(-0.251376\pi\)
−0.967036 + 0.254642i \(0.918043\pi\)
\(762\) 0 0
\(763\) 12.6112 + 23.7378i 0.456556 + 0.859366i
\(764\) 2.38879 0.0864235
\(765\) 0 0
\(766\) 0.369899 0.640684i 0.0133650 0.0231489i
\(767\) 0 0
\(768\) 0 0
\(769\) 3.35402 0.120949 0.0604745 0.998170i \(-0.480739\pi\)
0.0604745 + 0.998170i \(0.480739\pi\)
\(770\) −7.41832 0.261592i −0.267338 0.00942712i
\(771\) 0 0
\(772\) 7.28822 + 12.6236i 0.262309 + 0.454332i
\(773\) 0.920188 1.59381i 0.0330969 0.0573255i −0.849003 0.528389i \(-0.822796\pi\)
0.882099 + 0.471063i \(0.156130\pi\)
\(774\) 0 0
\(775\) 12.8714 + 22.2939i 0.462355 + 0.800822i
\(776\) −7.00000 −0.251285
\(777\) 0 0
\(778\) 3.58319 0.128464
\(779\) 16.5106 + 28.5972i 0.591555 + 1.02460i
\(780\) 0 0
\(781\) −3.72392 + 6.45002i −0.133252 + 0.230800i
\(782\) −21.0609 36.4786i −0.753137 1.30447i
\(783\) 0 0
\(784\) −3.91832 + 5.80059i −0.139940 + 0.207164i
\(785\) 4.97875 0.177699
\(786\) 0 0
\(787\) −5.79347 + 10.0346i −0.206515 + 0.357694i −0.950614 0.310375i \(-0.899545\pi\)
0.744099 + 0.668069i \(0.232879\pi\)
\(788\) −6.24131 + 10.8103i −0.222337 + 0.385100i
\(789\) 0 0
\(790\) −19.0938 −0.679328
\(791\) 15.3820 24.5977i 0.546922 0.874593i
\(792\) 0 0
\(793\) 0 0
\(794\) −12.5643 + 21.7620i −0.445890 + 0.772304i
\(795\) 0 0
\(796\) 7.09382 + 12.2869i 0.251434 + 0.435496i
\(797\) 48.4653 1.71673 0.858365 0.513039i \(-0.171480\pi\)
0.858365 + 0.513039i \(0.171480\pi\)
\(798\) 0 0
\(799\) 2.57269 0.0910151
\(800\) 1.43570 + 2.48671i 0.0507598 + 0.0879185i
\(801\) 0 0
\(802\) 1.93420 3.35013i 0.0682988 0.118297i
\(803\) −6.28822 10.8915i −0.221906 0.384353i
\(804\) 0 0
\(805\) −18.4168 34.6656i −0.649107 1.22180i
\(806\) 0 0
\(807\) 0 0
\(808\) −5.36990 + 9.30094i −0.188912 + 0.327206i
\(809\) −1.38354 + 2.39637i −0.0486428 + 0.0842517i −0.889322 0.457282i \(-0.848823\pi\)
0.840679 + 0.541534i \(0.182156\pi\)
\(810\) 0 0
\(811\) 4.89568 0.171910 0.0859552 0.996299i \(-0.472606\pi\)
0.0859552 + 0.996299i \(0.472606\pi\)
\(812\) 6.36616 + 11.9829i 0.223408 + 0.420517i
\(813\) 0 0
\(814\) 5.24131 + 9.07821i 0.183708 + 0.318191i
\(815\) 5.69403 9.86235i 0.199453 0.345463i
\(816\) 0 0
\(817\) 37.1060 + 64.2694i 1.29817 + 2.24850i
\(818\) −4.64598 −0.162443
\(819\) 0 0
\(820\) 14.2912 0.499071
\(821\) 1.77457 + 3.07365i 0.0619330 + 0.107271i 0.895329 0.445405i \(-0.146940\pi\)
−0.833396 + 0.552676i \(0.813607\pi\)
\(822\) 0 0
\(823\) −16.2534 + 28.1518i −0.566559 + 0.981310i 0.430343 + 0.902665i \(0.358392\pi\)
−0.996903 + 0.0786443i \(0.974941\pi\)
\(824\) 1.48261 + 2.56796i 0.0516493 + 0.0894592i
\(825\) 0 0
\(826\) 1.22241 1.95478i 0.0425331 0.0680155i
\(827\) −19.5447 −0.679635 −0.339817 0.940491i \(-0.610365\pi\)
−0.339817 + 0.940491i \(0.610365\pi\)
\(828\) 0 0
\(829\) −12.5953 + 21.8157i −0.437454 + 0.757692i −0.997492 0.0707744i \(-0.977453\pi\)
0.560039 + 0.828467i \(0.310786\pi\)
\(830\) −21.1736 + 36.6738i −0.734947 + 1.27297i
\(831\) 0 0
\(832\) 0 0
\(833\) −55.6181 3.92740i −1.92705 0.136076i
\(834\) 0 0
\(835\) 19.4546 + 33.6964i 0.673254 + 1.16611i
\(836\) 3.24131 5.61411i 0.112103 0.194168i
\(837\) 0 0
\(838\) 9.75869 + 16.9026i 0.337108 + 0.583889i
\(839\) 50.4033 1.74011 0.870057 0.492950i \(-0.164082\pi\)
0.870057 + 0.492950i \(0.164082\pi\)
\(840\) 0 0
\(841\) −2.69754 −0.0930185
\(842\) 7.75869 + 13.4385i 0.267382 + 0.463120i
\(843\) 0 0
\(844\) 10.4168 18.0424i 0.358561 0.621046i
\(845\) 18.2364 + 31.5864i 0.627352 + 1.08661i
\(846\) 0 0
\(847\) 2.64411 + 0.0932392i 0.0908526 + 0.00320374i
\(848\) −8.00000 −0.274721
\(849\) 0 0
\(850\) −11.4357 + 19.8072i −0.392241 + 0.679382i
\(851\) −27.7172 + 48.0075i −0.950132 + 1.64568i
\(852\) 0 0
\(853\) −16.8752 −0.577794 −0.288897 0.957360i \(-0.593289\pi\)
−0.288897 + 0.957360i \(0.593289\pi\)
\(854\) 2.68075 + 5.04592i 0.0917335 + 0.172668i
\(855\) 0 0
\(856\) −2.41832 4.18865i −0.0826564 0.143165i
\(857\) 21.6529 37.5039i 0.739648 1.28111i −0.213006 0.977051i \(-0.568325\pi\)
0.952654 0.304057i \(-0.0983412\pi\)
\(858\) 0 0
\(859\) −1.80711 3.13001i −0.0616578 0.106794i 0.833549 0.552446i \(-0.186305\pi\)
−0.895207 + 0.445651i \(0.852972\pi\)
\(860\) 32.1181 1.09522
\(861\) 0 0
\(862\) −14.3888 −0.490084
\(863\) 2.20840 + 3.82507i 0.0751750 + 0.130207i 0.901162 0.433482i \(-0.142715\pi\)
−0.825987 + 0.563689i \(0.809382\pi\)
\(864\) 0 0
\(865\) 23.7988 41.2208i 0.809185 1.40155i
\(866\) 1.01739 + 1.76217i 0.0345722 + 0.0598808i
\(867\) 0 0
\(868\) −23.7050 0.835910i −0.804601 0.0283726i
\(869\) 6.80560 0.230864
\(870\) 0 0
\(871\) 0 0
\(872\) −5.07981 + 8.79849i −0.172024 + 0.297955i
\(873\) 0 0
\(874\) 34.2815 1.15959
\(875\) 8.37751 13.3966i 0.283212 0.452889i
\(876\) 0 0
\(877\) −22.1389 38.3456i −0.747576 1.29484i −0.948982 0.315332i \(-0.897884\pi\)
0.201405 0.979508i \(-0.435449\pi\)
\(878\) 1.61308 2.79393i 0.0544387 0.0942907i
\(879\) 0 0
\(880\) −1.40280 2.42972i −0.0472884 0.0819060i
\(881\) 18.1876 0.612757 0.306379 0.951910i \(-0.400883\pi\)
0.306379 + 0.951910i \(0.400883\pi\)
\(882\) 0 0
\(883\) −4.57945 −0.154111 −0.0770553 0.997027i \(-0.524552\pi\)
−0.0770553 + 0.997027i \(0.524552\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 11.0469 19.1338i 0.371128 0.642813i
\(887\) −0.288216 0.499204i −0.00967734 0.0167616i 0.861146 0.508357i \(-0.169747\pi\)
−0.870824 + 0.491596i \(0.836414\pi\)
\(888\) 0 0
\(889\) 13.0295 20.8357i 0.436996 0.698808i
\(890\) 4.52040 0.151524
\(891\) 0 0
\(892\) −6.28822 + 10.8915i −0.210545 + 0.364675i
\(893\) −1.04691 + 1.81330i −0.0350335 + 0.0606798i
\(894\) 0 0
\(895\) 35.5477 1.18823
\(896\) −2.64411 0.0932392i −0.0883334 0.00311490i
\(897\) 0 0
\(898\) −11.1248 19.2688i −0.371241 0.643008i
\(899\) −22.9895 + 39.8190i −0.766743 + 1.32804i
\(900\) 0 0
\(901\) −31.8609 55.1847i −1.06144 1.83847i
\(902\) −5.09382 −0.169606
\(903\) 0 0
\(904\) 10.9652 0.364698
\(905\) 3.61422 + 6.26002i 0.120141 + 0.208090i
\(906\) 0 0
\(907\) 11.0295 19.1037i 0.366229 0.634328i −0.622743 0.782426i \(-0.713982\pi\)
0.988973 + 0.148098i \(0.0473153\pi\)
\(908\) 10.0295 + 17.3716i 0.332841 + 0.576498i
\(909\) 0 0
\(910\) 0 0
\(911\) −9.93420 −0.329135 −0.164567 0.986366i \(-0.552623\pi\)
−0.164567 + 0.986366i \(0.552623\pi\)
\(912\) 0 0
\(913\) 7.54691 13.0716i 0.249766 0.432608i
\(914\) −9.31925 + 16.1414i −0.308253 + 0.533910i
\(915\) 0 0
\(916\) −22.5764 −0.745946
\(917\) −34.2815 1.20887i −1.13207 0.0399203i
\(918\) 0 0
\(919\) −22.3174 38.6548i −0.736182 1.27511i −0.954203 0.299161i \(-0.903293\pi\)
0.218020 0.975944i \(-0.430040\pi\)
\(920\) 7.41832 12.8489i 0.244575 0.423616i
\(921\) 0 0
\(922\) 10.4947 + 18.1774i 0.345626 + 0.598642i
\(923\) 0 0
\(924\) 0 0
\(925\) 30.0999 0.989677
\(926\) −2.67701 4.63672i −0.0879720 0.152372i
\(927\) 0 0
\(928\) −2.56430 + 4.44149i −0.0841772 + 0.145799i
\(929\) −21.2882 36.8723i −0.698444 1.20974i −0.969006 0.247037i \(-0.920543\pi\)
0.270562 0.962702i \(-0.412790\pi\)
\(930\) 0 0
\(931\) 25.4009 37.6030i 0.832482 1.23239i
\(932\) 0.742815 0.0243317
\(933\) 0 0
\(934\) −13.0121 + 22.5377i −0.425770 + 0.737455i
\(935\) 11.1736 19.3533i 0.365417 0.632920i
\(936\) 0 0
\(937\) −36.2572 −1.18447 −0.592235 0.805765i \(-0.701754\pi\)
−0.592235 + 0.805765i \(0.701754\pi\)
\(938\) −9.95122 + 15.9132i −0.324919 + 0.519584i
\(939\) 0 0
\(940\) 0.453091 + 0.784776i 0.0147782 + 0.0255966i
\(941\) 1.34189 2.32421i 0.0437442 0.0757672i −0.843324 0.537405i \(-0.819405\pi\)
0.887069 + 0.461638i \(0.152738\pi\)
\(942\) 0 0
\(943\) −13.4686 23.3283i −0.438598 0.759674i
\(944\) 0.871407 0.0283619
\(945\) 0 0
\(946\) −11.4478 −0.372201
\(947\) 24.7519 + 42.8716i 0.804330 + 1.39314i 0.916743 + 0.399478i \(0.130809\pi\)
−0.112413 + 0.993662i \(0.535858\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −9.30711 16.1204i −0.301963 0.523014i
\(951\) 0 0
\(952\) −9.88729 18.6106i −0.320449 0.603174i
\(953\) −15.8019 −0.511872 −0.255936 0.966694i \(-0.582384\pi\)
−0.255936 + 0.966694i \(0.582384\pi\)
\(954\) 0 0
\(955\) −3.35100 + 5.80411i −0.108436 + 0.187817i
\(956\) 2.15962 3.74058i 0.0698472 0.120979i
\(957\) 0 0
\(958\) −3.61121 −0.116673
\(959\) 6.96523 + 13.1105i 0.224919 + 0.423360i
\(960\) 0 0
\(961\) −24.6876 42.7602i −0.796375 1.37936i
\(962\) 0 0
\(963\) 0 0
\(964\) 9.09382 + 15.7510i 0.292892 + 0.507304i
\(965\) −40.8957 −1.31648
\(966\) 0 0
\(967\) −12.6497 −0.406788 −0.203394 0.979097i \(-0.565197\pi\)
−0.203394 + 0.979097i \(0.565197\pi\)
\(968\) 0.500000 + 0.866025i 0.0160706 + 0.0278351i
\(969\) 0 0
\(970\) 9.81961 17.0081i 0.315289 0.546096i
\(971\) 24.7671 + 42.8978i 0.794814 + 1.37666i 0.922957 + 0.384902i \(0.125765\pi\)
−0.128144 + 0.991756i \(0.540902\pi\)
\(972\) 0 0
\(973\) −18.4168 + 29.4507i −0.590416 + 0.944144i
\(974\) 8.06206 0.258325
\(975\) 0 0
\(976\) −1.07981 + 1.87029i −0.0345639 + 0.0598665i
\(977\) 17.2224 29.8301i 0.550994 0.954349i −0.447209 0.894429i \(-0.647582\pi\)
0.998203 0.0599199i \(-0.0190845\pi\)
\(978\) 0 0
\(979\) −1.61121 −0.0514944
\(980\) −8.59720 17.6575i −0.274627 0.564048i
\(981\) 0 0
\(982\) −10.4531 18.1053i −0.333572 0.577763i
\(983\) −1.67888 + 2.90791i −0.0535480 + 0.0927479i −0.891557 0.452909i \(-0.850386\pi\)
0.838009 + 0.545657i \(0.183720\pi\)
\(984\) 0 0
\(985\) −17.5106 30.3293i −0.557935 0.966372i
\(986\) −40.8504 −1.30094
\(987\) 0 0
\(988\) 0 0
\(989\) −30.2693 52.4280i −0.962508 1.66711i
\(990\) 0 0
\(991\) 22.9237 39.7050i 0.728195 1.26127i −0.229450 0.973320i \(-0.573693\pi\)
0.957645 0.287950i \(-0.0929738\pi\)
\(992\) −4.48261 7.76411i −0.142323 0.246511i
\(993\) 0 0
\(994\) −19.6929 0.694430i −0.624621 0.0220260i
\(995\) −39.8049 −1.26190
\(996\) 0 0
\(997\) 21.9305 37.9847i 0.694544 1.20299i −0.275790 0.961218i \(-0.588939\pi\)
0.970334 0.241768i \(-0.0777273\pi\)
\(998\) 2.48261 4.30001i 0.0785857 0.136114i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1386.2.k.v.991.1 6
3.2 odd 2 462.2.i.g.67.3 6
7.2 even 3 inner 1386.2.k.v.793.1 6
7.3 odd 6 9702.2.a.dw.1.1 3
7.4 even 3 9702.2.a.dv.1.3 3
21.2 odd 6 462.2.i.g.331.3 yes 6
21.11 odd 6 3234.2.a.bf.1.1 3
21.17 even 6 3234.2.a.bh.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
462.2.i.g.67.3 6 3.2 odd 2
462.2.i.g.331.3 yes 6 21.2 odd 6
1386.2.k.v.793.1 6 7.2 even 3 inner
1386.2.k.v.991.1 6 1.1 even 1 trivial
3234.2.a.bf.1.1 3 21.11 odd 6
3234.2.a.bh.1.3 3 21.17 even 6
9702.2.a.dv.1.3 3 7.4 even 3
9702.2.a.dw.1.1 3 7.3 odd 6