# Properties

 Label 1386.2.k.c Level $1386$ Weight $2$ Character orbit 1386.k Analytic conductor $11.067$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1386.k (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.0672657201$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 462) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} -3 \zeta_{6} q^{5} + ( 2 + \zeta_{6} ) q^{7} + q^{8} +O(q^{10})$$ $$q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} -3 \zeta_{6} q^{5} + ( 2 + \zeta_{6} ) q^{7} + q^{8} + ( -3 + 3 \zeta_{6} ) q^{10} + ( -1 + \zeta_{6} ) q^{11} + 2 q^{13} + ( 1 - 3 \zeta_{6} ) q^{14} -\zeta_{6} q^{16} + ( 3 - 3 \zeta_{6} ) q^{17} -2 \zeta_{6} q^{19} + 3 q^{20} + q^{22} + 3 \zeta_{6} q^{23} + ( -4 + 4 \zeta_{6} ) q^{25} -2 \zeta_{6} q^{26} + ( -3 + 2 \zeta_{6} ) q^{28} + 6 q^{29} + ( 4 - 4 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} -3 q^{34} + ( 3 - 9 \zeta_{6} ) q^{35} -2 \zeta_{6} q^{37} + ( -2 + 2 \zeta_{6} ) q^{38} -3 \zeta_{6} q^{40} + 3 q^{41} + 2 q^{43} -\zeta_{6} q^{44} + ( 3 - 3 \zeta_{6} ) q^{46} -9 \zeta_{6} q^{47} + ( 3 + 5 \zeta_{6} ) q^{49} + 4 q^{50} + ( -2 + 2 \zeta_{6} ) q^{52} + ( 6 - 6 \zeta_{6} ) q^{53} + 3 q^{55} + ( 2 + \zeta_{6} ) q^{56} -6 \zeta_{6} q^{58} + ( -12 + 12 \zeta_{6} ) q^{59} -5 \zeta_{6} q^{61} -4 q^{62} + q^{64} -6 \zeta_{6} q^{65} + ( -5 + 5 \zeta_{6} ) q^{67} + 3 \zeta_{6} q^{68} + ( -9 + 6 \zeta_{6} ) q^{70} -12 q^{71} + ( 16 - 16 \zeta_{6} ) q^{73} + ( -2 + 2 \zeta_{6} ) q^{74} + 2 q^{76} + ( -3 + 2 \zeta_{6} ) q^{77} -17 \zeta_{6} q^{79} + ( -3 + 3 \zeta_{6} ) q^{80} -3 \zeta_{6} q^{82} -9 q^{83} -9 q^{85} -2 \zeta_{6} q^{86} + ( -1 + \zeta_{6} ) q^{88} -6 \zeta_{6} q^{89} + ( 4 + 2 \zeta_{6} ) q^{91} -3 q^{92} + ( -9 + 9 \zeta_{6} ) q^{94} + ( -6 + 6 \zeta_{6} ) q^{95} + 17 q^{97} + ( 5 - 8 \zeta_{6} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{2} - q^{4} - 3q^{5} + 5q^{7} + 2q^{8} + O(q^{10})$$ $$2q - q^{2} - q^{4} - 3q^{5} + 5q^{7} + 2q^{8} - 3q^{10} - q^{11} + 4q^{13} - q^{14} - q^{16} + 3q^{17} - 2q^{19} + 6q^{20} + 2q^{22} + 3q^{23} - 4q^{25} - 2q^{26} - 4q^{28} + 12q^{29} + 4q^{31} - q^{32} - 6q^{34} - 3q^{35} - 2q^{37} - 2q^{38} - 3q^{40} + 6q^{41} + 4q^{43} - q^{44} + 3q^{46} - 9q^{47} + 11q^{49} + 8q^{50} - 2q^{52} + 6q^{53} + 6q^{55} + 5q^{56} - 6q^{58} - 12q^{59} - 5q^{61} - 8q^{62} + 2q^{64} - 6q^{65} - 5q^{67} + 3q^{68} - 12q^{70} - 24q^{71} + 16q^{73} - 2q^{74} + 4q^{76} - 4q^{77} - 17q^{79} - 3q^{80} - 3q^{82} - 18q^{83} - 18q^{85} - 2q^{86} - q^{88} - 6q^{89} + 10q^{91} - 6q^{92} - 9q^{94} - 6q^{95} + 34q^{97} + 2q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times$$.

 $$n$$ $$155$$ $$199$$ $$1135$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
793.1
 0.5 − 0.866025i 0.5 + 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −1.50000 + 2.59808i 0 2.50000 0.866025i 1.00000 0 −1.50000 2.59808i
991.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −1.50000 2.59808i 0 2.50000 + 0.866025i 1.00000 0 −1.50000 + 2.59808i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1386.2.k.c 2
3.b odd 2 1 462.2.i.c 2
7.c even 3 1 inner 1386.2.k.c 2
7.c even 3 1 9702.2.a.cf 1
7.d odd 6 1 9702.2.a.bd 1
21.g even 6 1 3234.2.a.g 1
21.h odd 6 1 462.2.i.c 2
21.h odd 6 1 3234.2.a.h 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.i.c 2 3.b odd 2 1
462.2.i.c 2 21.h odd 6 1
1386.2.k.c 2 1.a even 1 1 trivial
1386.2.k.c 2 7.c even 3 1 inner
3234.2.a.g 1 21.g even 6 1
3234.2.a.h 1 21.h odd 6 1
9702.2.a.bd 1 7.d odd 6 1
9702.2.a.cf 1 7.c even 3 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1386, [\chi])$$:

 $$T_{5}^{2} + 3 T_{5} + 9$$ $$T_{13} - 2$$ $$T_{17}^{2} - 3 T_{17} + 9$$ $$T_{23}^{2} - 3 T_{23} + 9$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T + T^{2}$$
$3$ $$T^{2}$$
$5$ $$9 + 3 T + T^{2}$$
$7$ $$7 - 5 T + T^{2}$$
$11$ $$1 + T + T^{2}$$
$13$ $$( -2 + T )^{2}$$
$17$ $$9 - 3 T + T^{2}$$
$19$ $$4 + 2 T + T^{2}$$
$23$ $$9 - 3 T + T^{2}$$
$29$ $$( -6 + T )^{2}$$
$31$ $$16 - 4 T + T^{2}$$
$37$ $$4 + 2 T + T^{2}$$
$41$ $$( -3 + T )^{2}$$
$43$ $$( -2 + T )^{2}$$
$47$ $$81 + 9 T + T^{2}$$
$53$ $$36 - 6 T + T^{2}$$
$59$ $$144 + 12 T + T^{2}$$
$61$ $$25 + 5 T + T^{2}$$
$67$ $$25 + 5 T + T^{2}$$
$71$ $$( 12 + T )^{2}$$
$73$ $$256 - 16 T + T^{2}$$
$79$ $$289 + 17 T + T^{2}$$
$83$ $$( 9 + T )^{2}$$
$89$ $$36 + 6 T + T^{2}$$
$97$ $$( -17 + T )^{2}$$
show more
show less