Properties

 Label 1386.2.k.a Level $1386$ Weight $2$ Character orbit 1386.k Analytic conductor $11.067$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1386.k (of order $$3$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$11.0672657201$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 154) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} -4 \zeta_{6} q^{5} + ( -2 - \zeta_{6} ) q^{7} + q^{8} +O(q^{10})$$ $$q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} -4 \zeta_{6} q^{5} + ( -2 - \zeta_{6} ) q^{7} + q^{8} + ( -4 + 4 \zeta_{6} ) q^{10} + ( -1 + \zeta_{6} ) q^{11} - q^{13} + ( -1 + 3 \zeta_{6} ) q^{14} -\zeta_{6} q^{16} + ( 2 - 2 \zeta_{6} ) q^{17} -6 \zeta_{6} q^{19} + 4 q^{20} + q^{22} -2 \zeta_{6} q^{23} + ( -11 + 11 \zeta_{6} ) q^{25} + \zeta_{6} q^{26} + ( 3 - 2 \zeta_{6} ) q^{28} - q^{29} + ( -4 + 4 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} -2 q^{34} + ( -4 + 12 \zeta_{6} ) q^{35} + 2 \zeta_{6} q^{37} + ( -6 + 6 \zeta_{6} ) q^{38} -4 \zeta_{6} q^{40} + 2 q^{41} + 4 q^{43} -\zeta_{6} q^{44} + ( -2 + 2 \zeta_{6} ) q^{46} + 2 \zeta_{6} q^{47} + ( 3 + 5 \zeta_{6} ) q^{49} + 11 q^{50} + ( 1 - \zeta_{6} ) q^{52} + ( -12 + 12 \zeta_{6} ) q^{53} + 4 q^{55} + ( -2 - \zeta_{6} ) q^{56} + \zeta_{6} q^{58} + ( 9 - 9 \zeta_{6} ) q^{59} + 5 \zeta_{6} q^{61} + 4 q^{62} + q^{64} + 4 \zeta_{6} q^{65} + ( 9 - 9 \zeta_{6} ) q^{67} + 2 \zeta_{6} q^{68} + ( 12 - 8 \zeta_{6} ) q^{70} -4 q^{71} + ( 2 - 2 \zeta_{6} ) q^{73} + ( 2 - 2 \zeta_{6} ) q^{74} + 6 q^{76} + ( 3 - 2 \zeta_{6} ) q^{77} + 15 \zeta_{6} q^{79} + ( -4 + 4 \zeta_{6} ) q^{80} -2 \zeta_{6} q^{82} + 6 q^{83} -8 q^{85} -4 \zeta_{6} q^{86} + ( -1 + \zeta_{6} ) q^{88} + 6 \zeta_{6} q^{89} + ( 2 + \zeta_{6} ) q^{91} + 2 q^{92} + ( 2 - 2 \zeta_{6} ) q^{94} + ( -24 + 24 \zeta_{6} ) q^{95} -5 q^{97} + ( 5 - 8 \zeta_{6} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{2} - q^{4} - 4q^{5} - 5q^{7} + 2q^{8} + O(q^{10})$$ $$2q - q^{2} - q^{4} - 4q^{5} - 5q^{7} + 2q^{8} - 4q^{10} - q^{11} - 2q^{13} + q^{14} - q^{16} + 2q^{17} - 6q^{19} + 8q^{20} + 2q^{22} - 2q^{23} - 11q^{25} + q^{26} + 4q^{28} - 2q^{29} - 4q^{31} - q^{32} - 4q^{34} + 4q^{35} + 2q^{37} - 6q^{38} - 4q^{40} + 4q^{41} + 8q^{43} - q^{44} - 2q^{46} + 2q^{47} + 11q^{49} + 22q^{50} + q^{52} - 12q^{53} + 8q^{55} - 5q^{56} + q^{58} + 9q^{59} + 5q^{61} + 8q^{62} + 2q^{64} + 4q^{65} + 9q^{67} + 2q^{68} + 16q^{70} - 8q^{71} + 2q^{73} + 2q^{74} + 12q^{76} + 4q^{77} + 15q^{79} - 4q^{80} - 2q^{82} + 12q^{83} - 16q^{85} - 4q^{86} - q^{88} + 6q^{89} + 5q^{91} + 4q^{92} + 2q^{94} - 24q^{95} - 10q^{97} + 2q^{98} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times$$.

 $$n$$ $$155$$ $$199$$ $$1135$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
793.1
 0.5 − 0.866025i 0.5 + 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −2.00000 + 3.46410i 0 −2.50000 + 0.866025i 1.00000 0 −2.00000 3.46410i
991.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −2.00000 3.46410i 0 −2.50000 0.866025i 1.00000 0 −2.00000 + 3.46410i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1386.2.k.a 2
3.b odd 2 1 154.2.e.d 2
7.c even 3 1 inner 1386.2.k.a 2
7.c even 3 1 9702.2.a.cg 1
7.d odd 6 1 9702.2.a.bb 1
12.b even 2 1 1232.2.q.a 2
21.c even 2 1 1078.2.e.g 2
21.g even 6 1 1078.2.a.f 1
21.g even 6 1 1078.2.e.g 2
21.h odd 6 1 154.2.e.d 2
21.h odd 6 1 1078.2.a.a 1
84.j odd 6 1 8624.2.a.d 1
84.n even 6 1 1232.2.q.a 2
84.n even 6 1 8624.2.a.bd 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.e.d 2 3.b odd 2 1
154.2.e.d 2 21.h odd 6 1
1078.2.a.a 1 21.h odd 6 1
1078.2.a.f 1 21.g even 6 1
1078.2.e.g 2 21.c even 2 1
1078.2.e.g 2 21.g even 6 1
1232.2.q.a 2 12.b even 2 1
1232.2.q.a 2 84.n even 6 1
1386.2.k.a 2 1.a even 1 1 trivial
1386.2.k.a 2 7.c even 3 1 inner
8624.2.a.d 1 84.j odd 6 1
8624.2.a.bd 1 84.n even 6 1
9702.2.a.bb 1 7.d odd 6 1
9702.2.a.cg 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1386, [\chi])$$:

 $$T_{5}^{2} + 4 T_{5} + 16$$ $$T_{13} + 1$$ $$T_{17}^{2} - 2 T_{17} + 4$$ $$T_{23}^{2} + 2 T_{23} + 4$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T + T^{2}$$
$3$ $$T^{2}$$
$5$ $$16 + 4 T + T^{2}$$
$7$ $$7 + 5 T + T^{2}$$
$11$ $$1 + T + T^{2}$$
$13$ $$( 1 + T )^{2}$$
$17$ $$4 - 2 T + T^{2}$$
$19$ $$36 + 6 T + T^{2}$$
$23$ $$4 + 2 T + T^{2}$$
$29$ $$( 1 + T )^{2}$$
$31$ $$16 + 4 T + T^{2}$$
$37$ $$4 - 2 T + T^{2}$$
$41$ $$( -2 + T )^{2}$$
$43$ $$( -4 + T )^{2}$$
$47$ $$4 - 2 T + T^{2}$$
$53$ $$144 + 12 T + T^{2}$$
$59$ $$81 - 9 T + T^{2}$$
$61$ $$25 - 5 T + T^{2}$$
$67$ $$81 - 9 T + T^{2}$$
$71$ $$( 4 + T )^{2}$$
$73$ $$4 - 2 T + T^{2}$$
$79$ $$225 - 15 T + T^{2}$$
$83$ $$( -6 + T )^{2}$$
$89$ $$36 - 6 T + T^{2}$$
$97$ $$( 5 + T )^{2}$$