Properties

Label 1386.2.g
Level $1386$
Weight $2$
Character orbit 1386.g
Rep. character $\chi_{1386}(881,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $2$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(576\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1386, [\chi])\).

Total New Old
Modular forms 304 32 272
Cusp forms 272 32 240
Eisenstein series 32 0 32

Trace form

\( 32q - 32q^{4} - 8q^{7} + O(q^{10}) \) \( 32q - 32q^{4} - 8q^{7} + 32q^{16} + 64q^{25} + 8q^{28} - 32q^{37} - 32q^{43} - 16q^{46} + 32q^{49} - 32q^{64} + 32q^{67} + 16q^{70} + 80q^{79} + 32q^{85} - 32q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1386, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1386.2.g.a \(16\) \(11.067\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(-8\) \(q+\beta _{1}q^{2}-q^{4}-\beta _{4}q^{5}+\beta _{7}q^{7}-\beta _{1}q^{8}+\cdots\)
1386.2.g.b \(16\) \(11.067\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{5}q^{2}-q^{4}+\beta _{1}q^{5}-\beta _{10}q^{7}-\beta _{5}q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1386, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1386, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(462, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(693, [\chi])\)\(^{\oplus 2}\)