Properties

Label 1386.2.bf
Level $1386$
Weight $2$
Character orbit 1386.bf
Rep. character $\chi_{1386}(769,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $192$
Sturm bound $576$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.bf (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 693 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1386, [\chi])\).

Total New Old
Modular forms 592 192 400
Cusp forms 560 192 368
Eisenstein series 32 0 32

Trace form

\( 192q + 96q^{4} - 16q^{9} + O(q^{10}) \) \( 192q + 96q^{4} - 16q^{9} - 4q^{11} + 8q^{15} - 96q^{16} + 24q^{23} + 96q^{25} - 8q^{36} - 24q^{42} - 8q^{44} - 128q^{53} + 24q^{58} - 8q^{60} - 192q^{64} - 12q^{70} - 48q^{71} - 34q^{77} - 16q^{78} - 24q^{81} - 8q^{86} - 24q^{92} - 48q^{93} + 16q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1386, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1386, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1386, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(693, [\chi])\)\(^{\oplus 2}\)