Properties

Label 1386.2.a.b.1.1
Level $1386$
Weight $2$
Character 1386.1
Self dual yes
Analytic conductor $11.067$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.0672657201\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1386.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +2.00000 q^{10} +1.00000 q^{11} +2.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -2.00000 q^{20} -1.00000 q^{22} +8.00000 q^{23} -1.00000 q^{25} -2.00000 q^{26} -1.00000 q^{28} +2.00000 q^{29} -8.00000 q^{31} -1.00000 q^{32} +2.00000 q^{34} +2.00000 q^{35} -2.00000 q^{37} +2.00000 q^{40} -10.0000 q^{41} +4.00000 q^{43} +1.00000 q^{44} -8.00000 q^{46} -8.00000 q^{47} +1.00000 q^{49} +1.00000 q^{50} +2.00000 q^{52} -6.00000 q^{53} -2.00000 q^{55} +1.00000 q^{56} -2.00000 q^{58} +10.0000 q^{61} +8.00000 q^{62} +1.00000 q^{64} -4.00000 q^{65} -12.0000 q^{67} -2.00000 q^{68} -2.00000 q^{70} -16.0000 q^{71} -14.0000 q^{73} +2.00000 q^{74} -1.00000 q^{77} -2.00000 q^{80} +10.0000 q^{82} +4.00000 q^{85} -4.00000 q^{86} -1.00000 q^{88} +6.00000 q^{89} -2.00000 q^{91} +8.00000 q^{92} +8.00000 q^{94} +10.0000 q^{97} -1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) −2.00000 −0.239046
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) 0 0
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) 10.0000 1.10432
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 8.00000 0.834058
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 2.00000 0.190693
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) −16.0000 −1.49201
\(116\) 2.00000 0.185695
\(117\) 0 0
\(118\) 0 0
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 4.00000 0.350823
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) 16.0000 1.34269
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 14.0000 1.15865
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.00000 0.0805823
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 2.00000 0.148250
\(183\) 0 0
\(184\) −8.00000 −0.589768
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 18.0000 1.26648
\(203\) −2.00000 −0.140372
\(204\) 0 0
\(205\) 20.0000 1.39686
\(206\) 0 0
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 2.00000 0.135457
\(219\) 0 0
\(220\) −2.00000 −0.134840
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) −16.0000 −1.06196 −0.530979 0.847385i \(-0.678176\pi\)
−0.530979 + 0.847385i \(0.678176\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 16.0000 1.05501
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 16.0000 1.04372
\(236\) 0 0
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 0 0
\(248\) 8.00000 0.508001
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) −12.0000 −0.733017
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) 30.0000 1.80253 0.901263 0.433273i \(-0.142641\pi\)
0.901263 + 0.433273i \(0.142641\pi\)
\(278\) 16.0000 0.959616
\(279\) 0 0
\(280\) −2.00000 −0.119523
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) −16.0000 −0.949425
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) 10.0000 0.590281
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 4.00000 0.234888
\(291\) 0 0
\(292\) −14.0000 −0.819288
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 14.0000 0.810998
\(299\) 16.0000 0.925304
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.0000 −1.14520
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) −1.00000 −0.0569803
\(309\) 0 0
\(310\) −16.0000 −0.908739
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 2.00000 0.111979
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) 8.00000 0.445823
\(323\) 0 0
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 20.0000 1.10770
\(327\) 0 0
\(328\) 10.0000 0.552158
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) 24.0000 1.31126
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 4.00000 0.216930
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −14.0000 −0.752645
\(347\) 28.0000 1.50312 0.751559 0.659665i \(-0.229302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 32.0000 1.69838
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) −32.0000 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 22.0000 1.15629
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 28.0000 1.46559
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 8.00000 0.417029
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.00000 0.409316
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 0 0
\(385\) 2.00000 0.101929
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) 10.0000 0.507673
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) 0 0
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) 2.00000 0.0992583
\(407\) −2.00000 −0.0991363
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) −20.0000 −0.987730
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) −10.0000 −0.483934
\(428\) 4.00000 0.193347
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) −8.00000 −0.384012
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) 0 0
\(439\) 40.0000 1.90910 0.954548 0.298057i \(-0.0963387\pi\)
0.954548 + 0.298057i \(0.0963387\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) 4.00000 0.190261
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) −16.0000 −0.757622
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −10.0000 −0.470882
\(452\) −2.00000 −0.0940721
\(453\) 0 0
\(454\) 16.0000 0.750917
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) −16.0000 −0.746004
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) −24.0000 −1.11059 −0.555294 0.831654i \(-0.687394\pi\)
−0.555294 + 0.831654i \(0.687394\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) −16.0000 −0.738025
\(471\) 0 0
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) −8.00000 −0.365911
\(479\) −8.00000 −0.365529 −0.182765 0.983157i \(-0.558505\pi\)
−0.182765 + 0.983157i \(0.558505\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) −18.0000 −0.819878
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) −40.0000 −1.81257 −0.906287 0.422664i \(-0.861095\pi\)
−0.906287 + 0.422664i \(0.861095\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 2.00000 0.0903508
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 16.0000 0.717698
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) 24.0000 1.07117
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 36.0000 1.60198
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) −2.00000 −0.0886484 −0.0443242 0.999017i \(-0.514113\pi\)
−0.0443242 + 0.999017i \(0.514113\pi\)
\(510\) 0 0
\(511\) 14.0000 0.619324
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −30.0000 −1.32324
\(515\) 0 0
\(516\) 0 0
\(517\) −8.00000 −0.351840
\(518\) −2.00000 −0.0878750
\(519\) 0 0
\(520\) 4.00000 0.175412
\(521\) −34.0000 −1.48957 −0.744784 0.667306i \(-0.767447\pi\)
−0.744784 + 0.667306i \(0.767447\pi\)
\(522\) 0 0
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) −12.0000 −0.521247
\(531\) 0 0
\(532\) 0 0
\(533\) −20.0000 −0.866296
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) 18.0000 0.776035
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) −16.0000 −0.687259
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −30.0000 −1.27458
\(555\) 0 0
\(556\) −16.0000 −0.678551
\(557\) 10.0000 0.423714 0.211857 0.977301i \(-0.432049\pi\)
0.211857 + 0.977301i \(0.432049\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) −22.0000 −0.928014
\(563\) −8.00000 −0.337160 −0.168580 0.985688i \(-0.553918\pi\)
−0.168580 + 0.985688i \(0.553918\pi\)
\(564\) 0 0
\(565\) 4.00000 0.168281
\(566\) 24.0000 1.00880
\(567\) 0 0
\(568\) 16.0000 0.671345
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 2.00000 0.0836242
\(573\) 0 0
\(574\) −10.0000 −0.417392
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) −4.00000 −0.166091
\(581\) 0 0
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) −30.0000 −1.23929
\(587\) −24.0000 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −2.00000 −0.0821995
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) −14.0000 −0.573462
\(597\) 0 0
\(598\) −16.0000 −0.654289
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −46.0000 −1.87638 −0.938190 0.346122i \(-0.887498\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 22.0000 0.888572 0.444286 0.895885i \(-0.353457\pi\)
0.444286 + 0.895885i \(0.353457\pi\)
\(614\) 16.0000 0.645707
\(615\) 0 0
\(616\) 1.00000 0.0402911
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) 16.0000 0.642575
\(621\) 0 0
\(622\) 8.00000 0.320771
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 14.0000 0.559553
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) −2.00000 −0.0791808
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −32.0000 −1.26196 −0.630978 0.775800i \(-0.717346\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) −8.00000 −0.315244
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 2.00000 0.0784465
\(651\) 0 0
\(652\) −20.0000 −0.783260
\(653\) 26.0000 1.01746 0.508729 0.860927i \(-0.330115\pi\)
0.508729 + 0.860927i \(0.330115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −10.0000 −0.390434
\(657\) 0 0
\(658\) −8.00000 −0.311872
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000 0.619522
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) −24.0000 −0.927201
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) −18.0000 −0.693334
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −26.0000 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) −4.00000 −0.153393
\(681\) 0 0
\(682\) 8.00000 0.306336
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 24.0000 0.913003 0.456502 0.889723i \(-0.349102\pi\)
0.456502 + 0.889723i \(0.349102\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) −28.0000 −1.06287
\(695\) 32.0000 1.21383
\(696\) 0 0
\(697\) 20.0000 0.757554
\(698\) −2.00000 −0.0757011
\(699\) 0 0
\(700\) 1.00000 0.0377964
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) 18.0000 0.676960
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) −32.0000 −1.20094
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) −64.0000 −2.39682
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) −4.00000 −0.149487
\(717\) 0 0
\(718\) 32.0000 1.19423
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 19.0000 0.707107
\(723\) 0 0
\(724\) −22.0000 −0.817624
\(725\) −2.00000 −0.0742781
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 2.00000 0.0741249
\(729\) 0 0
\(730\) −28.0000 −1.03633
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) −16.0000 −0.590571
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 4.00000 0.147043
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 28.0000 1.02584
\(746\) −14.0000 −0.512576
\(747\) 0 0
\(748\) −2.00000 −0.0731272
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) −4.00000 −0.145671
\(755\) 0 0
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 8.00000 0.289052
\(767\) 0 0
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) −2.00000 −0.0720750
\(771\) 0 0
\(772\) 2.00000 0.0719816
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) −10.0000 −0.358979
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) 0 0
\(780\) 0 0
\(781\) −16.0000 −0.572525
\(782\) 16.0000 0.572159
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 28.0000 0.999363
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) 18.0000 0.641223
\(789\) 0 0
\(790\) 0 0
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 18.0000 0.635602
\(803\) −14.0000 −0.494049
\(804\) 0 0
\(805\) 16.0000 0.563926
\(806\) 16.0000 0.563576
\(807\) 0 0
\(808\) 18.0000 0.633238
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) −40.0000 −1.40459 −0.702295 0.711886i \(-0.747841\pi\)
−0.702295 + 0.711886i \(0.747841\pi\)
\(812\) −2.00000 −0.0701862
\(813\) 0 0
\(814\) 2.00000 0.0701000
\(815\) 40.0000 1.40114
\(816\) 0 0
\(817\) 0 0
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) 20.0000 0.698430
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 52.0000 1.80822 0.904109 0.427303i \(-0.140536\pi\)
0.904109 + 0.427303i \(0.140536\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) 32.0000 1.10741
\(836\) 0 0
\(837\) 0 0
\(838\) 16.0000 0.552711
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −22.0000 −0.758170
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) −1.00000 −0.0343604
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) −2.00000 −0.0685994
\(851\) −16.0000 −0.548473
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 10.0000 0.342193
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −56.0000 −1.91070 −0.955348 0.295484i \(-0.904519\pi\)
−0.955348 + 0.295484i \(0.904519\pi\)
\(860\) −8.00000 −0.272798
\(861\) 0 0
\(862\) −8.00000 −0.272481
\(863\) −40.0000 −1.36162 −0.680808 0.732462i \(-0.738371\pi\)
−0.680808 + 0.732462i \(0.738371\pi\)
\(864\) 0 0
\(865\) −28.0000 −0.952029
\(866\) −26.0000 −0.883516
\(867\) 0 0
\(868\) 8.00000 0.271538
\(869\) 0 0
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 2.00000 0.0677285
\(873\) 0 0
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) −40.0000 −1.34993
\(879\) 0 0
\(880\) −2.00000 −0.0674200
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) 32.0000 1.07445 0.537227 0.843437i \(-0.319472\pi\)
0.537227 + 0.843437i \(0.319472\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 12.0000 0.402241
\(891\) 0 0
\(892\) 16.0000 0.535720
\(893\) 0 0
\(894\) 0 0
\(895\) 8.00000 0.267411
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −30.0000 −1.00111
\(899\) −16.0000 −0.533630
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 10.0000 0.332964
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) 44.0000 1.46261
\(906\) 0 0
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) −16.0000 −0.530979
\(909\) 0 0
\(910\) −4.00000 −0.132599
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 22.0000 0.727695
\(915\) 0 0
\(916\) −22.0000 −0.726900
\(917\) 0 0
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 16.0000 0.527504
\(921\) 0 0
\(922\) −30.0000 −0.987997
\(923\) −32.0000 −1.05329
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 8.00000 0.262896
\(927\) 0 0
\(928\) −2.00000 −0.0656532
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 24.0000 0.785304
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) 18.0000 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(938\) −12.0000 −0.391814
\(939\) 0 0
\(940\) 16.0000 0.521862
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) 0 0
\(943\) −80.0000 −2.60516
\(944\) 0 0
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) 52.0000 1.68977 0.844886 0.534946i \(-0.179668\pi\)
0.844886 + 0.534946i \(0.179668\pi\)
\(948\) 0 0
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) 0 0
\(952\) −2.00000 −0.0648204
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 0 0
\(955\) 16.0000 0.517748
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) 8.00000 0.258468
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 4.00000 0.128965
\(963\) 0 0
\(964\) 18.0000 0.579741
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 20.0000 0.642161
\(971\) 16.0000 0.513464 0.256732 0.966483i \(-0.417354\pi\)
0.256732 + 0.966483i \(0.417354\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) 40.0000 1.28168
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) −2.00000 −0.0639857 −0.0319928 0.999488i \(-0.510185\pi\)
−0.0319928 + 0.999488i \(0.510185\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) −2.00000 −0.0638877
\(981\) 0 0
\(982\) 12.0000 0.382935
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −36.0000 −1.14706
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) 0 0
\(989\) 32.0000 1.01754
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 8.00000 0.254000
\(993\) 0 0
\(994\) −16.0000 −0.507489
\(995\) −32.0000 −1.01447
\(996\) 0 0
\(997\) −30.0000 −0.950110 −0.475055 0.879956i \(-0.657572\pi\)
−0.475055 + 0.879956i \(0.657572\pi\)
\(998\) 28.0000 0.886325
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1386.2.a.b.1.1 1
3.2 odd 2 154.2.a.c.1.1 1
7.6 odd 2 9702.2.a.v.1.1 1
12.11 even 2 1232.2.a.h.1.1 1
15.2 even 4 3850.2.c.l.1849.2 2
15.8 even 4 3850.2.c.l.1849.1 2
15.14 odd 2 3850.2.a.f.1.1 1
21.2 odd 6 1078.2.e.b.67.1 2
21.5 even 6 1078.2.e.c.67.1 2
21.11 odd 6 1078.2.e.b.177.1 2
21.17 even 6 1078.2.e.c.177.1 2
21.20 even 2 1078.2.a.j.1.1 1
24.5 odd 2 4928.2.a.n.1.1 1
24.11 even 2 4928.2.a.o.1.1 1
33.32 even 2 1694.2.a.c.1.1 1
84.83 odd 2 8624.2.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
154.2.a.c.1.1 1 3.2 odd 2
1078.2.a.j.1.1 1 21.20 even 2
1078.2.e.b.67.1 2 21.2 odd 6
1078.2.e.b.177.1 2 21.11 odd 6
1078.2.e.c.67.1 2 21.5 even 6
1078.2.e.c.177.1 2 21.17 even 6
1232.2.a.h.1.1 1 12.11 even 2
1386.2.a.b.1.1 1 1.1 even 1 trivial
1694.2.a.c.1.1 1 33.32 even 2
3850.2.a.f.1.1 1 15.14 odd 2
3850.2.c.l.1849.1 2 15.8 even 4
3850.2.c.l.1849.2 2 15.2 even 4
4928.2.a.n.1.1 1 24.5 odd 2
4928.2.a.o.1.1 1 24.11 even 2
8624.2.a.o.1.1 1 84.83 odd 2
9702.2.a.v.1.1 1 7.6 odd 2