Properties

Label 1386.2.a
Level $1386$
Weight $2$
Character orbit 1386.a
Rep. character $\chi_{1386}(1,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $18$
Sturm bound $576$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(576\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1386))\).

Total New Old
Modular forms 304 26 278
Cusp forms 273 26 247
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(3\)
Plus space\(+\)\(7\)
Minus space\(-\)\(19\)

Trace form

\( 26 q + 2 q^{2} + 26 q^{4} + 2 q^{8} + 4 q^{10} - 2 q^{11} + 4 q^{13} - 4 q^{14} + 26 q^{16} + 12 q^{17} + 8 q^{19} + 2 q^{22} + 8 q^{23} + 54 q^{25} + 16 q^{26} + 28 q^{29} + 16 q^{31} + 2 q^{32} + 12 q^{34}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1386))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 11
1386.2.a.a 1386.a 1.a $1$ $11.067$ \(\Q\) None 462.2.a.g \(-1\) \(0\) \(-2\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-q^{7}-q^{8}+2q^{10}+\cdots\)
1386.2.a.b 1386.a 1.a $1$ $11.067$ \(\Q\) None 154.2.a.c \(-1\) \(0\) \(-2\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-q^{7}-q^{8}+2q^{10}+\cdots\)
1386.2.a.c 1386.a 1.a $1$ $11.067$ \(\Q\) None 462.2.a.f \(-1\) \(0\) \(0\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+q^{11}+2q^{13}+\cdots\)
1386.2.a.d 1386.a 1.a $1$ $11.067$ \(\Q\) None 1386.2.a.d \(-1\) \(0\) \(2\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}-q^{7}-q^{8}-2q^{10}+\cdots\)
1386.2.a.e 1386.a 1.a $1$ $11.067$ \(\Q\) None 462.2.a.e \(-1\) \(0\) \(4\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+4q^{5}+q^{7}-q^{8}-4q^{10}+\cdots\)
1386.2.a.f 1386.a 1.a $1$ $11.067$ \(\Q\) None 154.2.a.b \(1\) \(0\) \(-2\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\)
1386.2.a.g 1386.a 1.a $1$ $11.067$ \(\Q\) None 462.2.a.c \(1\) \(0\) \(-2\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\)
1386.2.a.h 1386.a 1.a $1$ $11.067$ \(\Q\) None 1386.2.a.d \(1\) \(0\) \(-2\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\)
1386.2.a.i 1386.a 1.a $1$ $11.067$ \(\Q\) None 462.2.a.b \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+q^{11}-2q^{13}+\cdots\)
1386.2.a.j 1386.a 1.a $1$ $11.067$ \(\Q\) None 462.2.a.d \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+q^{11}+6q^{13}+\cdots\)
1386.2.a.k 1386.a 1.a $1$ $11.067$ \(\Q\) None 462.2.a.a \(1\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+q^{7}+q^{8}+2q^{10}+\cdots\)
1386.2.a.l 1386.a 1.a $1$ $11.067$ \(\Q\) None 154.2.a.a \(1\) \(0\) \(4\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{5}-q^{7}+q^{8}+4q^{10}+\cdots\)
1386.2.a.m 1386.a 1.a $2$ $11.067$ \(\Q(\sqrt{5}) \) None 154.2.a.d \(-2\) \(0\) \(-2\) \(2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta )q^{5}+q^{7}-q^{8}+\cdots\)
1386.2.a.n 1386.a 1.a $2$ $11.067$ \(\Q(\sqrt{10}) \) None 1386.2.a.n \(-2\) \(0\) \(0\) \(-2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta q^{5}-q^{7}-q^{8}-\beta q^{10}+\cdots\)
1386.2.a.o 1386.a 1.a $2$ $11.067$ \(\Q(\sqrt{10}) \) None 1386.2.a.n \(2\) \(0\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta q^{5}-q^{7}+q^{8}+\beta q^{10}+\cdots\)
1386.2.a.p 1386.a 1.a $2$ $11.067$ \(\Q(\sqrt{3}) \) None 462.2.a.h \(2\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta q^{5}+q^{7}+q^{8}+\beta q^{10}+\cdots\)
1386.2.a.q 1386.a 1.a $3$ $11.067$ 3.3.1304.1 None 1386.2.a.q \(-3\) \(0\) \(-2\) \(3\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta _{2})q^{5}+q^{7}-q^{8}+\cdots\)
1386.2.a.r 1386.a 1.a $3$ $11.067$ 3.3.1304.1 None 1386.2.a.q \(3\) \(0\) \(2\) \(3\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1+\beta _{2})q^{5}+q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1386))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1386)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(693))\)\(^{\oplus 2}\)