Properties

Label 1380.4.bi
Level $1380$
Weight $4$
Character orbit 1380.bi
Rep. character $\chi_{1380}(19,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $4320$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1380.bi (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 460 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1380, [\chi])\).

Total New Old
Modular forms 8720 4320 4400
Cusp forms 8560 4320 4240
Eisenstein series 160 0 160

Trace form

\( 4320 q + 12 q^{4} - 12 q^{6} - 3888 q^{9} - 132 q^{16} - 228 q^{24} - 40 q^{26} + 1914 q^{34} + 108 q^{36} + 592 q^{41} - 11352 q^{44} + 720 q^{46} + 20960 q^{49} + 3184 q^{50} + 486 q^{54} + 588 q^{64}+ \cdots + 8988 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1380, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1380, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)